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Abstract: Physical activity (PA) is globally recognized as a pillar of general health. Step count, as one
measure of PA, is a well known predictor of long-term morbidity and mortality. Despite its popularity
in consumer devices, a lack of methodological standards and clinical validation remains a major
impediment to step count being accepted as a valid clinical endpoint. Previous works have mainly
focused on device-specific step-count algorithms and often employ sensor modalities that may not
be widely available. This may limit step-count suitability in clinical scenarios. In this paper, we
trained neural network models on publicly available data and tested on an independent cohort using
two approaches: generalization and personalization. Specifically, we trained neural networks on
accelerometer signals from one device and either directly applied them or adapted them individually
to accelerometer data obtained from a separate subject cohort wearing multiple distinct devices.
The best models exhibited highly accurate step-count estimates for both the generalization (96-99%)
and personalization (98-99%) approaches. The results demonstrate that it is possible to develop
device-agnostic, accelerometer-only algorithms that provide highly accurate step counts, positioning
step count as a reliable mobility endpoint and a strong candidate for clinical validation.

Keywords: deep learning; step count; accelerometer; wearable; healthcare; medicine; bioinfomatics

1. Introduction

Physical activity (PA) is well established as a fundamental measure of general health
and wellness. In fact, in 2008 the US government released its first-ever evidence-based
guidance on PA, which acknowledged very strong evidence that physically active people
have higher levels of health-related fitness, a lower risk profile for developing cardiovascu-
lar diseases and lower rates of various chronic diseases than people who are not active [1].
A more recent systematic review has shown that PA improves several health outcomes,
including all-cause mortality and cardiovascular diseases [2]. More recent works also show
the benefit of combining PA with other clinically relevant measures, such as temperature, to
gain insight into a patient’s health status [3]. As a measure of PA, step counts derived from
digital devices have gained increasing popularity as an objective measure to replace self-
reported data [4—6]. An emerging body of literature has shown robust association between
step count and several health outcomes, including all-cause mortality, cardiovascular dis-
ease, diabetes and obesity [7-11]. A similar pattern has also been found in specific clinical
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populations, such as the elderly [12-14] and people with impaired glucose tolerance [15].
Moreover, results from interventional studies show beneficial effects of increasing step
count, such as weight loss [16] and several long-term health outcomes [17].

Despite conclusive evidence of the medical relevance of step counts, such objective
measures of daily physical activity have yet to be established as accepted clinical endpoints
or biomarkers. The main reason is that, although many types of wearables have been
used in both clinical and non-clinical settings to measure step count, in most cases the
algorithms used with those devices have not been rigorously and extensively validated [18].
Although previous studies have found high step-count accuracy for healthy subjects in
both lab-controlled [19] and free-living conditions [20], the accuracy is often compromised
for elderly and clinical populations [21-24]. The reason could be because those subjects
have idiosyncratic gaits. Along the same line, previous studies also showed that step-count
devices may not work well in non-regular walking conditions, such as slow walking or
pushing a stroller [25]. As a result, there is a pressing need to develop algorithms that can
work well across different subject populations and devices.

Broadly, step-counting algorithms can be grouped based on detection mechanisms—
time domain approaches, frequency domain approaches and machine learning/deep learn-
ing approaches. Thresholding is a common time domain approach which detects a step
when the sensor data meet pre-specified criteria [26]. Peak detection is another popular
approach which detects a step when the peaks of an acceleration signal exceed a certain
threshold [27]. Other works employ different techniques, such as auto-correlation [28]
and template matching with dynamic time warping [29] on the time series to detect a
step. In general, frequency domain approaches utilize features in the frequency domain to
detect a step [30]. In an extensive benchmark study, two frequency-based approaches were
used: short-term Fourier transform (STFT) and continuous/discrete wavelet transform
(CWT/DWT) [31]. The STFT approach applied STFT to successive windows of acceleration
to compute a fractional number of strides in each window. The CWT/DWT method trans-
formed the data with CWT/DWT, extracted the walking periods from the energy spectrum,
then transformed it back to the time domain and used positive zero-crossing to count steps.

Although the above algorithms could produce good results for the step-counting task,
they often require careful tuning of several parameters for each situation. To alleviate that
issue, machine learning models have been used to automatically learn those parameters
with cross validation. A popular choice, the Hidden Markov Model (HMM), aimed to
predict different phases of walking with hidden states and to count steps based on those
phases [31,32]. Along the same line, k-means clustering has also been used to compute two
clusters (hill/valley) from a rolling time window of the feature vector, and the step count
was computed from that [31]. A recent work used a k-nearest neighbor algorithm to learn
the optimal parameters for extracting the most relevant and generalizable features in both
time and frequency domains [33].

