Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks
Abstract
:1. Introduction
1.1. Guided Waves in Structural Health Monitoring
1.2. Data Scarcity
1.3. Contribution
2. Materials and Methods
2.1. Guided Waves
2.1.1. Damage Detection via GW
2.1.2. Simulating GW Signals
2.2. Generative Adversarial Networks for Data Synthesis
- The discriminator looks for a way to tell synthetic and real images apart and ends up focusing on looking for a silhouette of the cat, as initially the generator output will mostly be random noise;
- Knowing that the discriminator looks for silhouettes of cats, the generator adjusts to create synthetic data containing such silhouettes;
- The discriminator now needs to find a different set of features to distinguish the samples, e.g., presence and shape of eyes;
- The generator adjusts to suit the newly-found criteria for distinction;
- Steps 3 and 4 keep repeating the cycle of the discriminator finding flaws in the synthetic data and the generator adjusting to fill them.
Style-Based GANs
2.3. GW-GAN
2.3.1. Generator
- Upsampling operation—bilinear interpolation;
- Two one-dimensional convolutions with weight demodulation [23];
- Two leaky rectified linear unit (ReLU) activations, one after each convolution.
2.3.2. Discriminator
2.3.3. Style-Finding for A Given Signal
- Stage one—with two loss components, perceptual difference, and mean squared error, strongly weighted towards the former. This way, during the first part of the backpropagation process, the network is mostly guided to produce roughly the same shape of the signal;
- Stage two—the output is fine-tuned using only mean squared error loss to fix the remaining discrepancies between the signals.
2.3.4. Training
- T6:T10–12;
- T3:T10–12, T4:T7–10;
- T3:T12, T4:T10–12, T5:T7–T10, T6:T7–8;
- T1:T10–11, T2:T9–10, T3:T7–9, T4:T7;
- T2:T12, T3:T12, T4:T11–12, T5:T10–11, T6:T10–11;
- T1:T7–8, T2:T7, T3:T7;
- T1:T10, T2:T10, T3:T10, T4:T9–10, T5:T9, T6:T9.
2.3.5. Specialized Models
3. Results
3.1. Training Results
3.1.1. Generation from Random Noise
3.1.2. Re-Creating Validation Signals
3.2. Classification Based on Synthetic Data
3.2.1. Setup and Data Synthesis Strategy
- : Pearson cross-correlation estimate obtained between baseline and the signal for the lag value equal to 0 [57];
- : Root mean square value of the difference between the signal and the baseline;
- : Instantaneous-phase-based temperature compensation damage index [58].;
- : Normalized squared error between envelopes of the signal and the baseline. Envelopes are calculated using Hilbert transform [57];
- : Maximum value of Pearson cross-correlation estimate obtained for all possible lags between signal and the baseline [57].
3.2.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Bao, Y.; Li, H. Machine learning paradigm for structural health monitoring. Struct. Health Monit. 2021, 20, 1353–1372. [Google Scholar] [CrossRef]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Moll, J.; Kathol, J.; Fritzen, C.P.; Moix-Bonet, M.; Rennoch, M.; Koerdt, M.; Herrmann, A.S.; Sause, M.G.; Bach, M. Open Guided Waves: Online platform for ultrasonic guided wave measurements. Struct. Health Monit. 2019, 18, 1903–1914. [Google Scholar] [CrossRef]
- Wan, X.; Liu, M.; Zhang, X.; Fan, H.; Tse, P.W.; Dong, M.; Wang, X.; Wei, H.; Xu, C.; Ma, H. The use of ultrasonic guided waves for the inspection of square tube structures: Dispersion analysis and numerical and experimental studies. Struct. Health Monit. 2021, 20, 58–73. [Google Scholar] [CrossRef]
- Rostami, J.; Tse, P.W.; Yuan, M. Detection of broken wires in elevator wire ropes with ultrasonic guided waves and tone-burst wavelet. Struct. Health Monit. 2020, 19, 481–494. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, F.; Bao, W. Fatigue crack detection under the vibration condition based on ultrasonic guided waves. Struct. Health Monit. 2021, 20, 931–941. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.M.; Ye, W. Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network. Mech. Syst. Signal Process. 2021, 147, 107107. [Google Scholar] [CrossRef]
- Humer, C.; Höll, S.; Kralovec, C.; Schagerl, M. Damage identification using wave damage interaction coefficients predicted by deep neural networks. Ultrasonics 2022, 124, 106743. [Google Scholar] [CrossRef]
- Rautela, M.; Gopalakrishnan, S. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks. Expert Syst. Appl. 2021, 167, 114189. [Google Scholar] [CrossRef]
- Haywood-Alexander, M.; Dervilis, N.; Worden, K.; Cross, E.J.; Mills, R.S.; Rogers, T.J. Structured machine learning tools for modelling characteristics of guided waves. Mech. Syst. Signal Process. 2021, 156, 107628. [Google Scholar] [CrossRef]
- Melville, J.; Alguri, K.S.; Deemer, C.; Harley, J.B. Structural damage detection using deep learning of ultrasonic guided waves. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1949, p. 230004. [Google Scholar]
- Wang, X.; Lin, M.; Li, J.; Tong, J.; Huang, X.; Liang, L.; Fan, Z.; Liu, Y. Ultrasonic guided wave imaging with deep learning: Applications in corrosion mapping. Mech. Syst. Signal Process. 2022, 169, 108761. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 2672–2680. [Google Scholar]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. 2020. Available online: http://xxx.lanl.gov/abs/2001.06937 (accessed on 10 March 2022).
