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Abstract: Magnetic resonance (MR) imaging is an important computer-aided diagnosis technique
with rich pathological information. The factor of physical and physiological constraint seriously
affects the applicability of that technique. Thus, computed tomography (CT)-based radiotherapy is
more popular on account of its imaging rapidity and environmental simplicity. Therefore, it is of
great theoretical and practical significance to design a method that can construct an MR image from
the corresponding CT image. In this paper, we treat MR imaging as a machine vision problem and
propose a multi-conditional constraint generative adversarial network (GAN) for MR imaging from
CT scan data. Considering reversibility of GAN, both generator and reverse generator are designed
for MR and CT imaging, respectively, which can constrain each other and improve consistency
between features of CT and MR images. In addition, we innovatively treat the real and generated
MR image discrimination as object re-identification; cosine error fusing with original GAN loss is
designed to enhance verisimilitude and textural features of the MR image. The experimental results
with the challenging public CT-MR image dataset show distinct performance improvement over
other GANs utilized in medical imaging and demonstrate the effect of our method for medical image
modal transformation.

Keywords: multi-conditional constraint generative adversarial network; medical image modal
transformation; object re-identification; brain CT-MR image dataset

1. Introduction

Magnetic resonance (MR) imaging [1] and computed tomography (CT) [2], both of
which are suitable for the inspection of lesions in various tissues throughout the body,
are commonly used as computer-aided medical imaging diagnostic techniques. Due to
non-invasive, non-radiation, multi-contrast, and the fact that it contains more pathological
information, MR imaging is more often referenced for the diagnosis of most diseases
compared with CT imaging [3], especially on soft tissues, ligaments, and organs. However,
since MR imaging should be finished in an airtight space with a strong magnetic field in
about half an hour, the procedure for MR imaging is contraindicated for some patients with
claustrophobia, cardiac pacemakers, and artificial joints [4]. By contrast, CT scanning does
not need to be carried out in an airtight environment. It can also be finished within a few
minutes, which is easier for patients to endure. Therefore, it is significant and valuable to
develop a method that can estimate an MR image from its corresponding CT scan data. Both
MR images and CT images, showing the anatomy and pathology of each tissue structure
with a single channel, are digital images. However, they belong to different modalities due
to different imaging principles [5]. Due to this, we can treat MR imaging from CT scan data
as a medical image modal transformation problem, which is one of the fundamental topics
in computer vision.
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Image modal transformation refers to the generation of images from one domain
to another domain under certain technical conditions [6,7]. The traditional computer-
vision-based medical image modal transformation can be divided into two categories:
learning-based methods and atlas-based methods. Learning-based methods construct
non-linear mapping between the MR and CT image according to handcrafted feature
extraction [8,9]. Atlas-based methods approximate a matrix between the MR image and
atlas MR image by image registration [10–12], which can be used to warp the associated
atlas CT image to estimate the query MR image. Since these two kinds of methods utilize
handcrafted features to conduct medical image modal transformation, they are not general
to different datasets.