Despite several successes with traditional step-count approaches, the necessity for
expert-based hand-tuning of useful features remains a barrier to standardization or gen-
eralization. Contemporary deep learning approaches have shown superior predictive
power and classification accuracy across numerous domains in visual, acoustic, linguistic,
gaming and scientific domains [34]. This superior performance is due, in part, to deep
learning models’ inherent ability to learn and engineer predictive features from raw data.
There have been recent attempts to utilize deep learning models for step detection [35-37].
Those studies utilized state-of-the-art deep learning architectures, such as LSTM recur-
rent network and convolutional neural network, and show promising results (accuracy
above 90%). However, because neural network models have very high expressive power,
they can easily overfit a relatively small dataset, such as those used in step-count research.

To address the overfitting problem of neural network models, recent work applied
domain adaptation to perform transfer learning from a public dataset to an independently
collected set of data [38]. Specifically, recurrent neural networks with LSTM cells were
trained on a public cohort with 30 subjects and then adapted to an independent cohort of



Sensors 2022, 22, 3989

30f18

5 subjects. Very high step-count accuracy was achieved (~99%) using both accelerometer
and gyroscope signals along with domain adaptation on 30 s labeled data for each subject.
Although highly accurate, the work in [38] presented three limitations that can hinder wide
application of the transfer learning methodology in clinical scenarios. First, the model
required both the accelerometer and gyroscope to achieve good results, and the model’s
performance was significantly degraded with only accelerometer data (~60%). Because
many wearable devices only use the accelerometer in order to save battery life (especially
in medical settings), application of the method could be quite limited in terms of devices.
Second, to perform domain adaptation, the model required a small amount of labeled
data for each individual, which could be quite burdensome for patients in clinical settings.
Finally, the domain adaptation was limited to a single device, so it remains unclear how
the algorithms and the approach generalize broadly for other devices.

In this work, we set out to address such limitations by: (1) collecting new data from
subjects outfitted with four devices, (2) modifying the training process, and (3) extensively
testing a wide array of state-of-the-art neural network models for time-series data. In par-
ticular, we experimented with a convolutional network, temporal convolutional network
(WaveNet) and recurrent neural network. Here we tested two approaches: generalized and
personalized transfer learning. The generalized approach used models pre-trained on a
public dataset to directly test on an independent subject cohort wearing different devices
without further parameter tuning. That approach achieved very high step-count accuracy
across the majority of subjects and devices (96-99% with the best model). However, we
also found that for some subjects and devices the performance was significantly degraded.
Therefore, we implemented a second approach using domain adaptation to fine-tune the
parameters of the pre-trained model with a small amount of labeled data for each individual
subject. This approach resulted in significant improvement for the outlier subjects that the
generalized method could not handle well. Therefore, a combination of the two approaches
in practical applications can alleviate the expensive needs of large amount of labeled data
while still preserving step-count accuracy.

2. Materials and Methods
2.1. Dataset
2.1.1. Public Dataset

The public dataset was collected at Clemson University and consists of 30 subjects per-
forming three different activities (regular walking, semi-regular walking and unstructured
activity) while wearing Shimmer3 (Shimmer, Dublin, Ireland) devices at the hip, ankle
and wrist [39]. For this study, we only used the regular walking activity, in which subjects
walked at a comfortable pace around a building for approximately 10 min. The whole walk-
ing duration was recorded with an iPhone (Apple, Cupertino, CA, USA) for subsequent
manual annotation. The annotation indicates whether each time point corresponded to a
left or right step. For sensor data, we used the tri-axial accelerometer signal from the wrist
location that was sampled at 15 Hz and had a dynamic range of +2 g.

2.1.2. Independent Dataset

The independent dataset was collected at AstraZeneca, Gaithersburg, MD, USA with
a total of 11 subjects (5 subjects in [38] and 6 new subjects). They were instructed to walk at
a regular pace around a looped path with minimum length of 30 m for 6 min. The activity
mimicked the typical Six Minute Walk Test that is often used in clinical settings to assess
the functional capacity of a patient. While walking, subjects wore an ActiGraph GT9X 130
Link (Actigraph, Pensacola, FL, USA) and an Apple Watch 6 (Apple, Cupertino, CA, USA)
on their left wrist, a Shimmer Verisense (Shimmer, Dublin, Ireland) band on their right
wrist and carried an iPhone 11 (Apple, Cupertino, CA, USA) in their left pocket.

ActiGraph wearable devices have been widely used in many clinical studies to measure
physical activity. The version we tested, GT9X 130 Link, has a sampling rate of 50 Hz
with three sensors (accelerometer, gyroscope and magnetometer). The dynamic ranges of



Sensors 2022, 22, 3989

40f18

the sensors are as follows: £8 g for accelerometer, 132 & 2000 deg/s for gyroscope and
+4800 micro-Tesla for magnetometer. The recorded data were stored locally and then
uploaded to a cloud database via USB interface.

