Automatic Personality Assessment through Movement Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Set-Up
2.3. NEO Five Factor Inventory
2.4. Feature Extraction
- Elbows: Angles characterized by (Right/Left) Shoulder, (Right/Left) Elbow and (Right/Left) Wrist;
- Shoulders: Angles characterized by Spine shoulder, (Right/Left) Shoulder, (Right/Left) Elbow;
- Wrists: Angles characterized by (Right/Left) Elbow, (Right/Left) Wrist and (Right/Left) Hand;
- Knees: Angles characterized by (Right/Left) Hip, (Right/Left) Knee and (Right/Left) Ankle;
- Hips: Angles characterized by Spine Base, (Right/Left) Hip and (Right/Left) Knee
- Forward Leaning;
- Lateral Leaning.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vinciarelli, A.; Mohammadi, G. A survey of personality computing. IEEE Trans. Affect. Comput. 2014, 5, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.T.; John, O.P.; Blaskey, L.G.; Huang-Pollock, C.L.; Willcutt, E.G.; Hinshaw, S.P.; Pennington, B. Big five dimensions and ADHD symptoms: Links between personality traits and clinical symptoms. J. Personal. Soc. Psychol. 2002, 83, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Majeski, S.A.; Collin, V. ADHD symptoms and personality: Relationships with the five-factor model. Pers. Individ. Differ. 2004, 36, 977–987. [Google Scholar] [CrossRef]
- Dell, L.J.; Ruzicka, M.F.; Palisi, A.T. Personality and Other Factors Associated with the Gambling Addiction. Int. J. Addict. 1981, 16, 149–156. [Google Scholar] [CrossRef]
- Jimenez-Murcia, A.; Fernández-Aranda, F.; Granero, R.; Chóliz, M.; la Verd, M.E.; Aguglia, E.; Signorelli, M.S.; Sá, G.M.; Aymami, N.; Gómez-Peña, M.; et al. Video game addiction in gambling disorder: Clinical, psychopathological, and personality correlates. BioMed Res. Int. 2014, 2014, 315062. [Google Scholar] [CrossRef] [PubMed]
- King, V.L.; Kidorf, M.S.; Stoller, K.B.; Carter, J.A.; Brooner, R.K. Influence of Antisocial Personality Subtypes on Drug Abuse Treatment Response. J. Nerv. Ment. Dis. 2001, 189, 593–601. [Google Scholar] [CrossRef]
- Fassino, S.; Pierò, A.; Gramaglia, C.; Abbate-Daga, G. Clinical, Psychopathological and Personality Correlates of Interoceptive Awareness in Anorexia nervosa, Bulimia nervosa and Obesity. Psychopathology 2004, 37, 168–174. [Google Scholar] [CrossRef]
- Díaz-Marsá, M.; Luis, J.; Sáiz, J. A Study of Temperament and Personality in Anorexia and Bulimia Nervosa. J. Pers. Disord. 2000, 14, 352–359. [Google Scholar] [CrossRef]
- Stefa-Missagli, S.; Unterrainer, H.-F.; Giupponi, G.; Holasek, S.; Kapfhammer, H.; Conca, A.; Sarlo, M.; Erbuto, D.; Rogante, E.; Moujaes-Droescher, H.; et al. Suicide and Personality Traits: A Multicenter Study of Austrian and Italian Psychiatric Patients and Students. Suicide Life-Threat. Behav. 2019, 50, 220–232. [Google Scholar] [CrossRef]
- Orme, W.H.; Szczepanek, A.E.; Allen, J.G.; Oldham, J.M.; Madan, A.; Frueh, B.C.; Fowler, J.C. Lifetime and prospective associations among personality trait domains and suicide-related behaviors in patients with severe mental illness. J. Affect. Disord. 2020, 266, 492–497. [Google Scholar] [CrossRef]
- Chamorro-Premuzic, T.; Furnham, A. Personality traits and academic examination performance. Eur. J. Pers. 2002, 17, 237–250. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K. The Big Five Personality Dimensions and Job Performance: A Meta-Analysis. Pers. Psychol. 1991, 44, 1–26. [Google Scholar] [CrossRef]