Fortunately, with the development of large-scale visual datasets and increased com-
puting power, convolutional neural networks (CNNs) [13], with their strong discriminative
power and feature representation learning capabilities, have demonstrated record-breaking
performance in computer vision tasks [14,15], including medical image modal transforma-
tion. Zhao et al. [16] modified U-Net [17] to synthesize an MR image from CT scan data.
They trained the network using the paired CT-MR dataset (as shown in Figure 1a) by just
minimizing the voxel-wise loss [18] between the synthesized image and the reference image,
which results in blurry generated output. To solve this problem, Nie et al. [19] proposed a
method that combines the voxel-wise loss with an adversarial loss in the generative adver-
sarial network (GAN) [20], which is a new type of deep-learning-based generative model, to
synthesize CT images from MR scan data. Combining voxel-wise loss with adversarial loss
can improve the blurry synthesis problem. However, it highly depends on the availability
of a large number of aligned CT and MR images, which is difficult to collect. In addition,
compared with the paired CT-MR image data, most medical institutions have considerable
unpaired CT-MR image data (as shown in Figure 1b) that are scanned for different purposes
and radiotherapy treatments. Different from the methods [21–23] based on paired data,
Kim et al. [24] proposed a learning method to discover cross-domain relationships using
DiscoGAN, which does not require any explicit paired labels and can learn the relationships
between datasets from different domains. Woltertink et al. [25] dealt with unpaired data
with a CycleGAN model [26], which is an image-to-image translation model using unpaired
data in the natural image field. Inspired by CycleGAN, Jin et al. [27] proposed MRGAN
to use paired and unpaired data in a single model to overcome the context-misalignment
problem. Jin et al. [28] focused on objective function design to construct a realistic and
accurate synthetic MR image. The objective function they designed consists of adversarial,
dual-cycle-consistent [29], voxel-wise, gradient difference [30], perceptual, and structural
similarity terms to balance quantitative and qualitative losses. Due to dual-cycle-consistent
structure, these two methods can be viewed as semi-supervised learning, both of which can
apply paired and unpaired data to train the network. Li et al. [31] used L1 loss and L2 loss,
based on U-Net, to generate MR images from CT images. However, the details and textures
of the generated MR images were quite different from the real MR images. Therefore, it is
an urgent problem to improve the fidelity of generated MR images. In addition, generating
truer MR images by GAN is still a challenge due to the discrimination ability of the dis-
criminative model. On one hand, compared with the generative model, the discriminative
model is shallow, which results in imbalance in generation and discrimination in GANs.
On the other hand, the discriminative model cannot further identify synthetic MR images
when they are similar enough to the real one. Table 1 shows the comparison of GAN-based
models for medical image modal transformation in the above research studies, including
network structure and objective function. Compared with these methods, we optimized
both the network structure and objective function to design a multi-condition constraint
GAN, which can generate MR images with high quality. The major work of this paper can
be summarized as follows:

1. We treat MR image synthesis as an object re-identification problem and introduce cosine
loss, which combines with voxel error and perception error as the model function.
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2. We modify the generator based on cycleGAN and design the discriminator based on
PatchGAN under the constraint of the paired CT-MR dataset.
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Table 1. Comparison of GAN-based models for medical images modal transformation.

Multi-Channel
GAN [22]

Deep MR-to-CT
[24] DiscoGAN [25] MR-GAN [27]

Model Pix2Pix cycleGAN DiscoGAN MR-GAN

Generator U-Net Residual Net Customized Residual Net

Number of
Layers in
Generator

16 24 8 24

Discriminator Patch GAN Patch GAN Patch GAN Patch GAN

Number of
Layers in
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5 5 5 5

Objective
function
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We design the function and modify the GAN architecture to optimize quality of the
generated MR image. The remainder of this paper is organized into four sections. We
introduce the working principle of GAN and conditional GAN in Section 2; Section 3
introduces our proposed method in detail, including multiple conditional constraint-based
GAN structure and objective function design. Section 4 demonstrates the experimental
results and contains a discussion on the specific comparison analysis; Section 5 gives the
conclusion of this paper.

2. The Working Principle of GAN and cGAN

Standard GAN is introduced as a typical unsupervised learning method to train a gen-
erative model. As in Figure 2a, the framework of GAN contains a pair of competing models:
a generative model G that captures the data distribution, and a discriminative model D
that estimates the probability that a sample comes from the training data rather than G.
To learn a generator distribution pg over data x, the generative model builds a mapping
function from a prior noise distribution pz to data space as G(z). The discriminative model
outputs a single scalar representing the probability that x comes from training data rather
than pg. G and D are trained simultaneously to adjust parameters for G and D to minimize
1− log D(G(z)) and log D(x), respectively, as if they are following the two-player min-max
game with value function L(D, G):

min
G

max
D

L(D, G) = Ex∼Pdata [log D(x)] + Ez∼Pz [1− log D(G(z))] (1)
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Standard GAN is an unsupervised learning model which cannot control the category
of the generated image. However, it can be extended to a conditional model (cGAN) [32]
if both the generative model and discriminative model are conditioned on some extra
constrained information y as shown in Figure 2b.y, which is any kind of auxiliary infor-
mation including data from other modalities, can be fed into both the generative model
and discriminative model as an additional input layer to perform the conditioning. In the
generative model, the prior noise pz and x are combined in joint hidden representation, and
the adversarial training framework allows for considerable flexibility in how this hidden
representation is composed. In the discriminative model, x and y are presented as inputs to
a discriminative function. The objective function is also the two-player min-max game as
in Equation (2):

min
G

max
D

L(D, G) = Ex∼Pdata [log D(x|y)] + Ez∼Pz [1− log D(G(z|y))] (2)

In cGAN, the input of the generative model can also be an arbitrary image [33,34]
besides pz [32]. In this paper, we use the CT image as input and its corresponding real
MR image as constraint to design a special cGAN structure, so as to realize the modal
transformation from CT image to corresponding MR.