The Shimmer Verisense wearable device is another popular choice for clinical appli-
cations. The largest advantage of this device is that the battery life can be up to 6 months
without any charge (compared to 2 days for the ActiGraph GT9X 130 Link and most other
devices). The reason it has such a long battery life is that only the accelerometer is used.
The data were sampled at 50 Hz with a dynamic range of -8 g. Data were stored locally
and automatically transferred to a base station, which periodically uploaded the data to a
secure AWS S3 bucket.

To increase the diversity of tested devices, along with the above medical-grade wear-
ables, we also tested two popular consumer devices: the Apple Watch 6 and iPhone 11. We
used the iOS app “SensorLog” to capture raw sensor data (accelerometer, gyroscope and
magnetometer) from both devices. The sampling rate of all data was set to 50 Hz. The Ap-
ple Watch also contained heart rate data obtained from the PPG sensor. Note that although
most devices could capture a wide variety of sensor data, we only used accelerometer data
for our algorithm because that is the only sensor available across all devices.

Similar to the public dataset, a video recording of the whole activity was used to
annotate whether each time point corresponded to a left or right step. The recording was
made with a Samsung (Samsung, Seoul, Korea) phone and an Android app “Timestamp
Camera” that has the timestamp directly imposed on the bottom right corner of the video
(see Figure 1). The experiment was conducted as follows. At the beginning, a subject stood
still for 30 s so that the time series of all sensors could be aligned with each other in case the
absolute timestamps did not work well. Then, they were asked to walk at a regular pace
around a corridor that was at least 30 m long. After 6 min, the subject was asked to stop.

1.6 M Training data set
sensor readings Manual

\ annotation

®
([ ]

X ° ﬁ 95 k
n k ..Left... videoframes —
g k ...Right... 500k
E annotated records
Left.
i

Figure 1. Overall workflow to generate the AZ dataset.

2.2. Data Preprocessing

The accelerometer signals in the independent dataset were resampled to match the
15 Hz sampling rate of the public dataset. Samples of tri-axial accelerometer signals from
all devices are shown in Figure 2. The plot demonstrates a typical problem of applying
an algorithm across different devices. The three axes of the accelerometers in the public
dataset have different mean values and scales compared to those in the independent
dataset. This is because accelerometer sensors from different devices often have different
orientations relative to the earth’s gravity. Furthermore, the signal pattern from the iPhone
is significantly different from the others mainly because it was placed in a different location
(pant pocket instead of wrist). Therefore, we tried to use either the raw accelerometer data
or the Euclidian Norm Minus One (ENMO) as the input into our model. The ENMO was

computed as follows: apypo = /a2 + a§ + a2 — 1 where ay, ay, a, are raw acceleration

signals corresponding to the three axes of the accelerometer sensors. As a result, the ENMO
is a 1-dimensional measure as opposed to the 3-dimensional raw acceleration, and it is less
sensitive to changes of the sensors’ axes. This is illustrated in Figure 3, in which the ENMO
corresponding to raw sample data in Figure 2 was shown. Although it cannot resolve all
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issues with the raw acceleration, the ENMO measurements from different devices are more
homogeneous than the raw acceleration data.
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Figure 2. Representative raw accelerometer data from public and independent datasets. The first
panel indicates data from the public Clemson dataset. The other panels illustrate AstraZeneca dataset
for different devices used in the study.
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Figure 3. Representative ENMO signals from public and independent datasets. The first panel
indicates data from the public Clemson dataset. The other panels illustrate AstraZeneca dataset for
different devices used in the study.

2.3. Neural Network Models
2.3.1. Recurrent Neural Network with LSTM Cells

Recent successes in sequence data modeling have been attributed to the development
of recurrent neural network models that naturally capture the temporal dependency in a
time series with the hidden states of the network [40]. Different from the more popular feed-
forward architectures such as convolution, recurrent networks have feedback connections
so that each neural unit receives the past input from other units and itself. Therefore, they
naturally take into account the temporal dependency between the current time point and
past time points. Moreover, they can generally handle variable-length input well, which
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is an important feature for time-series data. However, the recurrent architecture often
encounters the problem of vanishing/exploding gradients in error back-propagation during
training. That significantly limits its practical applicability. Therefore, recurrent architecture
only gained popularity with the development of modifications to the neural unit, such as
long short-term memory (LSTM) [41] or gated recurrent unit (GRU) [42]. These variants
help stabilize the training process and adaptively learn long-term dependency in the input
sequence. They essentially utilize gated mechanisms to learn how much information from
the past should be taken into account. Here we employ a typical recurrent network that
consists of two layers of LSTM cells followed by two fully connected layers. The two LSTM
layers have 256 and 128 cells, respectively, and the two fully connected layers have 128
and 2 cells, respectively. The last fully connected layer has a softmax activation function to
predict the binary label in the dataset, i.e., left or right step. The LSTM layers employ tanh
activation for the output and sigmoid activation for recurrent connection. The next-to-last
fully connected layer employs ReLU activation. Besides the differences in number of layers
and cells, one significant difference compared to previous work [38] is that the output of the
last LSTM layer is the whole output sequence of the time series instead of just the output of
the last time step. We believe that employing the output of the whole sequence will help
make the back-propagation of the gradient to early time steps better than just the output of
the last time step.

