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Abstract: The use of low-cost sensors in conjunction with high-precision instrumentation for air
pollution monitoring has shown promising results in recent years. One of the main challenges for
these sensors has been the quality of their data, which is why the main efforts have focused on
calibrating the sensors using machine learning techniques to improve the data quality. However,
there is one aspect that has been overlooked, that is, these sensors are mounted on nodes that may
have energy consumption restrictions if they are battery-powered. In this paper, we show the usual
sensor data gathering process and we study the existing trade-offs between the sampling of such
sensors, the quality of the sensor calibration, and the power consumption involved. To this end,
we conduct experiments on prototype nodes measuring tropospheric ozone, nitrogen dioxide, and
nitrogen monoxide at high frequency. The results show that the sensor sampling strategy directly
affects the quality of the air pollution estimation and that each type of sensor may require different
sampling strategies. In addition, duty cycles of 0.1 can be achieved when the sensors have response
times in the order of two minutes, and duty cycles between 0.01 and 0.02 can be achieved when the
sensor response times are negligible, calibrating with hourly reference values and maintaining a
quality of calibrated data similar to when the node is connected to an uninterruptible power supply.

Keywords: air quality; low-cost sensors; sampling; sensor calibration; duty cycle

1. Introduction

In recent years, much effort has been devoted to investigating energy-saving mech-
anisms in the design of wireless sensor networks. Most of this effort has focused on the
communications subsystem [1] and little attention has been paid to the energy consumption
of the sensing subsystem, assuming most of the time that sampling is performed instanta-
neously and at a negligible energy cost. The major efforts made regarding the reduction of
energy consumption in the sensing subsystem are in in-network aggregation techniques,
in which the aggregation process is performed in the multi-hop network [2]. The case of
low-cost air pollution sensors is a different scenario [3]. Low-cost sensors report aggregated
data that are then fed to a machine learning model to produce air pollution estimates. The
way these samples are taken and the aggregation strategy have a great impact on the energy
consumption of the sensor subsystem.

An additional challenge of these sensor networks that measure air pollution is that
since the sensors have not been calibrated by the manufacturer or, they have been cali-
brated in laboratory chambers, they need to be calibrated in the environmental conditions
of the deployment site [4,5]. Just as the sampling, pre-processing and aggregation tasks are
performed at the sensing node (edge computing), the calibration task is performed off-line
in the cloud. This calibration task allows to predict pollution values from raw sensor values.
To calibrate air pollution sensors in an uncontrolled environment, they must be placed next
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to reference instrumentation, and therefore with the same sampling frequency as that used
by the reference instrumentation. This methodology is known as in-situ calibration [4,5]. A
widely used technique for these sensors is to use government reference stations [6] which,
when connected to an uninterruptible power supply, aggregate the samples and display
them every Tref (for example, reference stations that display O3, NO2 or PMx in Europe
take samples continuously, during at least 45 min every hour, and display them every hour,
see European directive 2008/50/EC) [7–14]. Low-cost sensors can follow a similar strategy
if they are continuously powered, taking high-frequency samples (in the air pollution mon-
itoring field, where reference stations provide measurements every hour, 2.7 × 10−4 Hz,
a sampling period of few seconds is considered high frequency) and aggregating them
into the same reference data periodicity Tref. In fact, most studies assume a high sampling
frequency without taking into account energy consumption constraints [7,8,14,15]. Thus,
if the nodes are powered by batteries it is challenging to implement a duty cycle-based
strategy. The reason is that many of these sensors have a response period that can be on the
order of several minutes before a correct measurement can be made. Besides, different air
pollution phenomena may require different data sampling frequencies, which may have an
impact on data quality. Concas et al. [16] discuss the critical steps in the use of low-cost
sensors for air quality monitoring, specifically mentioning the data pre-processing step,
including sensor sampling and sample aggregation. Different works have discussed the
relevance of the trade-off between sensor sampling and power consumption in air pollution
monitoring networks [17–22].

The objective of this work is to analyze the sampling strategies implications in this
type of air quality sensor network, where it is necessary to implement a duty cycle strategy
that saves energy in the sensor subsystem while achieving the best quality of reported data,
according to the chosen calibration method. We place special emphasis on the impact that
sensor sampling strategy has on calibration quality, as well as the impact of the resulting
duty cycle. To this end, we calibrate O3, NO2, and NO electrochemical sensors using
different duty cycle strategies. The experiments are performed using data collected by an
experimental IoT node called Captor, which measures O3, NO2, NO, temperature, and
relative humidity, and whose hardware and software have been developed to sample
intensively in order to be able to simulate several sampling strategies. Specifically, in this
work we:

• Describe the prototype node used to simulate the duty cycle strategies;
• Perform a multiple linear regression, k-nearest neighbors, and support vector regres-

sion calibration of O3, NO2, and NO sensors, assuming high data availability;
• Simulate different sensor sampling strategies, showing their impact on the goodness-

of-fit of the calibration, as well as the implications of the resulting duty cycles.

The different sections are organized as follows: Section 2 shows the related work.
Section 3 describes the experimental node used in this research work. Then, Section 4
introduces the different pre-processing steps required for sensor calibration. Section 5
shows the different experiments performed. Finally, Section 6 presents the conclusions of
the paper.

2. Related Work

Low-cost sensors in air pollution: the use of low-cost sensors for air pollution monitoring
has been the subject of study during the last few years [6,23]. These sensors provide a
cost-effective alternative to complementing measurements from high-cost government-
deployed instrumentation. The low cost of these sensors leads to low data quality, therefore
the calibration of low-cost sensors has been studied in depth during the last years in
order to improve the quality of the data [12,15,16]. Studies have been carried out to verify
whether low-cost sensors can obtain accurate measurements and whether they can be
included in a regulated way for air quality monitoring [6,24,25]. The most widely used
technique for improving the quality of low-cost sensor data has been in-situ calibration
using machine learning techniques [4,5,12,26–28]. In-situ calibration consists of placing the
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sensor in a reference station and using the obtained sensor values and reference values
to train a supervised machine learning model. Several studies have used linear models
such as multiple linear regression to calibrate sensors of different gases [14,29]. Besides,
non-linear techniques, such as k-nearest neighbors, support vector regression, random
forest or neural networks, have also been used to calibrate sensors [8–10,14,25,30].