3. Multi-Condition Constraint GAN Model

The modal transformation process of the image is reversible, which means CT and MR
images can be converted to each other based on different generators with the corresponding
constraint. Inspired by CycleGAN, this paper constructs a multi-conditional constraint
GAN model that includes a generator, an inverse generator, and two discriminators. The
proposed model optimizes the training model with the minimum error between the real
and the generated MR image, which can improve the fidelity and detailed characteristics
of the generated MR image. Since both the real and generated MR image belong to the
same modality, we innovatively treat the real and generated MR image discrimination as
an object re-identification problem. Due to this, cosine error fusing with original GAN loss
is designed to enhance verisimilitude and textural features of the MR image.
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3.1. Model Architecture

This paper builds a multi-conditional constraint GAN model to realize MR image
generation with CT images as input. As shown in Figure 3, the model takes real CT images
ICT as input and real MR images IMR as constraint to generate MR images GMR(ICT) by
generator GMR. On this basis, the GMR(ICT) is used as input with ICT as constraint to
generate CT images GCT(GMR(ICT)) by inverse generator GCT . The discriminators DMR
and DCT should not only distinguish the authenticity of the input MR and the CT image, but
also discriminate whether the image has a corresponding relationship with the input image.
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Both the generator and the inverse generator applied in our method include an encoder
and a decoder where the encoder is used to extract features from the image, and the decoder
is used to generate an image with the same scale as the input. This process is implemented
separately through convolution and deconvolution operations. The generator and inverse
generator in our proposed multi-conditional constraint GAN model are both improved
based on the image transformation network [35], which produces impressive results in
real-time style transfer and single-image super-resolution. The network contains two
stride-one convolutions at the beginning and the end of the architecture, two stride-two
convolutions, nine residual blocks [36], and two fractional convolutions with 0.5 stride. The
nine residual modules are intended to deepen the network and expand the receptive field,
so as to obtain more semantic information and extract detailed features of medical images.
Each residual block includes two convolutions using 256 filters of 3 × 3 size with reflection
padding, which effectively avoids the boundary artifacts and ensures the sharpness of
the generated images. Instance normalization [37] and a rectified linear unit (ReLU) are
followed to each convolution except the final one. The hyperbolic tangent (Tanh) [38]
activation function follows the final convolution to guarantee the output is within [−1, 1].
The specific structure is shown in Table 2.
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Table 2. Model architecture of generator GMR and inverse generator GCT layer name.

Output Size Filter Size/Stride Number of
Conv. Layers

Input image H ×W × 1 \ \
Conv 1 H ×W × 64 7× 7/1 1
Conv 2 H/2×W/2× 128 3× 3/2 1
Conv 3 H/4×W/4× 256 3× 3/2 1

Residual Block 1 H/4×W/4× 256 3× 3/1 2
Residual Block 2 H/4×W/4× 256 3× 3/1 2
Residual Block 3 H/4×W/4× 256 3× 3/1 2
Residual Block 4 H/4×W/4× 256 3× 3/1 2
Residual Block 5 H/4×W/4× 256 3× 3/1 2
Residual Block 6 H/4×W/4× 256 3× 3/1 2
Residual Block 7 H/4×W/4× 256 3× 3/1 2
Residual Block 8 H/4×W/4× 256 3× 3/1 2
Residual Block 9 H/4×W/4× 256 3× 3/1 2

Fractional Conv 1 H/2×W/2× 128 3× 3/0.5 1
Fractional Conv 2 H ×W × 64 3× 3/0.5 1

Conv 4 H ×W × 1 7× 7/1 1

The design of the discriminator is inspired by PatchGAN, proposed by Isola [39],
which aims to classify small overlapping image patches rather than images. Compared
with other discriminators, this patch-level discriminator has fewer parameters and can
emphasize detailed information in local areas. The discriminator takes N × N fragments as
input instead of the entire image so that it can pay more attention to the high-frequency
information of the image, which in turn encourages the model to generate more realistic
images. In the GAN model, the process of the generator to generate images is much more
complicated than the process of the discriminator to discriminate the image authenticity. To
balance the performance of the generator and the discriminator in the model, the discrimi-
nator designed in this paper belongs to a shallow network containing five convolutional
layers. The specific structure is shown in Figure 4. In the second to fourth convolutional
layers, normalization and non-linear processing based on leaky ReLU [40] are performed
after each convolutional layer. The discriminator not only needs to distinguish the authen-
ticity of the input MR image, but also needs to determine whether the MR image and the
input CT image have a corresponding relationship.
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3.2. Loss Function