- Donahue, C.; McAuley, J.J.; Puckette, M.S. Synthesizing Audio with Generative Adversarial Networks. CoRR 2018, arXiv:1802.04208. [Google Scholar]
- Sandfort, V.; Yan, K.; Pickhardt, P.J.; Summers, R.M. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 2019, 9, 16884. [Google Scholar] [CrossRef]
- Shao, S.; Wang, P.; Yan, R. Generative adversarial networks for data augmentation in machine fault diagnosis. Comput. Ind. 2019, 106, 85–93. [Google Scholar] [CrossRef]
- Fiore, U.; Santis, A.; Perla, F.; Zanetti, P.; Palmieri, F. Using Generative Adversarial Networks for Improving Classification Effectiveness in Credit Card Fraud Detection. Inf. Sci. 2017, 479. [Google Scholar] [CrossRef]
- Heesch, M.; Dworakowski, Z.; Mendrok, K. Generative Adversarial Neural Networks for Guided Wave Signal Synthesis. In Proceedings of the European Workshop on Structural Health Monitoring; Springer: Cham, Switzerland, 2020; pp. 14–23. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. arXiv 2018, arXiv:1812.04948. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2019, arXiv:1912.04958. [Google Scholar]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring: With Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Su, Z.; Ye, L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 48. [Google Scholar]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.M.; Ahmad, Z. Simulation methods for guided wave-based structural health monitoring: A review. Appl. Mech. Rev. 2015, 67, 010803. [Google Scholar] [CrossRef] [Green Version]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Giurgiutiu, V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 2005, 16, 291–305. [Google Scholar] [CrossRef]
- Grondel, S.; Paget, C.; Delebarre, C.; Assaad, J.; Levin, K. Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers. J. Acoust. Soc. Am. 2002, 112, 84–90. [Google Scholar] [CrossRef]
- Mori, N.; Biwa, S.; Hayashi, T. Reflection and transmission of Lamb waves at an imperfect joint of plates. J. Appl. Phys. 2013, 113, 074901. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.T.; Veidt, M.; Rose, L.; Wang, C. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J. Sound Vib. 2012, 331, 4870–4883. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Giurgiutiu, V. Combined analytical FEM approach for efficient simulation of Lamb wave damage detection. Ultrasonics 2016, 69, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Poddar, B.; Giurgiutiu, V. Scattering of Lamb waves from a discontinuity: An improved analytical approach. Wave Motion 2016, 65, 79–91. [Google Scholar] [CrossRef]
- Lee, B.; Staszewski, W. Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation. Smart Mater. Struct. 2003, 12, 804. [Google Scholar] [CrossRef]
- Lee, B.; Staszewski, W. Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage. Smart Mater. Struct. 2003, 12, 815. [Google Scholar] [CrossRef]
- Willberg, C.; Duczek, S.; Perez, J.V.; Schmicker, D.; Gabbert, U. Comparison of different higher order finite element schemes for the simulation of Lamb waves. Comput. Methods Appl. Mech. Eng. 2012, 241, 246–261. [Google Scholar] [CrossRef]
- Kudela, P.; Żak, A.; Krawczuk, M.; Ostachowicz, W. Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 2007, 302, 728–745. [Google Scholar] [CrossRef]
- Li, J.; Khodaei, Z.S.; Aliabadi, M. Boundary element modelling of ultrasonic Lamb waves for structural health monitoring. Smart Mater. Struct. 2020, 29, 105030. [Google Scholar] [CrossRef]
- Ichchou, M.; Mencik, J.M.; Zhou, W. Wave finite elements for low and mid-frequency description of coupled structures with damage. Comput. Methods Appl. Mech. Eng. 2009, 198, 1311–1326. [Google Scholar] [CrossRef]
- Leckey, C.A.; Rogge, M.D.; Parker, F.R. Guided waves in anisotropic and quasi-isotropic aerospace composites: Three-dimensional simulation and experiment. Ultrasonics 2014, 54, 385–394. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Leckey, C.A.; Leser, P.E.; Leser, W.P. Multi-mode reverse time migration damage imaging using ultrasonic guided waves. Ultrasonics 2019, 94, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Ye, L. Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm: Part I-methodology and database development. J. Intell. Mater. Syst. Struct. 2005, 16, 97–111. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm: Part II - Implementation and Validation. J. Intell. Mater. Syst. Struct. 2005, 16, 113–125. [Google Scholar] [CrossRef]