Data aggregation and duty cycle in air pollution sensors: historically, the subsensing sys-
tem for energy saving in air pollution sensor networks has been given little consideration.
However, data pre-processing in air pollution low-cost sensors has a major impact on
power consumption and data quality. Concas et al. [16] survey analyzes the necessary
pre-processing steps for air pollution low-cost sensors, including aspects such as the need
to aggregate data to reduce the sampling rate and the calibration of sensors. One of the
reasons for having to aggregate is the synchronization of sampling intervals to minimize
cross-sensitivities. The problem of data aggregation in air pollution sensor networks is thus
different from other sensor networks. The nodes are calibrated individually, and the aggre-
gation is performed in the node’s sensing subsystem and not in the network, so the objective
here is not to minimize the number of packets to be transmitted together in the network,
but the energy consumption of the sensing subsystem while maintaining the quality of the
calibrated data. This implies defining correctly how often the sensors’ signal is sampled to
maintain good data quality. Table 1 shows works in which the authors sampled at different
frequencies to obtain calibrated data with air pollution sensors, mostly with nodes con-
tinuously connected to power. For the case of air pollution sensors, the trade-off between
sensor sampling and node power consumption has been studied, but node calibration has
not been taken into account, using already calibrated sensors [17,19–22]. Becnel et al. [18]
propose a low-cost pollution monitoring station for airborne PM, temperature, relative
humidity, light intensity, carbon monoxide, nitrogen oxide, that performs a duty cycle
scheme to save energy when the node operates as a mobile node. However, the calibration
analysis is performed only for the case of the node connected to an uninterruptible power
supply. Thus, there remains a relevant aspect to be studied in low-cost sensors, which is
the impact of sensor sampling on calibration and subsequent air pollution estimation.

Table 1. Sensor sampling periods used in the literature.

Work Pollutants Sampling Period (Ts)

Mijling et al. [7] NO2 1 min
Sahu et al. [31] O3, NO2 1 min
Ali et al. [17] CO, NO2, PM 1 min

Becnel et al. [18] CO, NO2, PM1PM2.5, PM10 1 min
Nowack et al. [9] NO2, PM10 30 s

Bigi et al. [10] NO, NO2 20 s
De Vito et al. [11] NO2, O3, NO 20 s

Si et al. [12] PM2.5 6 s
Mead et al. [13] NO 5 s
Han et al. [14] O3, NO2, CO, SO2 2 s

Mead et al. [13] CO, NO2 1 s
Astudillo et al. [15] O3, CO 1 s

Our work: As a summary, related works show how recently there has been an increasing
interest in investigating the impact of duty cycle schemes on the sensing subsystem to
reduce power consumption while maintaining data quality. Most works assume that
the sensors have already been calibrated, and investigate the relationship between duty
cycle techniques and energy consumption, mainly with PM2.5 sensors [17,19–22]. Few
papers consider the impact of reduced sampling frequency on pre-processing steps such
as data aggregation and sensor calibration. In this paper, we study the impact of the
sampling frequency of air quality sensors on the calibration quality and duty cycle. In
this way, we provide valuable information for professionals who want to build a node
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to measure air pollution and require energy savings in the sensor subsystem. Our work
differs from the state-of-the-art in that most research investigating the trade-off between
power consumption and frequency sampling assume that the sensors are already calibrated.
Moreover, these works mostly investigate PM sensors. In our work, we consider other gas
sensors, such as O3, NO2, and NO, and the trade-off between power consumption, data
quality, and sampling frequency in sensor calibration.

3. Sensing Node: The Captor Node

To carry out the study, we developed a data capture node, called Captor, whose
purpose is to attain maximum flexibility and scalability to integrate sensors, and to be able
to experiment with different duty cycle strategies and sampling frequencies.

3.1. CAPTOR Node

The Captor node is built based on an I2C bus, to which different sensing subsystems,
and a master central node, which is in charge of managing a communication subsystem,
are attached, see Figure 1. In the specific case of the data reported in this work, a gas
monitoring shield designed to integrate two Alphasense sensors is used. The sensing
board is built using an Arduino Nano microcontroller unit (MCU), which samples the data
measured from two gas sensors, and a temperature and relative humidity sensor. Each gas
sensor is supplied by the manufacturer with an individual sensor board [32]. The output
of the individual sensor board is further amplified by a factor of ×2, in order to reduce
quantifying errors, and sampled by the analog-to-digital converter of the Arduino Nano
MCU. The sensor sampling frequency is set to 0.5 Hz. The data captured by the Arduino
Nano MCU is periodically sent through the I2C bus to the central processing unit, based
on a Raspberry Pi node, which also handles the communications subsystem. The node is
designed to scale the number of sensors included by adding new sensing boards connected
to the I2C bus.

Figure 1. Air pollution data capture prototype Captor node on (top), and the Captor’s sensing board
on (bottom). The prototype node has a Raspberry-based central processing unit connected to the
sensing boards via an I2C bus. Each sensing board has an Arduino Nano microcontroller unit in
charge of collecting the measurements from the electrochemical sensors and sending them to the
Raspberry unit. The collected samples are then transmitted to the cloud via a 3G modem.