Both networks in GANs are trained simultaneously. The discriminators DMR and
DCT are used to estimate the probability of a sample coming from real data. The goal of
the generator GMR is to generate an MR image using the CT image as input under the
constraint of the real MR image. Whereas the GCT can be used to generate the CT image as
a reversed constraint to impel the GMR to generate a more realistic MR image. Since the
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goal is to generate an MR image which should be similar to the real MR image in structure
and detailed texture features, the adversarial losses are applied to the generator GMR and
corresponding discriminator DMR. The objective can be expressed as follows:

LGAN(GMR, GCT , DMR, DCT) = EICT ,IMR∼pdata(ICT ,IMR)
[log(DMR(ICT , IMR))]

+EICT∼pdata(ICT)
[1− log(DMR(ICT , GMR(ICT)))]

+EICT ,IMR∼pdata(ICT ,IMR)
[log(DCT(ICT , IMR))]

+EICT∼pdata(ICT)
[1− log(DCT(ICT , GCT(GMR(ICT))))]

(3)

where ICT and IMR are the real CT and MR images; DMR(ICT , IMR) and DCT(ICT , IMR) rep-
resent the probability of the MR and CT images coming from real data. DMR(ICT , GMR(ICT))
and DCT(ICT , GCT(GMR(ICT))) represent the probability of those coming from the gener-
ated one.

Typically, adversarial loss can generate visually satisfactory MR images. However,
the MR image modal transformation not only generates an MR image, but also renders
it with richer pathological information corresponding to the content and features of the
CT images. Therefore, the purpose of medical image modal transformation is to make
the generated image contain more detailed texture features on the premise of similarity to
the real image structure. For the paired data {ICT ,IMR}, the generator GMR is tasked with
generating realistic MR images that are close to the reference IMR of the input ICT . Although
the inverse generator GCT is not required as a final product, adding the same constraint to
the GCT enables a higher quality of generated MR image. Considering the above factors
comprehensively, the constraints on the similarity of image structure and detailed texture
features reflected by the voxel loss and perception loss between the generated and the real
CT image and the generated and the real MR image are defined as:

Lvoxel(GMR(ICT), GCT(GMR(ICT))) = EICT ,IMR∼pdata(ICT ,IMR)[||IMR − GMR(ICT)||1
]

+EICT ,IMR∼pdata(ICT ,IMR)[||ICT − GCT(GMR(ICT))||1
] (4)

Lperc(GMR(ICT), GCT(GMR(ICT))) = EICT ,IMR∼pdata(ICT ,IMR)
[ 1

K

K
∑

j=1

1
HjWjCj

||ϕj(IMR)− ϕj(GMR(ICT))||1]

+EICT ,IMR∼pdata(ICT ,IMR)
[ 1

K

K
∑

j=1

1
HjWjCj

||ϕj(ICT)− ϕj(GCT(GMR(ICT)))||1]
(5)

where ϕ represents the VGG16 [41] model used to extract perception features, and ϕj(GMR(ICT))
and ϕj(GCT(GMR(ICT))) represent the semantic features of the generated MR image and
CT image, respectively. ϕj(ICT) and ϕj(IMR) represent the semantic features of the real CT
image and MR image. Hj, Wj, Cj represents the height, width, and depth of the feature map
of the jth convolutional layer of VGG16. K is the number of convolutional network layers.

In our work, the goal of the generator is to generate MR images using CT images as
input under the constraint of the real MR image, which means the generated MR should
be similar to the real MR image in structure and detailed texture features. Inspired by
this, the discrimination between the real and the generated MR image can be viewed as
object re-identification. Cosine loss function can push all samples away from the decision
boundary towards their parametrized class mean direction. This means it can not only
classify the object, but can also converge the features based on different classifiers, which is
beneficial for internal-category classification.