2.3.2. Convolutional Neural Networks

Although recurrent networks might be a natural choice for sequence modeling, con-
volutional architecture as well has been proposed as a prominent alternative [43,44]. The
biggest issue with recurrent networks is that, for sequence data with very high sam-
pling rates it needs to learn over a very long sequence for potential dependency between
time steps. For example, an audio signal with a typical 40 kHz sampling rate contains
400,000 samples in 10 s. Because the effective depth of a recurrent network when unrolled
over time is equal to the number of time steps multiplied by the number of hidden layers, a
long sequence will essentially result in a prohibitively deep network, which makes training
infeasible (note that for our problem the signal sampling rate is quite small, so training
is still feasible). Consequently, deep learning researchers have developed alternative con-
volutional architectures that work well with sequence data. A highlighted example is the
WaveNet architecture that was developed and widely used by Google for speech processing
and synthesis [45].

For that reason, we also tested two variants of convolutional networks: a shallow
convolutional neural network (CNN) and a WaveNet architecture. The shallow CNN
consists of one convolutional layer (256 filters, kernel size: 6, stride: 1) followed by two
fully-connected layers (128 and 2 cells, respectively). We used a drop-out rate of 0.4 for
all layers. The main components of the WaveNet architecture are residual blocks with
residual connections between them. Within each block, there are several layers of dilated
convolutions coupled with gated mechanism to learn what important features in the time
series it should focus on. The dilated convolution is similar to a regular convolution except
that the convolution kernel will skip the input by a certain number of steps. This helps to
double the receptive field size of each layer, which enables the network to learn long-range
dependency in the sequence. In this study, we used two residual blocks and three dilated
convolution layers within each block (32 filters, kernel size: 6, stride: 1). As before, we used
a drop-out rate of 0.4 and a final 2-cell fully-connected layer as the output. Further, we
do not use the skip connection from the input to the residual blocks, as proposed in the
original WaveNet architecture [45]. Note that all of the above hyperparameter values were
chosen based on extensive cross-validation on the public dataset.
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2.3.3. Performance Metrics

For model training, we used step classification accuracy as the validation metric. It
indicates the percent of steps classified correctly as left step or right step and is computed
as follows:

Meorrect
ACCUTACY step_classification = ( N ) %100 1
total

where #1¢orrect is the number of correctly classified steps and Ny, is the total number
of steps.

The second metric is step-count accuracy. Based on the sequence of left/right steps,
each step is defined as the transition from left to right or vice versa. Therefore, we can
compute the ground truth step count from the annotated labels and similarly for the model
prediction. Given that, the step-count accuracy was computed as follows:

Step—countpredicted - Step—countgroundjruth
step_coun tground_truth

) x 100 (2)

ACCUTACYstep_count = <1 —

where step_count ygicteq is the number of steps computed from the model’s prediction, and
step_count ground_trusn 1S the number of steps computed from the ground truth annotation.

2.3.4. Model Training and Validation on Public Dataset

To prepare the data for model training, we used a sliding window over both the
acceleration signal and the step type. The sliding window has a step size of 1. A noteworthy
difference compared to the previous study [38] was the way we computed the label for
training. The general problem is that, given a window of acceleration, we need to define
the step type of that window (i.e., left or right step). However, because the window
may contain both left and right steps, it can be tricky to determine the step type of a
window. That issue can be aggravated by a long window because it may contain multiple
steps. The previous study chose the most frequent step type as the label of a window [38].
Because of the issue mentioned above, the chosen window size was pretty short in that
study (0.46 s). To alleviate that problem, we chose the step type of the last time step as the
label of a window. In other words, we rephrased the problem as predicting the current step
type (left/right) based on past sensor signals. That enabled us to use an arbitrarily long
window size so the neural networks could learn potential long-range dependencies in the
sensor signals.