3.2. Low-Cost Sensors

To carry out this work, Alphasense electrochemical gas sensors have been used. Specif-
ically, we have used OX-B431 O3 sensors [33], NO2-B43F NO2 sensors [34], and NO-B4 NO
sensors [35]. Although other technologies exist, electrochemical sensors are an inexpensive



Sensors 2022, 22, 3964 5 of 18

sensing technology that is widely used for air pollution in today’s low-cost sensor monitor-
ing networks [7,9,11,13,31]. The B4 sensor family, designed for use in urban air fixed-site
networks, is a 4-electrode (working, reference, counter, and auxiliary) electrochemical
sensor with very low parts per billion (ppb) detection levels. Each sensor is provided with
an individual sensor board [32] that requires 3.5 V to 6.4 V stable direct current supply
with a consumption around 1 mA. To measure a pollutant, the individual sensor board
sends two raw values to a 10-bit analog-to-digital converter: the working electrode (WE) is
the reduction or oxidation site of the chosen gas species, and the auxiliary electrode (AE)
is used to correct for zero current changes [13]. The final raw signal is obtained by sub-
tracting the raw working and auxiliary values produced by the analog-to-digital converter,
S =WE−AE, or by feeding both parameter values, WE and AE, to the machine learning
algorithm as separate features. The O3 sensor is a special case since the working electrode
measures O3 and NO2 simultaneously. This means that to obtain O3 it is necessary to use
a pair of OX-B431 O3 and NO2-B43F NO2 sensors. Furthermore, it should be noted that
the manufacturer of these sensors indicates that they have a response time Tr of less than
80 s for O3 and NO2 [33,34] and 45 s for NO [35]. This is important for the implementation
of strategies that minimize the duty cycle of the sensing subsystem, since it is necessary,
for example, to wait for at least 80 s for O3 and NO2 before obtaining valid measurements
from the sensors if the sensing boards are switched off. Other sensors may have a response
time in the order of milliseconds, which is negligible in the case of duty cycles of higher
orders of magnitude.

3.3. Datasets

This section describes the datasets obtained from Captor node prototypes that are
later used for the experiments in Section 5. Two Captor nodes were deployed during four
months at a reference station in Palau Reial, Barcelona (Spain). Captor node labeled as
20001 mounted one Alphasense OX-B431 O3 sensor, one Alphasense NO2-B43F NO2 sensor,
one Alphasense NO-B4 NO sensor, and a DHT-22 temperature and relative humidity
sensor. The Captor node labeled as 20002 mounted one Alphasense OX-B431 O3 sensor,
one Alphasense NO2-B43F NO2 sensor, and a DHT-22 temperature and relative humidity
sensor. These datasets allow the study of sampling policies, given their high temporal
resolution, and the study of calibration methods for three different air pollutants using
electrochemical sensors. Given the availability of high-frequency measurements (0.5 Hz),
different sensor sampling policies can be simulated by subsampling these datasets (we
emphasize that the sensing boards were not put to sleep, and therefore, the effect that
turning the sensor on and off may have on aging or sample quality has not been studied).

Each of the low-cost electrochemical sensors provides measurements from the working
electrode and auxiliary electrode in analog-to-digital converter units. The temperature
sensor collects measurements in degrees Celsius (◦C), and the relative humidity sensor
collects measurements in percent humidity (%). Table 2 summarizes the different sensor
data used in the experiments. To simulate what a real sensor deployment would be like, the
two nodes were placed at a reference station for 4 months, from 2021/01/15 to 2021/05/15.
In this way, the datasets have a length representative of a real monitoring campaign and
reference values are available to check the quality of the data. The average concentrations
measured by the reference station at Palau Reial (Barcelona) from 2021/01/15 to 2021/05/15
are 57.46, 19.87 and 4.28 µgr/m3 for O3, NO2 and NO, with standard deviations of 23.79,
15.31 and 11.74 µgr/m3 respectively. As shown in Section 5.1, the NO2 and NO present
important concentration peaks above 100 µgr/m3. Reference station’s values are available
hourly, so the reference data period Tref is equal to one hour. The reference station’s data
can be downloaded from the government’s open data web [36], while the raw Captor
sensory data have been made public on Zenodo’s website [37].
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Table 2. Description of the datasets used for the experiments. Ts is the sensor sampling period.

Node Label Sensor Deployment Period Ts

20001 O3 2021/01/15–2021/05/15 2 s
NO2 2021/01/15–2021/05/15 2 s
NO 2021/01/15–2021/05/15 2 s

20002 O3 2021/01/15–2021/05/15 2 s
NO2 2021/01/15–2021/05/15 2 s

4. Sensor Data Gathering Pipeline

In this section, we show the different steps required to obtain air pollution estimates
from low-cost sensors. The whole sensor data gathering process can be divided into two
stages; sensor data pre-processing, and the estimation of pollutant concentrations using
a supervised machine learning algorithm. All data pre-processing can be performed at
the sensing node so that only measurements synchronized with the reference values are
transmitted to the cloud, and the subsequent estimation of pollutant data is performed off-
line. It is important to note that, to estimate the final pollutant concentration, the machine
learning algorithm, as described in Section 4.2, uses a combination of samples taken by
several sensors of the same node. This edge computing approach significantly reduces the
amount of data transmission required, since only the aggregation of collected data is sent
to the cloud. From now on, we focus on how to reduce power consumption in the sensing
subsystem when taking samples. Figure 2 illustrates all the required pre-processing steps
to be able to perform the sensor data gathering procedure.

Figure 2. Sensor data gathering pipeline: from sensor sampling to machine learning estimation. First,
sensors are sampled every Tsen, then the samples collected during this period are filtered to eliminate
possible outliers and aggregated to be sent to the cloud. There, the air pollution concentrations are
estimated using the calibration models.

In this specific paradigm, the value of the reference station produced every hour is the
aggregation of different samples taken during that hour at a frequency which we assume to
be higher than the Nyquist frequency corresponding to the time variation of the measured
phenomenon. If the sampling frequency of the low-cost sensor is also higher than the
Nyquist frequency, we can expect the errors in the calibration process to be essentially
independent of the sampling frequency of the low-cost sensor. However, if the frequency
sampling of the low-cost sensor falls below the Nyquist frequency, we can expect this
undersampling to introduce an additional source of error in the calibration process that can
have a large impact on the accuracy of the measured values during sensor operation.