Object re-identification of intra-class can be regarded as a classification problem among
different individuals in the same object category. However, the traditional object classi-
fication is mostly inter-class classification, which usually maps objects randomly to the
boundary. Inter-class classification does not require intra-class compactness and inter-class
separation, which means it cannot achieve better object re-identification of intra-class. The
von Mises–Fisher (vMF) distribution does better in exploring the intrinsic relationship be-
tween data posterior loss and prior distribution, which is suitable for object re-identification
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of intra-class as the potential distribution structure of data. In order to effectively discrim-
inate the generated MR and real MR images, we propose to use vMF distribution and
learn mapping to map input samples to the feature space R. In addition, we explore the
relationship between data posterior loss and prior distribution based on Bayesian theory.
The prior distribution of samples in the feature space R follows the vMF distribution:

p(y = k| f (x)) =
exp(κ · ŵT

k f (x))
C
∑

c=1
exp(κ · ŵT

c f (x))
(6)

where κ is shared concentration parameter, ŵT
k f (x) represents the objective evaluation of

samples, c is the number of category, and ŵT
c f (x) represents the objective evaluation of

different categories.
The vMF distribution is an isotropic probability distribution on a one-dimensional

sphere that peaks around direction ŵk and decays as the cosine similarity decreases. The
corresponding cosine loss function can be written as:

Lcos = −
N

∑
i=1

log p(yi = k| f (xi)) = −
N

∑
i=1

log
exp(κ · ŵT

k f (xi))
C
∑

c=1
exp(κ · ŵT

c f (xc))

(7)

where N is number of samples.
This paper mainly involves real MR images and generated MR images, as well as real

CT images and generated CT images within the class recognition. Therefore, the cosine
loss function includes the cosine error between the real MR image and the generated MR
image and the cosine error between the real CT image and the generated CT image:

Lcos(GMR(ICT), GCT(GMR(ICT))) = EICT, IMR∼pdata(ICT, IMR)(Lcos(IMR, GMR(ICT)))

+EICT, IMR∼pdata(ICT, IMR)(Lcos(ICT , GCT(GMR(ICT)))
(8)

Combining the above optimizations, the objective function of the MR modal transfor-
mation based on the multi-conditional constraint GAN model with CT image as the input
can be defined as:

L(GMR, GCT , DMR, DCT) = LGAN(GMR, GCT , DMR, DCT)
+λvoxel · Lvoxel(GMR(ICT), GCT(GMR(ICT)))
+λperc · Lperc(GMR(ICT), GCT(GMR(ICT)))
+λcos · Lcos(GMR(ICT), GCT(GMR(ICT)))

(9)

where λvoxel , λperc, and λcos are all hyperparameters, which are used to balance various
objective functions. We aim to solve the:

GMR = arg min
GMR ,GCT

max
DMR ,DCT

L(GMR, GCT , DMR, DCT) (10)

In summary, the MR modal transformation algorithm based on the multi-conditional
constraint GAN model with CT images as input can be described in Algorithm 1.
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Algorithm 1: MR imaging modality transformation algorithm with CT as input.

Input: CT-MR dataset with corresponding relationship, initial model weight
Output: model weight W * after training
1: for i = 1 to n//n indicates the number of training sessions

2: Randomly read data from the corresponding CT-MR dataset
{

Ii
CT , Ii

MR

}
∼ pdata(ICT , IMR)

3: if i%3==0:
4: Update the parameters DMR and DCT of the discriminator in the model through the objective
optimization function L(GMR, GCT , DMR, DCT)
5: End if
6: Update the parameters GMR of the generator and GCT of the inverse generator in the model
through the objective optimization function L(GMR, GCT , DMR, DCT)
7: End for
8: Return generator GMR

4. Results and Analysis

The brain CT-MR dataset published by SZSPH is used to evaluate our proposed
method, which includes 367 pairs of CT-MR data with corresponding relationships. We
randomly select 257 pairs as training data, and the remaining 110 pairs as test data. All
samples in the dataset are resized to 256 × 256. The experimental environment is Intel(R)
Core(TM)i7-9700 CPU @ 3.20 GHz processor, 16 GB RAM, NVIDIA TITAN Xp. The multi-
conditional constraint GAN was trained with mini-batch stochastic gradient descent (SGD)
with a mini-batch size of one. The number of iterations is set as 25,700 (100 epochs) during
the model training; all the networks are trained at a learning rate of 0.0002 in the first 12,850
iterations and linearly decay to zero in the following 12,850 iterations. For all experiments,
the following empirical values were used to train the model: λvoxel = 100, λperc = 1,
λcos = 1.