- Salgado, J.F.; Tauriz, G. The Five-Factor Model, forced-choice personality inventories and performance: A comprehensive meta-analysis of academic and occupational validity studies. Eur. J. Work. Organ. Psychol. 2014, 23, 3–30. [Google Scholar] [CrossRef]
- Ekman, P.; O’Sullivan, M.; Frank, M.G. A Few Can Catch a Liar. Psychol. Sci. 1999, 10, 263–266. [Google Scholar] [CrossRef]
- Archer, R.P.; Buffington-Vollum, J.K.; Stredny, R.V.; Handel, R.W. A Survey of Psychological Test Use Patterns among Forensic Psychologists. J. Pers. Assess. 2006, 87, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S.; Greenlees, I.; Jones, M. Personality in sport: A comprehensive review. Int. Rev. Sport Exerc. Psychol. 2013, 6, 184–208. [Google Scholar] [CrossRef]
- Boyle, G.; Helmes, E. Methods of personality assessment. In The Cambridge Handbook of Personality Psychology; Cambridge University Press: Cambridge, UK, 2009; pp. 110–126. [Google Scholar]
- Magalhães, E.; Salgueira, A.; Gonzalez, A.-J.; Costa, J.J.; Costa, M.J.; Costa, P.; de Lima, M.P. NEO-FFI: Psychometric properties of a short personality inventory in Portuguese context. Psicol. Reflexão Crítica 2014, 27, 642–657. [Google Scholar] [CrossRef]
- Murray, G.; Rawlings, D.; Allen, N.; Trinder, J. NEO Five-Factor Inventory Scores: Psychometric Properties in a Community Sample. Meas. Eval. Couns. Dev. 2003, 36, 140–149. [Google Scholar] [CrossRef]
- Furham, A. Faking personality questionnaires: Fabricating different profiles for different purposes. Curr. Psychol. 1990, 9, 46–55. [Google Scholar] [CrossRef]
- van de Mortel, T.F. Faking it: Social desirability response bias in self-report research. Aust. J. Adv. Nurs. 2008, 25, 40–48. [Google Scholar]
- Frazier, T.W.; Frazier, A.R.; Busch, R.M.; Kerwood, M.A.; Demaree, H. Detection of simulated ADHD and reading disorder using symptom validity measures. Arch. Clin. Neuropsychol. 2008, 23, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeller, F.G.; Barratt, E.S.; Dougherty, D.M.; Schmitz, J.; Swann, A.C. Psychiatric Aspects of Impulsivity. Am. J. Psychiatry 2001, 158, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- van Hemert, D.A.; Baerveldt, C.; Vermande, M. Assessing cross-cultural item bias in questionnaires: Acculturation and the measurement of social support and family cohesion for adolescents. J. Cross-Cult. Psychol. 2001, 32, 381–396. [Google Scholar] [CrossRef]
- Grumm, M.; von Collani, G. Measuring Big-Five personality dimensions with the implicit association test–Implicit personality traits or self-esteem? Personal. Individ. Differ. 2007, 43, 2205–2217. [Google Scholar] [CrossRef]
- Guidi, A.; Gentili, C.; Scilingo, E.; Vanello, N. Analysis of speech features and personality traits. Biomed. Signal Process. Control 2019, 51, 1–7. [Google Scholar] [CrossRef]
- Mairesse, F.; Walker, M. Automatic recognition of personality in conversation. In Proceedings of the Human Language Technology Conference of the NAACL, New York, NY, USA, 4–9 June 2006; pp. 85–88. [Google Scholar]
- Mairesse, F.; Walker, M.A.; Mehl, M.R.; Moore, R.K. Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text. J. Artif. Intell. Res. 2007, 30, 457–500. [Google Scholar] [CrossRef]
- Argamon, S.; Dhawle, S.; Koppel, M.; Pennbaker, J. Lexical predictors of personality type. In Proceedings of the Interface and the Classification Society of North America, St. Louis, MO, USA, 8–12 June 2005. [Google Scholar]
- Segalin, C.; Celli, F.; Polonio, L.; Kosinski, M.; Stillwell, D.; Sebe, N.; Cristani, M.; Lepri, B. What your Facebook profile picture reveals about your personality. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 460–468. [Google Scholar]
