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Abstract: The task of converting text input into video content is becoming an important topic for
synthetic media generation. Several methods have been proposed with some of them reaching close-
to-natural performances in constrained tasks. In this paper, we tackle a subissue of the text-to-video
generation problem, by converting the text into lip landmarks. However, we do this using a modular,
controllable system architecture and evaluate each of its individual components. Our system, entitled
FlexLip, is split into two separate modules: text-to-speech and speech-to-lip, both having underlying
controllable deep neural network architectures. This modularity enables the easy replacement of each
of its components, while also ensuring the fast adaptation to new speaker identities by disentangling
or projecting the input features. We show that by using as little as 20 min of data for the audio
generation component, and as little as 5 min for the speech-to-lip component, the objective measures
of the generated lip landmarks are comparable with those obtained when using a larger set of training
samples. We also introduce a series of objective evaluation measures over the complete flow of our
system by taking into consideration several aspects of the data and system configuration. These
aspects pertain to the quality and amount of training data, the use of pretrained models, and the data
contained therein, as well as the identity of the target speaker; with regard to the latter, we show that
we can perform zero-shot lip adaptation to an unseen identity by simply updating the shape of the
lips in our model.

Keywords: text-to-lip; speech synthesis; text-to-speech; speech-to-lip; zero-shot adaptation; generative
models; deep learning; artificial intelligence; objective measures

1. Introduction

Over the past few years, our society has constantly been increasing the amount of
multimedia output. From online radio and television, to YouTube video bloggers and the
popular Facebook Lives, professionals and nonexperts alike generate multimedia content
at a tremendous pace. However, the costs and effort of generating high-quality multimedia
content become increasingly significant, and many parties are already looking into deep
learning for solutions to lessen the burden of pre- and postproduction, as well as end-to-end
media generation. In the area of spoken content generation, text-to-speech (TTS) systems
have already been, to a large extent, adopted by semiprofessional content creators, with the
most-known platform for providing this service to its users being TikTok. However, when
tackling the complete text-to-video synthesis, the solutions and quality of the available
systems are not at the same level of integration into the media platforms. Even though
there are numerous applications that it could address, such as anchor news delivery, video
podcasts, gaming characters generation, and so on.

In this context, our work focuses on the task of rendering a video of a person delivering
a spoken content starting from a given text, and optionally, a selected identity that can differ
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from the available training data. We decompose this complex task into a three module
pipeline—(i) text-to-speech, (ii) speech-to-keypoints, and (iii) keypoints-to-video—and set
out to derive a controllable and objectively measurable architecture for it. However, our
work does not focus on the complete head movement and generation of facial characteristics,
but rather it limits its scope to the generation of lip landmarks starting from an input text.
As a result, we only tackle the first two modules of the complete pipeline described before
and show an overview of our system in Figure 1. One reason for why we are not addressing
the final module is the fact that up to this moment, there are no generally agreed upon
objective measures for it, and most papers publish only perceptual, subjective evaluations.

Another important aspect of our work is the fact that most of the previous works
address only the second module, i.e., speech-to-lips [1,2]. Having a controllable, easily
adaptable TTS system integrated into the flow of the system can enable the end-user to
control all aspects of the media generation system, including the spoken content and
identity. As shown in Figure 1, the proposed architecture encompasses the ability to select
various speech identities, alter the prosodic patterns, while also being able to control or
disentangle the identity of the generated lips from the spoken one. For example, we could
generate speech with the voice of former president Obam, using the lip shape of former
president Trump and the face of former president Bush.

We can summarise the main contributions of our paper as follows:

• We propose a novel text-to-lips generation architecture, entitled FlexLip;
• We design its architecture as a flexible and highly controllable one;
• We analyse the effect of using synthesised speech as opposed to natural recordings;
• We propose a zero-shot adaptation of the speech-to-lips component;
• We show that by using as little as 20 min of spoken data, we can control the target

speaker’s identity;
• We also show that the controllability of the architecture enables us to perform more

accurate objective measures of its performance.

