Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coating Application
3.2. Characterization of the Coating
3.3. Sensor Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanda, M.H. Use of tapered optical fibers as evanescent field sensors. In Proceedings of the SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, San Diego, CA, USA, 21 October 1994. [Google Scholar] [CrossRef]
- Woodward, R.I.; Kelleher, E.J.R. 2D Saturable Absorbers for Fibre Lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Pang, F.; Huang, S.; Zou, F.; Dong, Y.; Wang, T. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt. Express 2015, 23, 13880–13888. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, J.; Li, S.; Qi, R.; Zuo, G.; Li, W. Ultrawide temperature range operation of SPR sensor utilizing a depressed double cladding fiber coated with Au-Polydimethylsiloxane. Opt. Express 2020, 28, 258–269. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.M.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B 2016, 233, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Arregui, F.J.; Del Villar, I.; Zamarreño, C.R.; Zubiate, P.; Matias, I.R. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens. Actuators B 2016, 232, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.J.Y.; Ng, S.M.; Stoddart, P.R.; Chua, H.S. Trends and Applications of U-Shaped Fiber Optic Sensors: A Review. IEEE Sens. J. 2021, 21, 120–131. [Google Scholar] [CrossRef]
- Del Villar, I.; Arregui, F.J.; Zamarreño, C.R.; Corres, J.M.; Bariain, C.; Goicoeche, J.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Optical sensors based on lossy-mode resonances. Sens. Actuators B 2017, 240, 174–185. [Google Scholar] [CrossRef]
- Li, W.; Zhang, A.; Cheng, Q.; Sun, C.; Li, Y. Theoretical analysis on SPR based optical fiber refractive index sensor with resonance wavelength covering communication C+L band. Optik 2020, 213, 164696. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Gupta, B.D. Fiber Optic Plasmonic Sensors: Past, Present and Future. Open Opt. J. 2013, 7, 58–83. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, N.; John, J. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sens. J. 2015, 15, 5361–5371. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Del Villar, I.; Matias, I.R.; Arregui, F.J. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Express 2015, 23, 8045–8050. [Google Scholar] [CrossRef] [Green Version]
- Del Villar, I.; Socorro, A.B.; Hernaez, M.; Corres, J.M.; Zamarreño, C.R.; Sanchez, P.; Arregui, F.J.; Matias, I.R. Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study. J. Sens. 2015, 2015, 763762. [Google Scholar] [CrossRef]
- Zamarreño, C.R.; Sanchez, P.; Hernaez, M.; Del Villar, I.; Fernandez-Valdivielso, C.; Matias, I.R.; Arregui, F.J. Sensing Properties of Indium Oxide Coated Optical Fiber Devices Based on Lossy Mode Resonances. IEEE Sens. J. 2012, 12, 151–155. [Google Scholar] [CrossRef]
- Usha, S.P.; Gupta, B.D. Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure. Appl. Opt. 2017, 56, 5716–5725. [Google Scholar] [CrossRef]
- Socorro, A.B.; Corres, J.M.; Del Villar, I.; Arregui, F.J.; Matias, I.R. Fiber-optic biosensor based on lossy mode resonance. Sens. Actuators B 2012, 174, 263–269. [Google Scholar] [CrossRef]
- Socorro, A.B.; Del Villar, I.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Tapered Single-Mode Optical Fiber pH Sensor Based on Lossy Mode Resonances Generated by a Polymeric Thin-Film. IEEE Sens. J. 2012, 12, 2598–2603. [Google Scholar] [CrossRef]
- Sanchez, P.; Mendizabal, D.; Zamarreño, C.R.; Matias, I.R.; Arregui, F.J. Indium-Tin-Oxide-Coated optical fibers for temperature-viscosity sensing applications in synthetic lubricant oil. Proc. SPIE 2015, 9634, 96347M. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, W.-M. A comprehensive review of lossy mode resonance-based fiber optic sensors. Opt. Lasers Eng. 2018, 100, 47–60. [Google Scholar] [CrossRef]