- IKaushal, V.; Patwardhan, M. Emerging Trends in Personality Identification Using Online Social Networks—A Literature Survey. ACM Trans. Knowl. Discov. Data 2018, 12, 1–30. [Google Scholar] [CrossRef]
- Choudbury, T.; Pentland, A. The Sociometer: A Wearable Device for Understanding Human Networks; Human Design Group: Cambridge, MA, USA, 2002. [Google Scholar]
- Morris, M.E.; Aguilera, A. Mobile, social, and wearable computing and the evolution of psychological practice. Prof. Psychol. Res. Pract. 2012, 43, 622–626. [Google Scholar] [CrossRef] [Green Version]
- Chittaranjan, G.; Blom, J.; Gatica-Perez, D. Mining large-scale smartphone data for personality studies. Pers. Ubiquitous Comput. 2013, 17, 433–450. [Google Scholar] [CrossRef]
- Ihsan, Z.; Furham, A. The new technologies in personality assessment: A review. Consult. Psychol. J. Pract. Res. 2018, 70, 147–166. [Google Scholar] [CrossRef]
- Brunswik, E. Perception and the Representative Design of Psychological Experiments; University of California Press: Berkeley, CA, USA, 1956. [Google Scholar]
- INorth, M. Personality Assessment through Movement; Macdonald & Evans: London, UK, 1972. [Google Scholar]
- Allport, G.W.; Vernon, P.E. Studies in Expressive Movement; Haffnet: New York, NY, USA, 1933. [Google Scholar]
- Pianesi, F.; Mana, N.; Cappelletti, A.; Lepri, B.; Zancanaro, M. Multimodal recognition of personality traits in social interaction. In Proceedings of the 10th International Conference on Multimodal Interfaces, Chania, Greece, 20–22 October 2008; pp. 53–60. [Google Scholar]
- Batrinca, L.M.; Mana, N.; Lepri, B.; Pianesi, F.; Sebe, N. Please, tell me about yourself: Automatic personality assessment using short self-presentations. In Proceedings of the 13th International Conference on Multimodal Interfaces, Alicante, Spain, 14–18 November 2011; pp. 255–262. [Google Scholar]
- Batrinca, L.; Lepri, B.; Mana, N.; Pianesi, F. Multimodal recognition of personality traits in human-computer collaborative tasks. In Proceedings of the 14th ACM International Conference on Multimodal Interaction, Santa Monica, CA, USA, 22–26 October 2012; pp. 39–46. [Google Scholar] [CrossRef] [Green Version]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Diest, M.; Stegenga, J.; Wörtche, H.J.; Postema, K.; Verkerke, G.J.; Lamoth, C.J. Suitability of Kinect for measuring whole body movement patterns during exergaming. J. Biomech. 2014, 47, 2925–2932. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Pua, Y.-H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, P.; Shen, Y.; Yang, Z.; Li, H.; Liu, Y.; Zhu, T.; Li, L.; Zhang, K.; Chen, M. Relationship between personality and gait: Predicting personality with gait features. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1227–1231. [Google Scholar] [CrossRef]
- Furuichi, S.; Abe, K.; Nakamura, S. The Possibility of Personality Extraction Using Skeletal Information in Hip-Hop Dance by Human or Machine. In Human-Computer Interaction—INTERACT 2019, Proceedings of the 17th IFIP TC 13 International Conference, Paphos, Cyprus, 2–6 September 2019; Springer: Cham, Switzerland, 2019; pp. 511–519. [Google Scholar] [CrossRef]
- Brebner, J. Personality theory and movement. In Individual Differences in Movement; Springer: Dordrecht, The Netherlands, 1985; pp. 27–41. [Google Scholar]
- Castellano, G.; Mortillaro, M.; Camurri, A.; Volpe, G.; Scherer, K. Automated Analysis of Body Movement in Emotionally Expressive Piano Performances. Music Percept. 2008, 26, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Dahl, S.; Friberg, A. Visual Perception of Expressiveness in Musicians’ Body Movements. Music Percept. 2007, 24, 433–454. [Google Scholar] [CrossRef] [Green Version]