Cross-validation on the public dataset was done by splitting the subjects into train-
ing (28 subjects) and validation (2 subjects) sets. We performed 70 shuffled iterations of
cross-validation for each model. We implemented the neural networks using Keras with
TensorFlow as the backend. Based on extensive cross-validation, we selected the best hy-
perparameters as follows: the window size was 2 s (30 time steps) for the recurrent network
and 4 s (60 time steps) for the convolutional networks. Note that the optimal window size
was 4-8 times longer than in the previous study. This suggests our choice of label (the last
step type instead of the most frequent step type) allowed the neural networks to handle
a longer window. The batch size was 256 for the convolutional networks and 512 for the
recurrent network, the optimizer was Adam with default values (learning_rate = 0.001,
beta_1=0.9, beta_2 = 0.999, epsilon =1 X 107, amsgrad = False), the loss function was cat-
egorical cross entropy, the number of epochs was 50 and the early stopping had a patience
of 10. Note that for early stopping, we chose validation accuracy as the metric to monitor
instead of validation loss because that was more relevant to our optimization goal.

2.3.5. Model Testing on Independent Dataset

To test the models on the independent dataset, we chose the best models for each
architecture. Note that although the models” prediction was left or right step given a
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sample window, we focus exclusively on step-count accuracy because that is the measure
of interest here.

For the first approach, we ran the best pre-trained models on the accelerometer data
in the AZ dataset to derive the step count for each subject (Figure 4b). Essentially, this
approach is the ultimate test for the generality of the models trained on the public dataset
because there was no further tuning of the parameters. Therefore, the generalized approach
would test whether the neural networks could work well on the data from completely
different devices, subjects and testing environments.

d

Raw data Neural network Step count
[ ]
-
L]
L]
ENMO feature
L '
/ R °
L]
.
Data Collection and Labelling Model Training Apply General Model

Directly test general model on
subjects with no further tuning
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30 subjects @ ) = g r O Step:Ount
4 | I I - *
ﬂ* 4 'S ~ '
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2
11 wrjecs d . ‘, g "))
Ao

Figure 4. Workflow of training and testing step-count algorithms. (a) Model input was either the raw

acceleration signal or the ENMO feature; (b) Generalized transfer learning on test data.

For the second approach, we performed domain adaptation on individual subjects
before deriving step counts (Figure 5). Specifically, we trained the general models on 30 s of
labeled data for each subject and used that to derive the step count. In other words, we had
a personalized model for each subject. The advantage of this approach is that it can adapt
to the particularities of each subject’s walking gait. However, it requires training labels
for each subject, which can become prohibitively expensive for a large number of subjects.
To mitigate this problem, we limit the domain adaptation to a very short training window.
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Figure 5. Personalized transfer learning on test data.

3. Results
3.1. Cross Validation on Public Dataset

We trained and cross-validated three neural network models (recurrent network with
LSTM cells, convolutional neural network and WaveNet) on a public dataset consisting
of acceleration signals from 30 subjects performing regular walking. An extensive search
over the hyperparameter space was conducted to find the best configuration for each
architecture based on the cross-validation results. All the cross-validation results presented
below were taken from 70 shuffled splits of training and validation sets.

Figure 6 shows the cross-validation accuracy of the best models for both step classifi-
cation and step count when we used the raw acceleration as input to the neural networks.
As a reference, we indicated the performance achieved in a previous study [38] with a
dashed blue line (~60% for both tasks). In the step classification task, all neural network
architectures performed relatively well and similar to each other (Figure 6, left panel).
The mean accuracy is 78.84% for CNN, 79.19% for WaveNet and 80.14% for LSTM. We also
found relatively small variability across the splits of training and validation sets, which
suggests the models are quite robust with regard to different splits of training data. The
right panel of Figure 6 shows step-count accuracy for the neural networks. Overall, step-
count accuracy is very high and similar across all models. The mean step-count accuracy
is 98.32% for CNN, 98.36% for WaveNet and 98.4% for LSTM. Moreover, the variability
across different training—validation splits is also very small.

110 Step classification 110 Step count
100 100 ? ? ——————
[
90 90 0 ’ '
o
< 8o 80
>
& 70 70
—
] —lb_
D 60 S b B0 mmmm oo
— 1L $
< " .
50 5 50 ‘
40 40
30 30
CNN WaveNet LSTM CNN WaveNet LSTM

Figure 6. Cross-validation results on the public dataset using raw acceleration as the input to neural
network models. The accuracy measures were taken from 70 shuffled splits of training and validation
sets. The dashed blue line indicates performance achieved from a previous study [38].
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As demonstrated in Figure 2, the raw acceleration signals might vary substantially
across different devices and wear locations. Therefore, we also performed training and
validation on the ENMO measures derived from raw acceleration. By using the vector
magnitude instead of the raw acceleration, we expect the variation across devices and/or
wear location to be less troublesome (see Figure 3 for an illustration). Similar to the raw
acceleration results, all neural network architectures performed relatively well and similar
to each other in the step classification task (Figure 7, left panel). The mean accuracy of
step classification is 77.59% for CNN, 76.64% for WaveNet and 79.43% for LSTM. We also
observed larger variability compared to the raw acceleration results. Although all models
performed relatively well on the step-count task, convolutional networks tended to be
better (CNN: 98.72%, WaveNet: 98.51%) compared to LSTM (94.87%) (Figure 7, right panel).
Therefore, the LSTM model seems to be worse with the ENMO signals compared to when
using raw acceleration data.

