Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup for H.F.E.W.
2.1.1. Tissue Preparation
2.1.2. H.F.E.W. Process
2.2. Impedance and Other Time-Varying Parameter Measurements
2.2.1. Impedance Measurement
2.2.2. Compressive Force Measurement
2.2.3. Temperature and Moisture Content Measurement
2.2.4. Histological Study
2.3. Sealing Quality Measurement
3. Results
3.1. Dynamic Impedance
3.2. Compressive Force and Tissue Thickness
3.3. Surface Temperature and Moisture Content
3.4. Histological Observation and Collagen
3.5. Dynamic Impedance Rate and Success Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today (accessed on 8 January 2022).
- Yang, X.; Cao, J.; Yan, Y.; Liu, F.; Li, T.; Han, L.; Ye, C.; Zheng, S.; Wang, S.; Ye, Y.; et al. Comparison of the safety of electrotome, Harmonic scalpel, and LigaSure for management of thyroid surgery. Head Neck-J. Sci. Spec. Head Neck 2017, 39, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Leung, K.K.C.; Ng, E.K.W. Tissue fusion technology versus suture and staple in porcine bowel anastomosis: An in vivo study. Braz. J. Med. Biol. Res. 2020, 53, e9305. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Cloyd, K.L.; Arya, S.; Hedegaard, M.A.B.; Steele, J.A.M.; Elson, D.S.; Stevens, M.M.; Hanna, G.B. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion. J. Biophotonics 2014, 7, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Paton, B.E.; Krivtsun, I.V.; Marinsky, G.S.; Khudetsky, I.Y.; Lankin, Y.N.; Chernets, A.V. Welding, cutting and heat treatment of live tissues. Weld. Relat. Technol. 2013, 10, 142–153. [Google Scholar]
- Kramer, E.A.; Rentschler, M.E. Energy-based tissue fusion for sutureless closure: Applications, mechanisms, and potential for functional recovery. Annu. Rev. Biomed. Eng. 2018, 20, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhuo, C.; Song, C.; Li, X.; Zhou, Y.; Shi, D. Histological characteristics of collagen denaturation and injuries in bipolar radiofrequency-induced colonic anastomoses. Pathol.-Res. Pract. 2015, 211, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Cai, Z.; Ning, X.; He, L.; Chen, J.; Huang, Z.; Zhou, H.; Huang, D.; Zhang, P.; Li, Z. Comparison of a new high-frequency electric welding system for intestinal closure with hand-sewn in vivo pig model. J. Laparoendosc. Adv. Surg. Tech. 2015, 25, 662–667. [Google Scholar] [CrossRef]
- Winter, H.; Holmer, C.; Buhr, H.; Lindner, G.; Lauster, R.; Kraft, M.; Ritz, J. Pilot study of bipolar radiofrequency-induced anastomotic thermofusion–exploration of therapy parameters ex vivo. Int. J. Colorectal Dis. 2010, 25, 129–133. [Google Scholar] [CrossRef]
- Holmer, C.; Winter, H.; Kröger, M.; Nagel, A.; Jaenicke, A.; Lauster, R.; Kraft, M.; Buhr, H.J.; Ritz, J. Bipolar radiofrequency-induced thermofusion of intestinal anastomoses—Feasibility of a new anastomosis technique in porcine and rat colon. Langenbeck’s Arch. Surg. 2011, 396, 529–533. [Google Scholar] [CrossRef]
- Arya, S.; Hadjievangelou, N.; Lei, S.; Kudo, H.; Goldin, R.D.; Darzi, A.W.; Elson, D.S.; Hanna, G.B. Radiofrequency-induced small bowel thermofusion: An ex vivo study of intestinal seal adequacy using mechanical and imaging modalities. Surg. Endosc. 2013, 27, 3485–3496. [Google Scholar] [CrossRef]
- Lacitignola, L.; Imperante, A.; Trisciuzzi, R.; Zizzo, N.; Crovace, A.M.; Staffieri, F. Swine small intestine sealing performed by different vessel sealing devices: Ex-vivo test. Vet. Sci. 2021, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, X.; Madeniyeti, N.; Qiu, J.; Zhu, C.; Yin, L.; Liu, K. Temperature distribution of vessel tissue by high frequency electric welding with combination optical measure and simulation. Biosensors 2022, 12, 209. [Google Scholar] [CrossRef] [PubMed]
- Yates, D.C. Impedance feedback monitor with query electrode for electrosurgical instrument. US5817093A, 6 October 1998. [Google Scholar]