4.1. Pre-Processing

Data pre-processing has a big impact on the subsequent representation of the data. As
mentioned above, having the data synchronized with reference stations, in the environment
where the node will be deployed, allows us to calibrate the sensors and to detect drifts,
aging or outliers [38–40], which will lead to a recalibration of the sensor. Specifically,
we divide the pre-processing operation into three stages; the sampling of the sensor, the
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filtering of the collected samples, and the aggregation of these samples. The process of
taking measurements in air pollution sensors is as follows (Figure 2): First, the node
retrieves a value of the sensor every Tsen seconds. For this value to be representative, it may
be necessary to wait for a sensor response time Tr, take a sequence of Ns measurements,
apply a filtering algorithm to remove outliers and smooth the measurements, and finally
aggregate them into the sample Tsen. The microcontroller can go into sleep mode until
it has to collect samples again and switch off the sensing board if necessary. The node
manages an array of sensors, each with its own electronic board, whereby the node reports
a vector, each Tsen, containing the air pollution sensor values (e.g., NO2, O3, NO) and
environmental values (e.g., temperature and relative humidity). Two strategies are possible:
(i) a packet is generated with the sample vector every Tsen; or (ii) if energy savings are
desired in the communication subsystem and the application only needs values every Tref,
a second aggregation is carried out and transmitted every Tref.

4.1.1. Sensor Sampling

At this stage, the Ns samples that are part of the representative sample Tsen are taken.
We focus on taking samples from a single sensor. In the case of having an array of sensors,
the microcontroller can run the sampling process in parallel, activating all the sensor boards
simultaneously and polling them with a round robin strategy. Besides, since different
sensors are attached to different sensing boards, a specific sampling strategy per sensor can
be designed.

To obtain the value at instant Tsen the microcontroller wakes up the sensor board
and takes Ns consecutive samples (Figure 3). In this case, the duty cycle is (NsTs)/Tsen.
However, there are air pollution sensors, for example, the ones used in this article that have
a response time of Tr, so it is necessary to wait for Tr before collecting valid measurements.
Indeed, this response time may vary from one sensing technology to another, and it
can be seen as a user-defined parameter to specify the amount of time to wait before
collecting a measure to prevent the collection of incorrect measurements. Summarizing,
the microcontroller wakes up the sensor board, waits for a time Tr and then takes Ns
consecutive samples to build the value Tsen and turns off the sensor board. In this general
case, the duty cycle DC is given by:

DC =
Ton

Tsen

Ton =Tr + (Ns · Ts)

Ton ≤Tsen.

(1)

The number of samples Ns that make up the value generated by Tsen impacts the
duty cycle of the sensing subsystem and the quality of the data estimated by the machine
learning algorithm. The adjustment of the value of Tsen has an impact on the number
of packets to transmit, on the duty cycle of the sensor subsystem, and on the quality of
the value estimated by the machine learning algorithm. Table 3 summarizes the different
sampling parameters used throughout the paper.

Table 3. Sensor sampling parameters.

Parameter Definition

Ts Required time to take a sensor measure
Tsen Sensing node sampling period
Ns Number of samples taken every sampling period
Tr Sensor response time before valid measurements

Tref Reference data period
DC Sampling strategy duty cycle
Ton Time the microcontroller is switched on to collect sensor samples
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Figure 3. Sensor sampling scheme used throughout the article. xi are the sensor measurements while
yi are the reference data measurements. Every Tsen, the sensor is sampled by waiting for the sensor
response time Tr and collecting the Ns samples to be aggregated. These Tsen samples can be further
aggregated into Tref to synchronize them with the reference values.

4.1.2. Filtering

Once Ns sensor samples have been collected for each sensing node’s sampling period
Tsen, these must be filtered in order to remove outliers and smooth the data. One of the
most common techniques for removing outliers in sensory data is the use of the z-score [14].
Other signal filtering techniques (e.g., moving average) can be useful to eliminate abrupt
changes in the signal and smooth the data tendency. For instance, Mijling et al. [7] eliminate
samples that deviate a given percentage from the sample mean. The filtering process is
necessary because the signals measured by the sensors are noisy and tend to produce
outliers, in which case the subsequent aggregation would be affected and, consequently, the
quality of the estimated data would be degraded. The computational cost of this filtering
is minimal, as it requires only a few operations on the data collected every Tsen period.
Moreover, following an edge computing approach, this filtering is calculated at the node
itself. In the experiments Section 5, we use the z-score as filtering technique and we remove
extreme values.

4.1.3. Aggregation

In the aggregation stage, the sensor data, after filtering, are aggregated into a single
measurement period Tsen. The most common statistics used for the aggregation are the
sample mean and median. However, these statistics require a certain number of samples
in order to not be biased, so after the filtering step, it is important to check whether the
resulting number of samples in a period is large enough for averaging, if not, the resulting
mean may not be representative and the sample is discarded producing a gap. This
aggregation has a minimal computational cost and is computed at the node itself before the
packets are transmitted.

The measured value is now included in a vector of measurements from all sensors on
the node, and can be transmitted to the cloud where the machine learning algorithm can
estimate the pollution value with granularity Tsen. The reference stations, being connected
to power supply, usually take continuous Tsen values and aggregate those values into
hourly values (Tref = 1 h), which are the ones displayed in the applications. If we want to
save energy in the communications subsystem, we can do a second aggregation with the
Tsen values to match the values of the reference stations Tref values. This allows having a
heterogeneous network of reference stations and low-cost sensor nodes that can spatially
measure a pollutant in an area as the two types of nodes have the same time granularity.