- Glowinski, D.; Dael, N.; Camurri, A.; Volpe, G.; Mortillaro, M.; Scherer, K. Toward a Minimal Representation of Affective Gestures. IEEE Trans. Affect. Comput. 2011, 2, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Dael, N.; Goudbeek, M.; Scherer, K.R. Perceived Gesture Dynamics in Nonverbal Expression of Emotion. Perception 2013, 42, 642–657. [Google Scholar] [CrossRef] [Green Version]
- Kleinsmith, A.; Berthouze, N. Affective Body Expression Perception and Recognition: A Survey. IEEE Trans. Affect. Comput. 2012, 4, 15–33. [Google Scholar] [CrossRef]
- Witkower, Z.; Tracy, J.L. Bodily Communication of Emotion: Evidence for Extrafacial Behavioral Expressions and Available Coding Systems. Emot. Rev. 2018, 11, 184–193. [Google Scholar] [CrossRef]
- Palmieri, P.; Melchiorre, M.; Scimmi, L.S.; Pastorelli, S.; Mauro, S. Human Arm Motion Tracking by Kinect Sensor Using Kalman Filter for Collaborative Robotics. In Advances in Italian Mechanism Science; Niola, V., Gasparetto, A., Eds.; IFToMM ITALY 2020. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2020; Volume 91. [Google Scholar] [CrossRef]
- Melchiorre, M.; Scimmi, L.S.; Mauro, S.; Pastorelli, S.P. Vision-based control architecture for human robot hand-over applications. Asian J. Control 2021, 23, 105–117. [Google Scholar] [CrossRef]
- McCrae, R. The Five-Factor Model of personality. In The Cambridge Handbook of Personality Psychology; Cambridge University Press: Cambridge, UK, 2009; pp. 148–161. [Google Scholar]
- McCrae, R.R.; Costa, P. A contemplated revision of the NEO Five-Factor Inventory. Pers. Individ. Differ. 2004, 36, 587–596. [Google Scholar] [CrossRef]
- Roether, C.L.; Omlor, L.; Christensen, A.; Giese, M.A. Critical features for the perception of emotion from gait. J. Vis. 2009, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Zhang, H.; Wei, X.-S.; Wu, J. Deep Bimodal Regression for Apparent Personality Analysis. In Computer Vision–ECCV 2016 Workshops Amsterdam, The Netherlands, 8–10, and 15–16 October 2016, Proceedings, Part II; Springer: Cham, Switzerland, 2016; pp. 311–324. [Google Scholar] [CrossRef]
- Bachrach, Y.; Kosinski, M.; Graepel, T.; Kohli, P.; Stillwell, D. Personality and patterns of Facebook usage. In Proceedings of the 4th Annual ACM Web Science Conference, Evanston, IL, USA, 22–24 June 2012; pp. 24–32. [Google Scholar]
- Liu, L.; Preotiuc-Pietro, D.; Samani, Z.R.; Moghaddam, M.E.; Ungar, L.H. Analyzing Personality through Social Media Profile Picture Choice. In Proceedings of the Tenth International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016; pp. 211–220. [Google Scholar]
- Riggio, R.; Lippa, R.; Salinas, C. The display of personalityin expressive movement. J. Res. Personal. 1990, 24, 16–31. [Google Scholar] [CrossRef]
- Jayagopi, D.B.; Hung, H.; Yeo, C.; Gatica-Perez, D. Modeling Dominance in Group Conversations Using Nonverbal Activity Cues. IEEE Trans. Audio Speech Lang. Process. 2009, 17, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Gomez, D.; Carmona-Vázquez, C.; Bayona, S.; Ardoy-Cuadros, J.; Aguado, D.; Baca-García, E.; Lopez-Castroman, J. Improving impulsivity assessment using movement recognition: A pilot study. Behav. Res. Methods 2015, 48, 1575–1579. [Google Scholar] [CrossRef]