- Riley, F.L. Silicon Nitride and Related Materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Michalak, B.; Śmietana, M.; Koba, M. Optical fiber refractometer based on silicon nitride nano-overlay deposited with PECVD method. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2 June 2014; p. 91575A. [Google Scholar] [CrossRef]
- Pezzotti, G.; Marin, E.; Adachi, T.; Lerussi, F.; Rondinella, A.; Boschetto, F.; Zhu, W.; Kitajima, T.; Inada, K.; McEntire, B.J.; et al. Incorporating Si3N4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. Macromol. Biosci. 2018, 18, e1800033. [Google Scholar] [CrossRef]
- Pezzotti, G.; McEntire, B.J.; Bock, R.; Boffelli, M.; Zhu, W.; Vitale, E.; Puppulin, L.; Adachi, T.; Yamamoto, T.; Kanamura, N.; et al. Silicon Nitride: A Synthetic Mineral for Vertebrate Biology. Sci. Rep. 2016, 6, 31717. [Google Scholar] [CrossRef] [Green Version]
- Pezzotti, G.; McEntire, B.J.; Bock, R.M.; Zhu, W.; Boschetto, F.; Rondinella, A.; Marin, E.; Marunaka, Y.; Adachi, T.; Yamamoto, T.; et al. In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces. ACS Biomater. Sci. Eng. 2016, 2, 1121–1134. [Google Scholar] [CrossRef]
- Gorbunoff, M.J. The interaction of proteins with hydroxyapatite: II. Role of acidic and basic groups. Anal. Biochem. 1984, 136, 433–439. [Google Scholar] [CrossRef]
- Doering, R.; Nishi, Y. (Eds.) Handbook of Semiconductor Manufacturing Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Rizzo, D.C. Fundamentals of Anatomy and Physiology; Cengage Learning: Boston, MA, USA, 2015; ISBN 1285174151. [Google Scholar]
- Pezzotti, G.; Bock, R.M.; McEntire, B.J.; Jones, E.; Boffelli, M.; Zhu, W.; Baggio, G.; Boschetto, F.; Puppulin, L.; Adachi, T.; et al. Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. Langmuir 2016, 32, 3024–3035. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Adachi, K.; Kato, K. Influence of normal load and sliding speed on the tribological property of amorphous carbon nitride coatings sliding against Si3N4 balls in water. Surf. Coat. Technol. 2008, 202, 3519–3528. [Google Scholar] [CrossRef]
- Kevin, L.; Yoshitomo, O.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef]
- Bruno, G.; Capezzuto, P.; Cicala, G.; Cramarossa, F. Mechanism of silicon film deposition in the RF plasma reduction of silicon tetrachloride. Plasma Chem. Plasma Process. 1986, 6, 109–125. [Google Scholar] [CrossRef]
- Michalak, B.; Koba, M.; Śmietana, M. Silicon Nitride Overlays Deposited on Optical Fibers with RF PECVD Method for Sensing Applications: Overlay Uniformity Aspects. Acta Phys. Pol. A 2015, 127, 6. [Google Scholar] [CrossRef]
- Bazakutsa, A.P.; Butov, O.V.; Savel’ev, E.A.; Golant, K.M. Specific Features of IR Photoluminescence of Bismuth-Doped Silicon Dioxide Synthesized by Plasmachemical Method. J. Commun. Technol. Electron. 2012, 57, 743–750. [Google Scholar] [CrossRef]
- Kholodkov, A.V.; Golant, K.M.; Nikolin, I.V. Nano-scale compositional lamination of doped silica glass deposited in surface discharge plasma of SPCVD technology. Microelectron. Eng. 2003, 69, 365–372. [Google Scholar] [CrossRef]
- Ko, S.; Lee, J.; Koo, J.; Joo, B.S.; Gu, M.; Lee, J.H. Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction. J. Lightwave Technol. 2016, 34, 3776. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Kaloyeros, A.E.; Pan, Y.; Pan, Y.; Goff, J.; Goff, J.; Arkles, B.; Arkles, B. Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications. ECS J. Solid State Sci. Technol. 2020, 9, 063006. [Google Scholar] [CrossRef]
- Dianov, E.M.; Golant, K.M.; Khrapko, R.R.; Medvedkov, O.I.; Tomashuk, A.L.; Vasil’ev, S.A. UV absorption and luminescence in silicon oxynitride prepared by hydrogen-free SPCVD-process. Opt. Mater. 1996, 5, 169–173. [Google Scholar] [CrossRef]
- Bandet, J.; Despax, B.; Caumont, M. Nitrogen bonding environments and local order in hydrogenated amorphous silicon nitride films studied by Raman spectroscopy. J. Appl. Phys. 1999, 85, 7899. [Google Scholar] [CrossRef]
- Liu, R.; Canonico, M. Applications of UV—Raman Spectroscopy to Microelectronic Materials and Devices. In Proceedings of the AIP Conference, Online, 1 October 2003; Volume 683, pp. 738–743. [Google Scholar] [CrossRef]