However, nodes with low-cost sensors that have a response time of more than a
minute and that also use batteries and implement a duty cycle to save energy in the sensing
subsystem, will not be able to produce Tsen values in the same way as reference stations. In
this work, we investigate different ways to implement such a duty cycle, from a strategy
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that tries to mimic as much as possible, given the constraints of the low-cost sensors, a
reference station, to a more aggressive strategy that although it does not follow the same
dynamics as a reference station, produces an aggregated value at the Tref instant saving the
maximum energy. The most aggressive strategy that can save more energy is to consider
that the value taken every Tref only considers a Ts value. Nevertheless, this value may
be unrepresentative of the physical phenomenon during the whole Tref interval. The less
aggressive strategy, which saves less energy and better mimics the reference station is to
consider that during Tref we have as uniformly as possible NsbTref/Tsencmeasurements.
In the results Section 5, we review the two strategies, where the Ns samples are taken
uniformly in Tsen or are taken consecutively in Tsen assuming a sensor response interval Tr,
showing their feasibility and implications in terms of data quality and power consumption.
In the experiments Section 5, we use the mean as aggregation technique.

4.2. Machine Learning-Based Sensor Calibration

To estimate the values of an air pollutant we use calibration techniques based on
machine learning. To this end, we need the sensing node to produce values with the same
granularity Tref as the reference station in order to compute the coefficients or hyperparame-
ters of the machine learning algorithm. The process of obtaining these coefficients or hyper-
parameters is called sensor calibration [4,5]. Several machine learning techniques [8–11,25]
have been used to improve the accuracy of the calibration and to obtain air pollution mea-
surements from raw sensor values. Ultimately, sensor calibration is reduced to a supervised
problem where we have the pairs {xi, yi}N

i=1 where xi∈RP are the sensors values, where
P is the number of sensors included in the calibration, and yi∈R are the corresponding
reference values. As an example, for calibrating an electrochemical Alphasense OX-B341
O3 sensor, we need the raw values from an Alphasense OX-B341 sensor, an Alphasense
NO2-B43F NO2 sensor, a temperature sensor, and a relative humidity sensor [7,8,11,13,28].
That means that the vector x has dimension four. Given these data, we can formulate the
following problem:

yi = f (xi) + εi; ∀i = 1, .., N, (2)

where f (·) is the function to be determined by machine learning, and εi is the error
assumed to be independent and identically distributed. There are different algorithms
to estimate the function f (·), among which we have the multiple linear regression, and
nonlinear models such as k-nearest neighbors, random forests, support vector regression
or artificial neural networks [8,25,26,28]. We have decided to use three state-of-the-art
in-situ calibration models: multiple linear regression, k-nearest neighbors, and support
vector regression. Thus, we use three machine learning models belonging to different
classes of machine learning models; linear methods, instance-based methods, and kernel
methods. The multiple linear regression assumes that the reference values, yi, vary linearly
depending on the sensor values, so (2) can be rewritten as:

yi = β0 + βTxi + εi; ∀i = 1, .., N, (3)

where [β0 β] is the vector of coefficients to be found by solving the problem by least squares.
The k-nearest neighbors model obtains the prediction f̂ (x) for a data instance x by

finding the k-closest training instancesNk(x), using a distance metric d(x, xi), and averages
the response values yi of these instances:

f̂ (x) =
1
k ∑

i∈Nk(x)
yi. (4)
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The support vector regression makes use of the representer theorem and defines the
estimation of the function f (·) as:

f̂ (x) =
N

∑
i=1

(α̂∗i − α̂i)K(x, xi) + b, (5)

where K:RP×RP → R is the kernel function, {xi}N
i=1 are the set of training instances, and

α̂∗i ,α̂i and b are the parameters to be estimated via convex optimization. The k-nearest
neighbors and support vector regression models have different hyperparameters that need
to be calculated. These values are selected using a cross-validation procedure performing a
grid search over different possible values. For further information on the application of
these supervised machine learning models for in-situ sensor calibration refer to [8,25,26,28].

5. Results

In this section, we perform two different experiments to evaluate the impact of the
sampling strategy on the in-situ calibration of low-cost sensors using the datasets described
in Section 3.3:

1. We perform sensor in-situ calibration for the O3, NO2 and NO sensors, using the
best subsets of sensors found by forward stepwise feature selection using 10-fold
cross-validation (CV). We perform this experiment using the raw sensors’ signals
(Tsen= 2 s), therefore assuming no energy consumption restrictions. We compare three
in-situ calibration models: multiple linear regression, k-nearest neighbors and support
vector regression;

2. We investigate the impact of the sensor sampling parameters on the sensor calibration
accuracy and power consumption. To this end, we compare different sampling periods
for the sensing node Tsen, as well as different numbers of samples collected in these
periods Ns. We also consider sensor response periods. To carry out this experiment, we
use the raw two-second signals from the sensors and simulate the different sampling
settings by subsampling these raw signals. A 10-fold CV is performed for every
sampling setting, discussing the resulting goodness-of-fit metrics, duty cycles, and
power consumption implications.

To evaluate each one of the experiments, 75% of the dataset is used as a training set,
and the remaining 25% is used as a testing set. The different datasets are shuffled so that the
training conditions are representative of the testing, avoiding out-of-date and inaccurate
calibration models [5,8,16], and the different experiments can be evaluated without the
effects of the changing environmental conditions.

5.1. Machine Learning-Based Calibration

Given the aggregated sensor data, synchronized with the reference data, sensor cali-
bration can be performed using machine learning techniques. This is the ultimate step in
obtaining air pollution estimates using low-cost sensors. In this section, we use the raw
sensors’ signals, so at the highest data availability (Tsen = 2 s). Therefore, we show the best
case of having the sensing node connected to an uninterruptible power supply collecting
sensor measurements uniformly every two seconds. In this way, we can show the ability
of the different sensors to predict the real air pollutant concentrations in the case of not
having energy restrictions.