4.1. Performance Evaluation Index

To evaluate the effect of the generated MR image, we use the mean absolute error
(MAE) and root mean squared error (RMSE) of the voxels between the generated and the
real MR image:

MAE =
1
N

N−1

∑
i=0
||IMR(i)−GMR(ICT(i))|| (11)

RMSE =

√√√√ 1
N

N−1

∑
i=0

(IMR(i)−GMR(ICT(i)))2 (12)

where N is the number of image voxel values. In addition, peak signal-to-noise ratio (PSNR)
is also one of the important indicators to evaluate the imaging quality of medical images:

PSNR = 10lg(
MAX2

MSE
) (13)

MSE =
1
N

N−1

∑
i=0

(IMR(i)−GMR(ICT(i)))2 (14)

where mean square error (MSE) is the mean square error between the generated and
the real MR image. MAX = 10, which is the maximum value of the pixel in the image.
PSNR measures the ratio between the maximum possible intensity value and MSE of the
generated and real MR images. MAE, MSE, RMSE, and PSNR are all based on aligned
images. Although all samples have been processed for image alignment, it is very difficult
to obtain CT-MR data with zero alignment error. Therefore, the structural similarity (SSIM)
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and person correlation coefficient (PPC) between the generated and real MR image should
also be calculated, which are defined as follows:

SSIM(IMR, GMR(ICT)) =
(2µIMR µGMR(ICT )+V1)(2µIMRGMR(ICT )+V2)

(µ2
IMR

+µ2
GMR(ICT )

+V1)(µ
2
IMR

+µ2
GMR(ICT )

+V2)

s.t. SSIM(IMR, GMR(ICT)) ≤ 1,
SSIM(IMR, GMR(ICT)) = 1 i f and only i f IMR = GMR(ICT)

(15)

PCC = 1
N

N
∑

i=0

(IMR(i)−µIMR(i))(GMR(ICT(i))−µGMR(ICT (i)))

σIMR(i)σGMR(ICT (i))

σIMR σGMR(ICT)

(16)

where V1 and V2 are constants to prevent the divisor from being zero. µIMR , µGMR(ICT)
, σIMR ,

and σGMR(ICT)
are the average value and standard deviation of the generated and the real

MR image, respectively. The smaller the values of MAE and RMSE, the larger the values of
PSNR, SSIM, and PCC, and the higher the fidelity of the generated MR image.

4.2. Comparison of Results under Different Objective Optimization Functions

To verify the effectiveness of different items in the objective optimization function, we
use the ablation method to evaluate them. Table 3 shows the comparison of four objective
optimization function structures: (1) objective optimization using only the traditional GAN
model function LGAN for model training; (2) on the basis of LGAN , the voxel loss Lvoxel item
between the generated and the real MR image is added for model training; (3) on the basis
of (2), the loss term Lperc between the generated and the real MR image is added for model
training; (4) on the basis of (3), the cosine loss term Lcos between the generated and the real
MR image is added for model training.

Table 3. Ablation analysis of the objective function (↓ means that the smaller the value, the better,
and ↑means that the larger the value, the better). The best scores are displayed in bold.

MAE ↓ RMSE ↓ PSNR ↑ SSIM ↑ PCC ↑
LGAN 19.054 36.343 65.157 0.52 0.761

+Lvoxel 13.163 25.844 68.423 0.647 0.869
+Lperc 13.141 25.636 68.476 0.645 0.87
+Lcos 12.981 25.532 68.519 0.652 0.872

In Table 3, the values of MAE, RMSE, PSNR, SSIM, and PCC are the average measures
over the test set. It can be found that the system performance has been optimized with
different items joined. The integrated objective optimization function obtains the best
performance. Therefore, the various loss functions proposed in this paper perform well.
Perceptual error characterizes the semantic error between the generated and real MR image,
which can cause the generated MR image to reflect more detailed texture features. The
cosine loss treats the real and generated MR image discrimination as object re-identification,
which can improve the authenticity of generated MR images.