110 Step classification 110 Step count
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— )
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30 30
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Figure 7. Cross-validation results on the public dataset using ENMO as the input to neural network
models. The accuracy measures were taken from 70 shuffled splits of training and validation sets.
The dashed blue line indicates performance achieved from a previous study [38].

Overall, the results suggest that the neural network models are quite robust with
regard to the type of input (i.e., raw acceleration vs. ENMO). At a closer look, it seems that
the models work slightly better with raw acceleration data. The reason may be the raw
acceleration data contains more information than the ENMO measure. Another observation
is that the convolutional architecture (CNN and WaveNet) tends to be better and more
robust than the LSTM. This is especially true for the simplest model, CNN.

The fact that step-count accuracy is significantly better than step classification accuracy
was also found in a previous work [38]. At first glance, the result may be puzzling because
we did not train or validate the model directly on step count but only used the step
classification (i.e., left or right) for the training. However, it is expected because step
classification is noisier and less robust than step count. For example, if there is misalignment
of the sensor time series and the step type label, step classification will be significantly
degraded while step count should be almost the same. Therefore, the results suggest that by
training the neural networks on step classification, they could learn a robust representation
that is relevant for step count.

3.2. Test of General Models on Independent Dataset

To test the generalizability of neural network models, we chose the best pre-trained
models based on the above cross-validation results and tested them directly on the data
collected at AstraZeneca. First, we look at the results using the raw acceleration as input
into the models. The step-count accuracy for each subject, device and model is shown
in Figure 8. For comparison, we also ran the models on the five subjects reported in the
previous work [38] (indicated as blue dots in Figure 8). In that study, only the Actigraph
wearable was used, so we can only make a comparison for that device. Moreover, most
devices (Actigraph, Apple Watch and iPhone) also have a built-in pedometer, thus we also
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included the performance of those native algorithms in the comparison. As a summary of
model performance, the mean accuracy was tabulated in Table 1. For the Actigraph device,
the first noticeable observation is that the built-in algorithm performs poorly compared to
our models, with mean accuracy of 79.56%. All three neural network architectures work
very well, with the mean performance reaching 98% for CNN and LSTM models while
WaveNet had an outlier subject that degraded its performance to 91.41%. Furthermore, the
results across all models are quite similar for subjects in our study and those in a previous
study [38]. For the Shimmer device, the performance of all neural networks was worse
than Actigraph, and the worst architecture is the LSTM network (8.04%). In contrast, the
LSTM performs very well for the Apple Watch (95.65%), while both CNN and WaveNet
see signficant decreases in performance. In addition, the built-in algorithm of the Apple
Watch works very well, with a mean accuracy of 98.2%. We observe a similar pattern for
the iPhone. The best neural network architecture is the LSTM network (96.93%), while
the CNN and WaveNet have worse performance. We also observe high performance from
the built-in algorithm of the iPhone (98.2%). It is sensible to see similar patterns from
the Apple Watch and iPhone because they come from the same vendor and presumably
both the sensors and the algorithms should be relatively similar. In general, we found that
neural network performance varied substantially across devices and subjects. Furthermore,
in some cases, the neural networks performed well for all subjects except for one outlier
(e.g., WaveNet for the Actigraph and Shimmer, and CNN for the Apple Watch and iPhone).
This could be due to substantial variations in the signals from device sensors (as discussed
above and illustrated in Figure 2). Therefore, in the next section, we will look into the
models’ performance using ENMO instead of raw acceleration because it is supposed to be
less sensitive to the devices’ sensors (see Figure 3).
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Figure 8. Results of testing the general models on an independent dataset using raw acceleration.
Each dot correspond to one subject (blue dots indicate data in [38]).

Table 1. Step-count accuracy of testing general models on independent dataset using raw acceleration.