- Delgado-Gómez, D.; Peñuelas-Calvo, I.; Masó-Besga, A.E.; Vallejo-Oñate, S.; Tello, I.B.; Duarte, E.A.; Varela, M.C.V.; Carballo, J.J.; Baca-García, E.; Baron, D.; et al. Microsoft Kinect-based Continuous Performance Test: An Objective Attention Deficit Hyperactivity Disorder Assessment. J. Med. Internet Res. 2017, 19, e79. [Google Scholar] [CrossRef]
- Parrado, F.; Ospina, D. Gamification of a psychological test for assessing students’ self-control with Kinect sensor. Entre Cienc. Ing. 2016, 10, 108. [Google Scholar]
- Sempere-Tortosa, M.; Fernández-Carrasco, F.; Navarro-Soria, I.; Rizo-Maestre, C. Movement Patterns in Students Diagnosed with ADHD, Objective Measurement in a Natural Learning Environment. Int. J. Environ. Res. Public Health 2021, 18, 3870. [Google Scholar] [CrossRef]
- Luo, H.; Gao, B. Development of smart wearable sensors for life healthcare. Eng. Regen. 2021, 2, 163–170. [Google Scholar] [CrossRef]
- Ouyang, C.-S.; Chiu, Y.-H.; Chiang, C.-T.; Wu, R.-C.; Lin, Y.-T.; Yang, R.-C.; Lin, L.-C. Evaluating Therapeutic Effects of ADHD Medication Objectively by Movement Quantification with a Video-Based Skeleton Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9363. [Google Scholar] [CrossRef]
- Aguado, D.; Rico, R.; Sánchez-Manzanares, M.; Salas, E. Teamwork Competency Test (TWCT): A step forward on measuring teamwork competencies. Group Dyn. Theory Res. Pract. 2014, 18, 101–121. [Google Scholar] [CrossRef] [Green Version]
Neuroticism |
= 18.41 + 1.76 × Median Angular Velocity Left Wrist (p = 0.03) |
R2: 7.32% |
chi-square Goodness of fit test for the normality of residuals: 0.04 |
Extroversion |
= 35.04 + 31.97 × Median Linear Velocity Right Hand (p < 0.01) − 154.91 × Median Linear Velocity Right Ankle (p < 0.01) + 159.38 × IQR Linear Velocity Head (p = 0.02) − 256.92 × IQR Linear Velocity Right Shoulder (p < 0.01) + 24.52 × IQR Linear Velocity Right Ankle (p = 0.04) + 0.73 × IQR Linear Acceleration Right Knee (p < 0.01) + 1.94 × Median Angular Velocity (p = 0.02) |
Adjusted R2: 39.36% |
chi-square Goodness of fit test for the normality of residuals: 0.73 |
Openness to experience |
= 26.52 + 2.47 × Median Angular Velocity (p = 0.02) + 0.09 × Time Length (p = 0.01) |
Adjusted R2: 12.96% |
chi-square Goodness of fit test for the normality of residuals: 0.10 |
Agreeableness |
= 31.36 − 2.04 × Median Angular Velocity Left Wrist (p < 0.01) |
R2: 18.93% |
chi-square Goodness of fit test for the normality of residuals: 0.89 |
Conscientiousness |
= 34.33 − 2.04 × Median Angular Velocity Left Wrist (p < 0.01) − 76.44 × Amount of Movement Left Knee (p < 0.01) + 1.02 × Median Linear Acceleration Right Ankle (p = 0.01) + 0.68 × IQR Linear Acceleration Right Knee (p = 0.03) |
Adjusted R2: 27.88% |
chi-square Goodness of fit test for the normality of residuals: 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Gómez, D.; Masó-Besga, A.E.; Aguado, D.; Rubio, V.J.; Sujar, A.; Bayona, S. Automatic Personality Assessment through Movement Analysis. Sensors 2022, 22, 3949. https://doi.org/10.3390/s22103949
Delgado-Gómez D, Masó-Besga AE, Aguado D, Rubio VJ, Sujar A, Bayona S. Automatic Personality Assessment through Movement Analysis. Sensors. 2022; 22(10):3949. https://doi.org/10.3390/s22103949
Chicago/Turabian StyleDelgado-Gómez, David, Antonio Eduardo Masó-Besga, David Aguado, Victor J. Rubio, Aaron Sujar, and Sofia Bayona. 2022. "Automatic Personality Assessment through Movement Analysis" Sensors 22, no. 10: 3949. https://doi.org/10.3390/s22103949
APA StyleDelgado-Gómez, D., Masó-Besga, A. E., Aguado, D., Rubio, V. J., Sujar, A., & Bayona, S. (2022). Automatic Personality Assessment through Movement Analysis. Sensors, 22(10), 3949. https://doi.org/10.3390/s22103949