Since the data collection nodes have up to three sensors measuring different pollutants
(O3, NO2, and NO), several sensors can be introduced into the calibration models to
take advantage of the cross-sensitivities and correlations present. Therefore, we define
the sensors to be introduced in the sensor calibration using forward stepwise feature
selection using 10-fold CV. In this way, in the forward stepwise process the sensor that most
significantly increases the cross-validation R2 is added each time until there is no significant
improvement. The best subset of sensors found for the machine learning calibration for
each sensor are shown in Table 4. Temperature and relative humidity sensors are included
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in the calibration since they are known to be correctors of environmental conditions for
the O3, NO2 and NO sensors [7,11,13,26]. For instance, in the NO calibration case, the
O3 sensor, which measures both O3 and NO2, is the sensor that introduces the biggest
improvement apart from the NO sensor. From now on, the combination of sensors shown
in the Table 4 is assumed in all calibration models.

Table 4. Machine learning calibration best subset of sensors found via forward stepwise feature selection.

Target Sensor Best Subset

O3 O3, NO2, T, and RH
NO2 NO2, O3, T, and RH
NO NO, O3, T, and RH

Figure 4a shows the results of the calibration of the Captor 20001 O3 sensor using the
multiple linear regression model. As can be seen, the test R2s is very good, specifically 0.97,
with root-mean-square errors (RMSEs) of 4.40 µgr/m3 and 4.22 µgr/m3 in the case of the
Captor 20002 O3 sensor. Figure 4b shows the calibration results for the Captor 20001 NO2
sensor, where the model obtains a testing R2 of 0.94 with RMSE of 3.85 µgr/m3, similarly
Captor 20002 NO2 sensor achieves a testing R2 of 0.93, with an RMSE of 4.14 µgr/m3.
Finally, Figure 4c shows the calibration for the Captor 20001 NO sensor, with a testing R2 of
0.91 and a testing RMSE of 3.26 µgr/m3. The calibration of NO is very dependent on the
data used for calibration and testing, as NO has very abrupt peaks, it is important that there
is data in the training that represents these peaks. Hence, the calibration goodness-of-fit
depends on the pollution peaks observed during the training and testing periods. The
nonlinear methods (support vector regression and k-nearest neighbors) performed similarly
to the MLR given that the sensors’ responses are quite linear. In fact, the support vector
regression obtained a R2 of 0.98 for both O3 sensors, R2 of 0.96 and 0.94 for the 20001 NO2
and 20002 NO2 sensors, and a R2 of 0.97 for the NO sensor, while the k-nearest neighbors
obtained a R2 of 0.96 for both O3 sensors, R2 of 0.94 and 0.92 for the 20001 NO2 and 20002
NO2 sensors, and a R2 of 0.95 for the NO sensor.
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Figure 4. Calibration results for the O3, NO2 and NO sensor of Captor nodes 20001 and 20002.
R2

ts and R2
tr denote the training and testing coefficient of determination, while RMSEts denotes the

root-mean-squared error for the testing using MLR. Bottom plots are a zoom of the plots above for a
specific time interval.
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5.2. Sensor Sampling Impact

In this experiment, we explore the impact of the sampling period Tsen and the number
of samples collected Ns on the model’s accuracy, and the implications of the resulting
duty cycles with respect to the power consumption of the sensing node. The different
sampling strategies are simulated by subsampling the raw sensors’ signals (Tsen = 2 s).
Since reference values are available hourly, the periods Tsen tested are less than or equal to
one hour Tsen ≤ 1 h. We have obtained similar results for the three calibration models. For
simplicity, we show the results using the MLR.

5.2.1. Impact of Node Sampling Period Tsen

The following experiment shows the result of calibrating the sensors by subsampling
the measurements with different sampling periods Tsen, from 2 s and 1 min to 60 min.
Besides, we compare two strategies, one consisting of taking the Ns samples uniformly over
Tsen, only possible when the sensor’s response time is small or negligible (Tr � Tsen), and
the other consisting of taking Ns consecutive samples in Tsen after a large sensor response
period Tr that can be up to tens of seconds.

Figure 5a shows the average CV R2 and the confidence intervals for applying different
periods Tsen and Ns samples to the O3 calibration. As can be seen, in the case of sampling
consecutively (solid lines), there is very little worsening of the performance from sampling
every minute to sampling every 10 min. From this point, the R2 starts to decrease until
it reaches an average CV R2 of 0.87. In the case of the 30 min and 60 min periods, it
should be noted that the sensor is only being sampled twice or once (for Ns = 1) per Tref,
so the accuracy may decrease considerably. The difference between taking one, five, or
ten samples is not significant until we sample every 30 to 60 min. However, as expected,
when we take a few samples, e.g., Ns = 1, the confidence intervals are worse, meaning
that the quality of the calibration can exhibit variability when only sampling once. We
note as an example, that in case of having Tsen = 5 min, the aggregation involves 12 values
when calibrating at Tref = 60 min. This indicates that in the case of frequent sampling
(e.g., Tsen ≤ 5 min) it is not necessary to take more than one sample, but when only sampling
fewer times Tsen per reference period Tref, even if more than one sample is taken, the quality
of the calibration is not maintained, since the subsequent aggregation involves samples,
even if it has more samples in total, taken too consecutively in unrepresentative instants. For
instance, if Tsen = 30 min and Ns = 10, there are 20 samples participating in the aggregation
at instant Tref (more than the 12 samples with Tsen = 5 min and Ns = 1) but they are less
representative. In other words, it is better to sample fewer measurements more distributed
over the period Tref, than to sample more measurements consecutively but fewer times
at Tref.