Test Device
Algorithm Actigraph Shimmer Apple Watch iPhone
CNN 98.28% 76.31% 73.96% 88.62%
WaveNet 91.41% 87.61% 80.01% 72.87%
LSTM 98.23% 8.04% 95.65% 96.93%
Built-In 79.56% N/A 98.2% 98.2%

Figure 9 shows the models’ performance for individual subjects when we used ENMO
as the input. The mean step-count accuracy for each device and model is also shown
in Table 2. Overall, we see substantial improvement for all models across the devices.
Results for the Actigraph show the least improvement because the models were already
very good with raw acceleration. However, we see a significant boost for the WaveNet
model (from 91.41% to 98.82%), mostly because it can better handle the outlier subject
found with raw acceleration. The Shimmer device sees the largest improvement. We
found high accuracy across all models (~96%). The performance boost is most obvious
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for LSTM because its accuracy with raw acceleration is only 8.04%, as we saw above.
Although we see a clear outlier subject that is worse than the others, the accuracy for that
subject is still around 80%. For the Apple Watch, we also observed a significant increase
in the performance of CNN and WaveNet models, with both approaching 96% accuracy
(compared to 74-80% with raw acceleration). In contrast, the LSTM model has a slightly
worse performance with ENMO compared to raw acceleration (94.14% vs. 95.65%). We
found a similar pattern for the iPhone. Both the CNN and WaveNet gain a substantial
improvement in performance by using ENMO instead of raw acceleration (8-14% increase
in accuracy). However, we see a drastic reduction in accuracy for the LSTM model, with a
drop from 96.93% down to 60.44%. Therefore, the results seem to be consistent between the
Apple Watch and iPhone.
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Figure 9. Results of testing the general models on an independent dataset using ENMO. Each dot
correspond to one subject (blue dots indicate data in [38]).

Table 2. Step count accuracy of testing general models on independent dataset using ENMO.

Test Device
Algorithm Actigraph Shimmer Apple Watch iPhone
Shallow CNN 98.46% 96.26% 95.4% 96.64%
WaveNet 98.82% 96.07% 96.04% 86.92%
LSTM 97.13% 96.62% 94.14% 60.44%
Built-In 79.56% N/A 98.2% 98.2%

In general, we see a substantial improvement in the models’ performance by using
ENMO instead of raw acceleration. It may be because ENMO is less sensitive to the
specificity of device sensors compared to the raw acceleration. One exception from our
results was the LSTM model for the Apple Watch and iPhone. The LSTM model consistently
performs better on raw acceleration compared to ENMO for these Apple devices.

Among the tested devices, the iPhone is the most challenging case because it is the
most different from the device used in the training dataset, both in device type (mobile
phone vs. wearable) and wear location (pant pocket vs. wrist). As a result, the models
(except CNN) still struggle to perform well for the iPhone, even when we used ENMO.

3.3. Test of Personalized Models on Independent Dataset

Although the convolutional neural networks perform well with ENMO, we still see
outlier subjects in some case, most notably for the Shimmer device. Those cases could
be important in clinical applications because the patient population is likely to exhibit
idiosyncrasies in their walking gait and render the general models inaccurate in step-
counting task. Therefore, we also tested another approach—domain adaptation—where
we trained the pre-trained models on a small subset of labeled data for individual subjects
and used those personalized models to derive step count.

Similar to the previous section on general models, we started with domain adaptation
on raw acceleration input. Figure 10 shows model performance for individual subjects
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across all devices, and Table 3 shows the mean accuracy for each model and device combi-
nation. Compared to the general models (Figure 8 and Table 1), the personalized models
show significant improvement in most cases. Specifically, the CNN model maintains similar
performance for the Actigraph and gets a substantial boost in performance for the other
devices (10-24% increase in accuracy). Likewise, the WaveNet model sees considerable
improvement across all devices (7-27%). For the LSTM model, we also see an improvement
in performance for the Shimmer, Apple Watch and iPhone, with the most drastic change
corresponding to the Shimmer (41% increase in accuracy). However, the LSTM model has
worse performance for the Actigraph (17% decrease in accuracy). This reduction in the
performance of the LSTM model is due to two outlier subjects with very low accuracy. We
also observed the same pattern for the Shimmer device.
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Figure 10. Results of testing the personalized models on an independent dataset using raw accelera-
tion. Each dot corresponds to one subject (blue dots indicate data in [38]).

Table 3. Step-count accuracy of personalized models on independent dataset using raw acceleration.

Test Device
Algorithm Actigraph Shimmer Apple Watch iPhone
CNN 98.04% 99.35% 97.73% 99.19%
WaveNet 98.43% 98.97% 97.17% 99.53%
LSTM 81.39% 49.79% 99.25% 99.72%
Built-In 79.56% N/A 98.2% 98.2%

Next, we tested the domain adaptation approach for ENMO input. Model performance
for individual subjects is shown in Figure 11, and the mean step-count accuracy is shown
in Table 4. Similar to the results for domain adaptation on raw acceleration, we found an
overall improvement for all models and devices compared to the performance of general
models (Figure 9 and Table 2). The CNN model sees an improvement across all devices
although the accuracy increase is generally small because the general CNN model already
works well with ENMO input. We see a similar pattern for the WaveNet model, with a
consistent improvement across devices, especially the iPhone (10% increase in accuracy).
The LSTM model observes a minor improvement for the Actigraph and Shimmer, a slight
decrease in performance for the Apple Watch and a marked improvement for the iPhone
(33% increase in accuracy). Notably, the domain adaptation method using ENMO does
not contain drastic outliers as seen in other approaches. The results demonstrate that this
approach can handle the outlier subjects found in our study.
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Figure 11. Results of testing the personalized models on an independent dataset using ENMO. Each
dot correspond to one subject (blue dots indicate data in [38]).