- Ding, W.C.; Hu, D.; Zheng, J.; Chen, P.; Cheng, B.W.; Yu, J.Z.; Wang, Q.M. Strong visible and infrared photoluminescence from Er-implanted silicon nitride films. J. Phys. D Appl. Phys. 2008, 41, 135101. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Dikovskaja, N.D.; Mogilnikov, K.P. Band diagram and conductivity of silicon oxynitride films. Thin Solid Film. 1978, 51, 353–357. [Google Scholar] [CrossRef]
- Tang, C.-J.; Jaing, C.-C.; Tien, C.-L.; Sun, W.-C.; Lin, S.-C. Optical, structural, and mechanical properties of silicon oxynitride films prepared by pulsed magnetron sputtering. Appl. Opt. 2017, 56, C168–C174. [Google Scholar] [CrossRef]
- Kovalev, V.; Kuznetzov, P.; Zhitov, V.; Zakharov, L.; Rukovishnikov, A.; Khomich, A.; Yakushcheva, G.; Gaponenko, S. Spectral Ellipsometry of Multilayer ZnS/ZnSe Heterostructures. J. Appl. Spectrosc. 2002, 69, 298–304. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849304857. [Google Scholar]
- Socorro, A.B.; Del Villar, I.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Influence of Waist Length in Lossy Mode Resonances Generated with Coated Tapered Single-Mode Optical Fibers. IEEE Photonics Technol. Lett. 2011, 23, 1579–1581. [Google Scholar] [CrossRef]
- Aminabhavi, T.M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861. [Google Scholar] [CrossRef]
- Andreev, A.; Zafirova, B.; Karakoleva, E.; Dikovska, A.; Atanasov, P. Highly sensitive refractometers based on a side-polished single-mode fibre coupled with a metal oxide thin-film planar waveguide. J. Opt. A Pure Appl. Opt. 2008, 10, 035303. [Google Scholar] [CrossRef]
- Socorro, A.B.; Hernaez, M.; Del Villar, I.; Corres, J.M.; Arregui, F.J.; Matias, I.R. A comparative study between SMS interferometers and lossy mode resonace optical fiber devices for sensing applications. In Proceedings of the SPIE 9517, Smart Sensors, Actuators, and MEMS VII and Cyber Physical Systems, Barcelona, Spain, 21 May 2015; p. 95171U. [Google Scholar] [CrossRef]
- Andreev, A.; Pantchev, B.; Danesh, P.; Zafirova, B.; Karakoleva, E.; Vlaikova, E.; Alipieva, E. A refractometric sensor using index-sensitive mode resonance between single-mode fiber and thin film amorphous silicon waveguide. Sens. Actuators B Chem. 2005, 106, 484–488. [Google Scholar] [CrossRef]
- Golant, E.I.; Pashkovskii, A.B.; Golant, K.M. Lossy mode resonance in an etched-out optical fiber taper covered by a thin ITO layer. Appl. Opt. 2020, 59, 9254–9258. [Google Scholar] [CrossRef] [PubMed]
No. Sample | Atomic Percent | |||
---|---|---|---|---|
N | O | Si | Cl | |
1 | 53.64 | 11.49 | 34.68 | 0.2 |
2 | 53.67 | 11.39 | 34.73 | 0.2 |
3 | 53.82 | 11.41 | 34.56 | 0.2 |
4 | 53.45 | 11.4 | 34.95 | 0.2 |
Material | Fiber Geometry | Deposition Method | RI Range | Sensitivity, nm/RIU | Reference |
---|---|---|---|---|---|
Al2O3 | Temperature adiabatic SMF | ALD | 1.33–1.35 | 6008 | [3] |
ITO | Side polishing SMF | DC sputtering | 1.32–1.38 | 6009 | [12] |
In2O3 | Removed cladding MMF | Dip-coating process | 1.321–1.372 | 4920 | [14] |
ZnO | Side polishing SMF | PLD | 1.33–1.458 | 1700 | [47] |
TiO2/PSS | Coreless MMF | LbL-assembly process | 1.32–1.46 | 955 | [48] |
Si | Side polishing SMF | PLD | 1.33–1.458 | 270 | [49] |
SiNx | Removed cladding MMF | RF PECVD | 1.333–1.4534 | 690 | [32] |
Si3N4−xOx | Chemically Etched MMF | SPCVD | 1.333–1.43 | 1090 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudas, D.P.; Zakharov, L.Y.; Jitov, V.A.; Golant, K.M. Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer. Sensors 2022, 22, 3665. https://doi.org/10.3390/s22103665
Sudas DP, Zakharov LY, Jitov VA, Golant KM. Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer. Sensors. 2022; 22(10):3665. https://doi.org/10.3390/s22103665
Chicago/Turabian StyleSudas, Dmitriy P., Leonid Yu. Zakharov, Viktor A. Jitov, and Konstantin M. Golant. 2022. "Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer" Sensors 22, no. 10: 3665. https://doi.org/10.3390/s22103665
APA StyleSudas, D. P., Zakharov, L. Y., Jitov, V. A., & Golant, K. M. (2022). Silicon Oxynitride Thin Film Coating to Lossy Mode Resonance Fiber-Optic Refractometer. Sensors, 22(10), 3665. https://doi.org/10.3390/s22103665