The paper is organised as follows: Section 2 introduces the works related to our
proposed method, with the method being described in Section 3. The experimental setup
and results are presented in Sections 4 and 5, and their conclusions are drawn in Section 6.

Hello
everybody!

text t audio a lips l

text-to-
speech

speech-
to-lips

{F0, ∆}
speech params

lips shape

Figure 1. Schematic illustration of the proposed FlexLip pipeline. Our approach allows for a high
degree of controllability by explicitly passing through the audio modality and permitting to specify
speech parameters (fundamental frequency F0, and phoneme durations ∆) and lips shape (as the
mean shape upon which the learnt displacements are applied).

2. Related Work

The task of generating video (i.e., a talking-head video) starting from speech or text
has recently gained interest in the research community next to other tasks converting one
modality to another, such as image-to-text or video-to-text, also called image or video
captioning. For addressing the transformation of text into video output, various pipelines
and different types of latent spaces were proposed. All studies that approach text-to-video
conversion use an initial text-to-speech system to generate speech or speech features [3,4].
When going from speech to video, some studies argue that having an intermediate repre-
sentation of the face or mouth can heighten the performance of the system [3–5], while in
other cases, the authors approach the issue in an end-to-end manner, going from speech
directly to video [1,2]. There are also studies that focus solely on the speech-to-keypoints
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task [6,7], as this is regarded as being more difficult than the subsequent keypoints-to-
video task, as there is no direct, one-to-one mapping from the text input to the individual
video frames. One of the first attempts to create a complete text-to-video pipeline was
introduced in [8]. A simple idea was explored, whereby mouth images extracted from
a video sequence were reordered to match a new, unseen phoneme sequence derived
from the input text. In following works, text-to-video synthesis was approached as an
extension of text-to-speech synthesis. Concatenative speech synthesis was extended to map
characters to visemes, defined as static mouth shapes [9] or as temporal movements of
the visual speech articulators [10]. Appropriate visemes were chosen from a large dataset
for a particular speaker and morphed from one to the other in order to generate smooth
transitions between successive visemes. In a more recent work, Fried et al. [11] approached
text-to-video synthesis from a slightly different perspective by proposing a method to edit
an existing video in order to reflect a new text input. This method still relies on a viseme
search, concatenation, and blending. To generate mouth movements matching the edited
text, visemes present in other parts of the video were used.

Inspired by the application of face keypoints in video prediction, where the keypoints
guide the generation of future frames [12], most recent methods in text-to-video synthesis
use face or mouth keypoints as intermediate representations [3,4]. Zhang et al. [4] addressed
the task in two steps: (i) transforming the text into a sequence of keypoints (which the
authors denote as poses), using a dictionary of (phoneme, keypoints) pairs; (ii) using a GAN-
based architecture to generate video from interpolated phoneme poses. Simultaneously, the
text was transformed into speech by a text-to-speech synthesis system. Kumar et al. [3] were
the first to propose a sequence of fully trainable neural modules to address text-to-video
conversion in three main steps. First, a text-to-speech system was used for audio generation
starting from characters, not phonemes. A second network was then employed to generate
mouth region keypoints synchronised with the synthetic speech. Finally, a video generation
network produced video frames conditioned on the mouth region keypoints.

A couple of recent studies focused on parts of the complete text-to-video pipeline
performing video synthesis directly from speech features [1,2,5] or approached just the
speech-to-keypoints task [6,7]. In the video synthesis systems presented in [1,5], the
mapping between audio features and mouth shapes are learnt by recurrent or convolutional
neural networks. The audio input is paired with either mouth region keypoints [5] or with
images of the target face [1] and the lip-synced video is predicted by the network. The
approach for audio-to-video generation described in [2] is based on a neural network
that includes a latent 3D representation of the face. As the keypoint-based intermediate
representation seems to be a common choice in previous studies and also paves the way for
creating speaker-independent systems, Eskimez et al. [6] proposed an LSTM trained with
27 subjects to solve the task that is able to generalise to new subjects. Greenwood et al. [7]
generated full-face keypoints, as opposed to only mouth region keypoints, for two subjects
using a BiLSTM.