Figure 5b shows a similar pattern for the NO2 sensor, but with a larger decrease in
R2 for large sampling intervals. Indeed, the R2 is observed to remain almost constant
for Tsen ≤ 10 min, with values around 0.94. However, the worsening in this case is much
greater than in the case of O3, since at Tsen = 30 min the R2 is reduced to 0.86, and at
Tsen = 60 min to 0.75. Regarding the number of samples taken every period, it is seen that
one sample is not significant enough, so this sampling setting works worse than the others
for sampling intervals larger than 10 min. In addition, since NO2 is a less smooth signal
than O3, with few samples per Tsen interval, there is greater variability, which explains the
higher confidence interval values for Ns = 1. Finally, for the uniform sampling approach,
the same trend is observed for NO2 as for O3, where five to ten uniform samples over Tsen
obtain very good data quality.
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Figure 5. Average CV R2 and 95% confidence intervals for different sampling settings using MLR;
sampling period Tsen and number of consecutive samples Ns taken every period Tsen. The solid lines
denote the strategy that the Ns samples are taken consecutively after a sensor response period, and
the dotted lines denote the strategy that the Ns samples are taken uniformly at Tsen. (a) Captor 20001
O3 CV R2 for different Tsen and Ns. (b) Captor 20001 NO2 CV R2 for different Tsen and Ns; (c) Captor
20001 NO CV R2 for different Tsen and Ns.

Figure 5c shows the results for the NO sensor calibration. In this case, NO is a
phenomenon that naturally presents more abrupt changes in the measurements which
causes the different calibrations to have large confidence intervals. The same decreasing
trend is observed as for O3 and NO2 R2, where from Tsen = 10 min the R2 starts to decrease,
and it is also observed how the R2 strongly depends on the number of samples taken
since the gap in performance between taking one sample and five is the largest of all three
pollutants. The NO signal contains many peaks so even sampling Ns samples in a row
for an instant that does not pick up such peaks may be unrepresentative. Another effect
is the uncertainty we will have in the measurements. In those cases where the number of
samples is small, e.g., Ns = 1, the confidence interval is very poor, precisely because of the
high variability of the data. This interval improves when taking more samples, even if the
measurement point is not very representative, and the R2 decreases, the confidence interval
decreases. Therefore, in the case of signals with high variability and high bandwidth, it
is logical to sample at more points. In the case of sampling uniformly, the same trend as
for the two previous pollutants is observed, where taking at least five uniform samples is
enough to maintain the highest data quality.

From all this, we can conclude that it is better to take more than one sample Ns>1 if
the sampling period is large (Tsen ≥ 10 min), so that the aggregation is more representative.
However, in the case of having a lower sampling period, fewer samples are enough to obtain
a high R2 since the aggregation at each Tref will contain enough samples to be representative.
Moreover, different sensors may need different sampling strategies to maintain similar
data quality in the prediction phase if energy savings are to be achieved. For instance,
the performance gap between sampling five uniform samples for Tsen = 30 min and five
consecutive samples for Tsen = 30 min is of 0.02 R2 in the O3 case, 0.05 R2 in the case of the
NO2, and 0.08 R2 in the NO case.

5.2.2. Impact of Duty Cycle DC: Data Quality

Now, we compare the data quality implications of the different sampling policies with
respect to the duty cycles, which will have different energy consumption consequences.
We explore two possible cases; negligible sensor response time Tr ≈ 0 and response time
equal to two minutes Tr = 2 min, given that data sensor responses may take up to 80 s, see
Section 3.2. We assume that the time to turn on and off the sensing device is negligible.
Figure 6a–c shows the R2 with respect to the duty cycle with negligible response time using
MLR. Figure 6a shows the results for the O3 sensor, where it can be seen that since there
is negligible sensor response time there is no penalty for turning on the node too many
times. Indeed, for similar duty cycles, the strategy that takes one single sample frequently
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is able to achieve an R2 of 0.96, while the strategy that samples five measurements in a row
achieves an R2 of 0.89 with a similar duty cycle. Sampling strategies that sample more than
one measure have larger duty cycles since the sensing node needs to remain measuring
more time. Regarding the uniform sampling strategy (dotted lines), it is observed that with
Ns = 5 samples it is able to achieve a very good goodness-of-fit at a very low duty cycle.
However, this case is not representative at all, since the sensor’s response time will rarely
be negligible and the presence of a sensor response time makes the strategy of sampling
uniformly infeasible. Figure 6b shows the same results for the NO2 sensor, again the same
results are seen, where for similar duty cycles the strategy that takes one single measure
obtains an R2 of 0.93 while the strategy that takes five samples obtains an R2 of 0.75. That
is, the setting {Tsen = 15 min, Ns = 1} works much better than the setting {Tsen = 60 min,
Ns = 5} with a similar duty cycle. Figure 6c shows the results for the NO sensor, with the
same pattern but with a worse average performance and larger variability because of the
variability of this fast-changing phenomenon.
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Figure 6. Average CV R2 and 95% confidence intervals for different duty cycles with negligible sensor
response time (Tr ≈ 0) using MLR. Solid lines denote the strategy that samples the Ns consecutively,
and the dotted lines denote the strategy that samples the Ns uniformly at Tsen. (a) Captor 20001 O3

CV R2 for different duty cycles. (b) Captor 20001 NO2 CV R2 for different duty cycles. (c) Captor
20001 NO CV R2 for different duty cycles.