- De Luca, A.; Sharif-Khodaei, Z.; Aliabadi, M.; Caputo, F. Numerical simulation of the Lamb wave propagation in impacted CFRP laminate. Procedia Eng. 2016, 167, 109–115. [Google Scholar] [CrossRef]
- Nag, A.; Mahapatra, D.R.; Gopalakrishnan, S.; Sankar, T.S. A spectral finite element with embedded delamination for modeling of wave scattering in composite beams. Compos. Sci. Technol. 2003, 63, 2187–2200. [Google Scholar] [CrossRef]
- Matsushita, M.; Mori, N.; Biwa, S. Transmission of Lamb waves across a partially closed crack: Numerical analysis and experiment. Ultrasonics 2019, 92, 57–67. [Google Scholar] [CrossRef]
- El Masri, E.; Ferguson, N.; Waters, T. Wave propagation and scattering in reinforced concrete beams. J. Acoust. Soc. Am. 2019, 146, 3283–3294. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Fan, Y.; Jiang, Z. Piezoelectric Transducers for Structural Health Monitoring of Joint Structures in Cylinders: A Wave-Based Design Approach. Sensors 2020, 20, 601. [Google Scholar] [CrossRef] [Green Version]
- Mardanshahi, A.; Shokrieh, M.; Kazemirad, S. Simulated Lamb wave propagation method for nondestructive monitoring of matrix cracking in laminated composites. Struct. Health Monit. 2022, 21, 695–709. [Google Scholar] [CrossRef]
- Perfetto, D.; De Luca, A.; Perfetto, M.; Lamanna, G.; Caputo, F. Damage Detection in Flat Panels by Guided Waves Based Artificial Neural Network Trained through Finite Element Method. Materials 2021, 14, 7602. [Google Scholar] [CrossRef]
- Dziendzikowski, M.; Heesch, M.; Gorski, J.; Dragan, K.; Dworakowski, Z. Application of pzt ceramic sensors for composite structure monitoring using harmonic excitation signals and bayesian classification approach. Materials 2021, 14, 5468. [Google Scholar] [CrossRef]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Abdal, R.; Qin, Y.; Wonka, P. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? arXiv 2019, arXiv:1904.03189. [Google Scholar]
- Dworakowski, Z.; Dragan, K.; Stepinski, T. Artificial neural network ensembles for fatigue damage detection in aircraft. J. Intell. Mater. Syst. Struct. 2016, 28, 851–861. [Google Scholar] [CrossRef]
- Dworakowski, Z.; Ambrozinski, L.; Stepinski, T. Multi-stage temperature compensation method for Lamb wave measurements. J. Sound Vib. 2016, 382, 328–339. [Google Scholar] [CrossRef]
Block ID | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Filter count | 384 | 192 | 144 | 96 | 48 | 24 |
Output samples | 32 | 128 | 512 | 2048 | 4096 | 8192 |
Max frequency | 1.95 × 10 | 7.8 × 10 | 3.1 × 10 | 1.25 × 10 | 2.5 × 10 | 5 × 10 |
GAN # | Mean | Std | Min | Max |
---|---|---|---|---|
1 | 6.33 × 10 | 4.46 × 10 | 1.21 × 10 | 1.78 × 10 |
2 | 1.92 × 10 | 3.12 × 10 | 3.06 × 10 | 1.34 × 10 |
3 | 8.49 × 10 | 9.45 × 10 | 2.23 × 10 | 4.71 × 10 |
Signal 1 | Signal 2 | Mean RMSE |
---|---|---|
Original baseline series 1 | Original baseline series 2 | 4.29 × 10 |
Original damaged | Original baselines series 1 | 2.27 × 10 |
Synthetic damaged net 1 | Original baselines series 1 | 3.18 × 10 |
Synthetic damaged net 2 | Original baselines series 1 | 2.55 × 10 |
Synthetic damaged net 3 | Original baselines series 1 | 2.21 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heesch, M.; Dziendzikowski, M.; Mendrok, K.; Dworakowski, Z. Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks. Sensors 2022, 22, 3848. https://doi.org/10.3390/s22103848
Heesch M, Dziendzikowski M, Mendrok K, Dworakowski Z. Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks. Sensors. 2022; 22(10):3848. https://doi.org/10.3390/s22103848
Chicago/Turabian StyleHeesch, Mateusz, Michał Dziendzikowski, Krzysztof Mendrok, and Ziemowit Dworakowski. 2022. "Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks" Sensors 22, no. 10: 3848. https://doi.org/10.3390/s22103848
APA StyleHeesch, M., Dziendzikowski, M., Mendrok, K., & Dworakowski, Z. (2022). Diagnostic-Quality Guided Wave Signals Synthesized Using Generative Adversarial Neural Networks. Sensors, 22(10), 3848. https://doi.org/10.3390/s22103848