Table 4. Step-count accuracy of personalized models on independent dataset using ENMO.

Test Device
Algorithm Actigraph Shimmer Apple Watch iPhone
CNN 99.26% 98.92% 97.26% 99.3%
WaveNet 98.15% 98.39% 96.9% 96.7%
LSTM 97.33% 97.55% 98.11% 93.45%
Built-In 79.56% N/A 98.2% 98.2%

4. Discussion

In this study, we developed neural network algorithms for step counting and con-
ducted extensive testing of two transfer learning methods (generalization and domain
adaptation) on four devices. They exhibited state-of-the-art performance on an indepen-
dent test set. Importantly, these algorithms were designed with special considerations for
the critical requirements of clinical trials. Firstly, they only used accelerometer data (and
not gyroscope data), which significantly reduced battery consumption, prolonged the use
time without charge and, hence, may improve patients” wearing compliance. In addition,
that may result in higher integrity of recorded data, which is of paramount importance in
clinical trials. Second, it is device agnostic and highly accurate for both wrist-worn and
pocket devices. Since patients in clinical trials can be very different from healthy subjects,
black-box built-in algorithms from the manufacturers are not appropriate because we may
have to adapt and fine-tune the algorithms for the disease-specific population.

There are a few notable observations from the study’s findings. First, although
raw acceleration input resulted in better model performance during cross-validation (see
Figures 6 and 7, ENMO often gave better results when tested on a different device (see
Figures 8-11). The results are generally concordant with research in neural networks,
which shows that, although they can learn well from raw data, feature engineering often
leads to significant performance improvement. It suggests that when we aim to obtain
better generalization across devices, ENMO measures should be used because they are less
sensitive to the specifications of device sensors. Moreover, future research into the utility
of combining raw and other engineered features such as ENMO is warranted. Second,
it is quite consistent across different approaches that convolutional architectures (CNN
and WaveNet) performed better than the LSTM network, especially in domain adaptation
using raw acceleration data. Both CNN and WaveNet worked very well for all subjects,
whereas LSTM worked poorly for a few outliers. In addition, the training process for
LSTM was also often less stable than convolutional networks. The findings are generally
consistent with recent research showing superior performance of convolutional vs. recur-
rent architecture [44]. Third, the simple CNN model has consistently demonstrated its
superior performance as well as robustness compared to other models, especially when
using ENMO as input. The reason could be that complex models such as WaveNet and
LSTM might have overfit during training (even with cross-validation) while the simple
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CNN model strikes the right balance between flexibility and robustness. The results may
have significant implication in situations where algorithms deployed on the mobile device
itself are limited by computational resources.

We see significant variations in the built-in algorithm of the devices, ranging from
the worst (Actigraph) to the best (Apple Watch, iPhone). This illustrates the need for
standardization and validation of pedometer devices, especially those used in clinical
settings. Surprisingly, the most-popular device used in clinical application, Actigraph,
performed poorly, while the popular consumer devices (Apple Watch and iPhone) were
highly accurate. These Apple devices were better than the general models and were only
slightly worse than the personalized models. Note that these built-in pedometers were
optimized for each device, so they are not directly comparable to the general models.
Furthermore, we may still need an approach such as domain adaptation to handle the
outlier cases likely in a patient population.

Finally, we want to comment on the operational aspect of deploying the algorithms
in practice. The results demonstrated a popular trade-off between general models and
personalized models. On the one hand, the general models are simpler to deploy in a
clinical trial because the same model is applied to all subjects. However, it may not be
able to handle outlier subjects, which could be important in clinical contexts. On the other
hand, the personalized models resulted in superior accuracy even for outlier subjects.
Nevertheless, they are not easily applied at scale because of the expensive manual labeling.
Therefore, we suggest that in practice a hybrid approach could be employed. Specifically,
we can have a short calibration process at the beginning for each subject in order to test the
accuracy of the general models. The calibration would consist of a short walk during which
the subject counts his/her steps to provide feedback for the general models. Importantly,
subjects could do this on their own. Afterwards, we would only use the personalized
method for those subjects that the general models could not handle. With that, we can still
obtain high accuracy for all subjects while limiting the expensive manual labeling of the
personalization process (assuming there are not many outlier subjects).
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