- Paton, B.E.; Lebedev, V.K.; Lebedev, A.V.; Masalov, Y.A.; Ivanova, O.N.; Zakharash, M.P.; Furmanov, Y.A. Live Tissue Connect Inc. System and Method for Control of Tissue Welding. U.S. Patent 6,733,498, 11 May 2004. Volume 1282. [Google Scholar]
- Paton, B.E.; Lebedev, V.K.; Furmanov, Y.A.; Zakharash, M.P.; Podpryatov, S.E.; Lebedev, A.V.; Bushtedt, Y.P.; Ivanova, O.N.; Shelest, N.A.; Vasylchenko, V.A.; et al. Instrument and Method for the End-to-End Reconnection of Intestinal Tissues. U.S. Patent 0,276,363, 29 November 2007. [Google Scholar]
- Li, X.; Chen, R.; Li, W. An experimental study on bipolar tissue hemostasis and its dynamic impedance. J. Manuf. Sci. Eng. ASME 2018, 140, 61016. [Google Scholar] [CrossRef] [Green Version]
- Tu, L.; Zhou, Y.; Song, C.; Li, Y.; Chen, L.; Xue, Y. Preliminary study of a control algorithm for radio-frequency-induced intestinal tissue fusion. Int. J. Hyperther. 2019, 36, 1296–1305. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; Xiang, X.; Zhu, C.; Wang, H. The impedance analysis of small intestine fusion by pulse source. Open Life Sci. 2020, 15, 808–818. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, Ø.G. Bioimpedance and Bioelectricity Basics; Academic Press: London, UK, 2015. [Google Scholar]
- Akiyama, H.; Heller, R. Bioelectrics; Springer: Tokyo, Japan, 2017. [Google Scholar]
- Li, X.; Li, W.; Yang, C.; Chen, R.K. Dynamic impedance monitoring for large diameter vessel sealing using bipolar electrosurgery. J. Med. Devices 2020, 14, 21006. [Google Scholar] [CrossRef]
- Ley, S.; Schilling, S.; Fiser, O.; Vrba, J.; Sachs, J.; Helbig, M. Ultra-wideband temperature dependent dielectric spectroscopy of porcine tissue and blood in the microwave frequency range. Sensors 2019, 19, 1707. [Google Scholar] [CrossRef] [Green Version]
- Dodde, R.E. Bioimpedance of Soft Tissue under Compression and Applications to Electrosurgery. Ph.D. Thesis, University of Michigan for Biomedical Engineering, Ann Arbor, MI, USA, 2011. [Google Scholar]
- Yang, C.; Li, W.; Chen, R.K. Characterization of the electrosurgical tissue joining process using dynamic impedance and energy efficiency. J. Manuf. Sci. Eng. 2019, 141, 54502. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Song, C.; Wang, Z.; Cuschieri, A. Predicting burst pressure of radiofrequency-induced colorectal anastomosis by bio-impedance measurement. Physiol. Meas. 2017, 38, 489–500. [Google Scholar] [CrossRef]
- Zhao, L. The Key Technology of Radiofrequency-Induced Colorectal Anastomosis. Ph.D. Thesis, University of Shanghai for Science & Technology, Shanghai, China, 2016. [Google Scholar]
- Zhao, Y.; Bhonsle, S.; Dong, S.; Lv, Y.; Liu, H.; Safaai-Jazi, A.; Davalos, R.V.; Yao, C. Characterization of Conductivity Changes During High-Frequency Irreversible Electroporation for Treatment Planning. IEEE Trans. Biomed. Eng. 2018, 65, 1810–1819. [Google Scholar] [CrossRef]
- Umanets, N.; Pasyechnikova, N.V.; Naumenko, V.A.; Henrich, P.B.; Cuschieri, A. High-frequency electric welding: A novel method for improved immediate chorioretinal adhesion in vitreoretinal surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Zhu, C.; Xu, J.; Zhao, H.; Qiu, J.; Wang, H.; Liu, K. Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process. Sensors 2022, 22, 4101. https://doi.org/10.3390/s22114101
Yin L, Zhu C, Xu J, Zhao H, Qiu J, Wang H, Liu K. Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process. Sensors. 2022; 22(11):4101. https://doi.org/10.3390/s22114101
Chicago/Turabian StyleYin, Li, Caihui Zhu, Jianzhi Xu, Hui Zhao, Jian Qiu, Hao Wang, and Kefu Liu. 2022. "Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process" Sensors 22, no. 11: 4101. https://doi.org/10.3390/s22114101
APA StyleYin, L., Zhu, C., Xu, J., Zhao, H., Qiu, J., Wang, H., & Liu, K. (2022). Dynamic Impedance Analysis of Intestinal Anastomosis during High-Frequency Electric Field Welding Process. Sensors, 22(11), 4101. https://doi.org/10.3390/s22114101