The results of the duty cycle for a 2 min sensor response time (Tr = 2 min) and therefore
with a Tsen > 2 min are shown below. Here, only the results of the strategy that takes the
measurements sequentially are shown, since with a sensor response time of two minutes
it is no longer possible to take samples uniformly as the node would always be powered
on. Recall that low duty cycles correspond to large Tsen and fewer samples taken in the
interval Tref. This can be seen in Figure 7a–c, where lower R2 are obtained for low duty
cycles. The coefficients of determination start to stabilize at DC = 0.20 (Tsen = 10 min).
Thus, a sampling period of about five or ten minutes guarantees the representativeness
of the sampled data. When the physical phenomenon presents large variability, as in the
case of NO, the confidence intervals are poor. However, large Tsen periods with one single
sample introduce more variability, as observed in the confidence intervals of sampling
strategies with Ns = 1. In this case, it is better to take more samples, slightly increasing the
duty cycle, since the sensor response time is the one that dominates the duty cycle.
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Figure 7. Average CV R2 and 95% confidence intervals for different duty cycles with a sensor response
time equal to 2 min (Tr = 2 min) using MLR. (a) Captor 20001 O3 CV R2 for different duty cycles.
(b) Captor 20001 NO2 CV R2 for different duty cycles. (c) Captor 20001 NO CV R2 for different
duty cycles.

5.2.3. Impact of Duty Cycle DC: Power Consumption

The implications of a higher or lower duty cycle on the power consumption of a node
depend on the different components used by the node. However, we can assume that the
power consumption of the node is directly given by the duty cycle, as it is the ratio between
the time it is powered on during the sampling period (Ton) and the sampling period (Tsen).
Furthermore, depending on the consumption of the different components, one can decide
to send only the microcontroller to sleep mode or send the microcontroller to sleep and
switch off the sensors.

Now, looking at the results for the duty cycle with sensor response time, Figure 7a–c,
it can be observed that with a duty cycle of about 0.10 the quality of the calibrations in two
cases (O3 and NO2) are stable, introducing very little improvement at higher duty cycles
rates. In the case of the NO sensor, a slightly higher duty cycle may be required (DC = 0.15).
This means that a calibration almost as good as when the node is always on (DC = 1) can
be obtained with a duty cycle about seven or ten times smaller (DC = 0.15 and DC = 0.10),
therefore reducing the power consumption very significantly. Table 5 shows the average
CV R2 for all the tested sensors and different duty cycles obtained (with sensor response
time equal to two minutes) using different calibration models and sampling strategies;
duty cycles equal to 1.0 ({Tsen = 2 s, Ns = 1}), 0.10 ({Tsen = 20 min, Ns = 1}), and 0.03
({Tsen = 60 min, Ns = 1}). As it is observed, for duty cycles of 0.10 the sensor calibrations
worsen by about 0.02–0.08 R2, in the worst case, the NO sensor drops from 0.90 to 0.82 R2.
This means that the NO sensor may need a higher duty cycle, about 0.15, so that its data
quality is not reduced so much. On the other hand, in the extreme case where the node is
only powered on once, with a resulting duty cycle of 0.03, the R2 worsens approximately by
0.10 R2 in the case of the 20001 O3 sensor, and in the case of the 20001 NO sensor by 0.34 R2.
In addition, Table 5 shows the results obtained for the same experiment but using the KNN
and SVR as calibration models. It can be seen that these nonlinear models do not improve
the MLR performance very much, since the sensors’ responses are very linear, except for the
NO sensor where these nonlinear models are able to improve the calibration around 0.07 R2.
Nevertheless, in terms of trend, the nonlinear models show the same decreasing trend of
the R2 with the duty cycle since the impact of the duty cycle is on the representativeness of
the data and does not depend on the machine learning model.
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Table 5. Average CV R2 obtained with the multiple linear regression, k-nearest neighbors, and
support vector regression models for the different sensors and duty cycles, with Tr = 2 min.

Sensor
DC = 1.00 DC = 0.10 DC = 0.03

MLR KNN SVR MLR KNN SVR MLR KNN SVR

20001 O3 0.97 0.96 0.98 0.95 0.94 0.96 0.87 0.86 0.88
20001 NO2 0.94 0.94 0.96 0.89 0.90 0.92 0.75 0.77 0.78
20001 NO 0.90 0.95 0.97 0.82 0.89 0.90 0.56 0.66 0.60
20002 O3 0.97 0.96 0.98 0.94 0.93 0.95 0.84 0.84 0.85
20002 NO2 0.92 0.92 0.94 0.88 0.89 0.91 0.74 0.76 0.78

To summarize, the results show how, for the gas sensors analyzed and different sensor
response times, the duty cycles obtained can vary. For example, assuming response times
in the order of two minutes, duty cycles of 0.1 can be achieved, calibrating with hourly
reference values and maintaining the quality of the calibrated data. Otherwise, duty cycles
between 0.01 and 0.02 can be achieved if sensor response times are negligible.

6. Conclusions

In this article, we have studied the implications of the sensor gathering process
on low-cost sensors for air pollution monitoring. The sensor sampling strategy is very
important in cases where these sensors are mounted on battery-based IoT nodes with power
consumption constraints. To conduct the experiments, we have built two prototype Captor
nodes that collect tropospheric ozone, nitrogen dioxide, and nitrogen monoxide at a high
frequency. The results indicate a clear relationship between the sensor sampling strategy,
the quality of the resulting air pollution estimation, and the node’s power consumption
defined by its duty cycle. To assess the quality of the data, we have calibrated the sensors
using multiple linear regression, support vector regression, and k-nearest neighbors. In the
case of having a duty-cycled node with negligible sensor response times, uniform sampling
resulted in good data quality with few samples regardless of the sampling period used.
On the other hand, when the sensors have response times, which is a common case, only
sequential sampling is possible, and the results show how the duty cycle can be reduced by
seven to ten times, reducing the energy consumption by the same amount, maintaining
good data quality. In addition, it has been observed that each type of sensor may require
a different sampling frequency to obtain good data quality. Thus, in the practical case
of a node’s design where different sensing technologies, with different sensor response
times to the ones shown in this work, are used, it would be necessary to characterize the
most appropriate duty cycle based on the designer’s needs, the sensors used, and how
the sensors are calibrated. As future work, it would be interesting to minimize the duty
cycle of a node, while achieving good data quality, using data-driven approaches based on
sparse sensing using a tailored basis.
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