Besides the quantitative analysis of the evaluation indicators above, we can obtain
more image details by direct observation of the generated MR images. Figure 5 below
shows the visualization results of the generated MR images under different objective
functions. From the red rectangle in Figure 5, we can observe that there are differences in
complex structure and detailed texture features between different images. Some generated
MR images are incomplete in structure and have obvious structural elements missing
from real MR images. Other generated MR images have low structural similarity, and
many internal texture trends are not displayed. There are also some generated MR images
that have insufficient advanced semantic extraction, in which detailed texture features are
not obvious. In contrast, each loss item has a certain utility, and the objective function
that integrates all the loss items can significantly improve the quality of the generated
MR images.
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4.3. Comparison of Results under Different GAN Models

To prove the significance of the multi-conditional constraint GAN model proposed
in this paper, we use the same dataset to train multi-channel GAN [22], DiscoGAN [24],
Deep MR-to-CT [25], and MR-GAN [27], which are all applied to generate medical images.
The average values of MAE, RMSE, PSNR, SSIM, and PCC among different algorithms
are compared. As shown in Table 4, it can be found that the multi-conditional constrained
GAN model proposed in this paper performs the best. The imaging rate is 70.51 ms, which
is fast enough for generating the MR image. The model takes the generated MR image as
input and the CT image is generated by the inverse generator when the reversibility of
the generated image is fully considered. This can effectively improve the fidelity of the
generated MR image.

Table 4. Results analysis of different GAN models. The best scores are displayed in bold.

MAE ↓ RMSE ↓ PSNR ↑ SSIM ↑ PCC ↑ Imaging Rate

Multi-Channel
GAN 23.513 26.647 68.076 0.637 0.862 25.74 ms

Deep MR-to-CT 21.362 40.941 64.063 0.51 0.697 51.47 ms
DiscoGAN 19.245 37.143 64.932 0.511 0.741 22.81 ms
MR-GAN 13.293 26.061 68.312 0.642 0.868 54.38 ms

Ours 12.981 25.532 68.519 0.652 0.872 70.51 ms

To intuitively reflect the performance indicators, we also describe the indicators in
the form of box diagrams. As in Figure 6, the dot on the left of the box diagram represents
the distribution of each generated MR image. The green triangle in the box represents the
average value of all generated images in various evaluation indicators. The red dotted line
connection can clearly compare each model under different evaluation indicators. Figure 7
indicates that the method proposed in this paper is superior to other models in performance.
The circles next to the box plots represent a single image slice from the test dataset. The
top and bottom box limits were calculated from Q25 and Q75. The green triangles and the
horizontal lines denote the average and the median. The range of the box plot whiskers is
given by [Q25− 1.5× (Q75−Q25), Q75 + 1.5× (Q75−Q25)]. Any data point that falls
outside of this range is typically considered an outlier and is indicated by a red cross. The
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averages displayed in Table 4 indicate that our proposed method outperformed the other
methods for all measures, with the lowest MAE and RMSE and the highest PSNR, SSIM,
and PCC, thus further verifying the utility of our architecture.
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Moreover, the superiority of the algorithm proposed in this paper can also be verified
through the human visual mechanism. Figure 7 shows the test results of different randomly
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selected GAN models from the test set. It can be seen that the generated MR image based
on our method can better reflect the detailed texture information of the imaged object with
less noise. This shows the multi-conditional constraint GAN model has stronger image
construction capabilities, which can better reflect the continuity, smoothness, and semantics
of imaging features in image generation. As for the main reason: on the one hand, the
reversibility of the cGAN model is fully considered in this paper. The CT image generated
by the inverse generator reversely constrains the feature correspondence between the
generated MR image and the input CT image. On the other hand, the representation of
image semantic information by deep CNN, as well as the characteristics of the modal
attributes of the generated and real MR image, is fully considered. Based on this, we
construct an objective optimization function including the voxel error, perception error,
and cosine error between the generated and real MR image. It is more effective to drive
the model to generate MR images with clear detailed texture features and a high peak
signal-to-noise ratio.

5. Conclusions

In this work, MR imaging is viewed as a machine perception problem. A multi-
conditional constraint GAN for MR imaging from CT scan data is proposed. Considering
reversibility of GAN, both generator and inverse generator are designed for MR and CT
imaging, respectively, which can constrain each other and improve consistency between
features of CT and MR images. In addition, we innovatively treat the real and generated
MR image discrimination as object re-identification; cosine error fusing with voxel loss and
perception loss is designed to enhance the fidelity and detailed texture feature representa-
tion of the generated MR image. Quantitative and qualitative experiments conducted on
the challenging public CT-MR imaging dataset show distinct performance improvement
over other GANs utilized in medical imaging and demonstrate the effectiveness of our
method for medical image modal transformation.
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