For the evaluation of video synthesis methods, both objective and subjective mea-
sures are employed. In the objective evaluation, various difference metrics are computed
between the real (ground-truth) and generated videos. Chen et al. [13] used the mean
squared error, the Frechet video distance, based on the distance between features of the
real and generated videos reported in [12]. Human evaluations are frequently used as
subjective measures to capture the visual quality of the generated videos [12,14]. In a very
recent paper, Aldeneh et al. [15] proposed a perceptual evaluation model that can be used
to automatically and accurately estimate the subjective perceptual score for a given lip
motion sequence.

With respect to text-to-speech synthesis (TTS), there are numerous neural architectures
that achieve close to natural synthetic speech quality. Further, if at the beginning of the
deep learning era for TTS the research was oriented towards full end-to-end systems going
from input characters to audio waveforms [16], in recent years, the focus shifted towards
flexible and controllable architectures [17–19]. This type of architecture enables several
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factors of the synthetic speech to be easily tuned during inference. This is the case for
the FastPitch architecture [18], in which the duration, energy, and pitch of the output
speech can be specified or copied from a different audio input. In the context of evaluating
text-to-lip models, being able to control the duration of the synthesised speech means that
the original phoneme durations of a natural speech sample can be replicated. This can
provide a better alignment between the keypoints predicted from natural and synthetic
input speech, and no substantial additional error is introduced by the alignment, making
the objective evaluation more accurate.

In this context, our work resembles relatively well the work of Kumar et al. [3], but
bears a few important distinctions. First and most importantly, our aim was to assess in a
thorough and objective manner the quality of each component of a text-to-video pipeline.
As such, we did not address the keypoints-to-video task, which is inherently a subjective
one. Different from Kumar et al. [3], who do not evaluate their system subjectively, nor
objectively, we carefully designed the text-to-keypoints pipeline to allow for objective
evaluation and performed the evaluation of each component independently and at the
system-level as well.

In terms of evaluation of generated lip movements, our work is, to the best of our
knowledge, the first one to evaluate objectively the output of the text-to-keypoints task.
Many works evaluate the quality of the generated sequence when the system is fed natural
speech [6,7,15], but none of these start with text as input. One of the problems is that most of
the neural-based TTS systems do not enable the exact control of the duration of the output;
therefore, there is no one-to-one correspondence between the ground-truth frames and the
synthesised ones. With respect to this, we believe that managing to objectively assess the
quality for the text-to-keypoints seen as a whole is one of the important contributions of
our work.

3. Text-to-Lip System Description

Our text-to-lip system is composed of two independent modules: a text-to-speech
synthesis system and a speech-to-lip one. This independence ensures a more controllable
setup and each module can be easily replaced. The following sections describe the two
modules and their training procedures, while also focusing on their controllability.

3.1. The Text-to-Speech Component

When generating lip movements from speech, the quality of the input speech is
essential. If the input contains natural speech recordings, they should also be high-quality.
Therefore, for our text-to-speech synthesis component (TTS), we selected one of the latest
deep-neural-based architectures, able to generate speech that is very close to the natural
one. The architecture is FastPitch [18], and aside from its high performance, it uses a
fast-inference parallel architecture, and enables the control of the pitch and duration of
the input phonemes. The latter feature facilitates the tweaking of the output such that the
speech-to-lip module is better fitted to the target speaker. FastPitch is based on bidirectional
Transformers, which make up the encoder and decoder sections of the network. Separate
paths are allocated for the pitch and duration prediction, as well as (if this is the case)
for a speaker embedding layer. The encoder predicts one Mel-spectrogram frame per
phoneme, which is then augmented with the pitch information, and upsampled according
to the duration predictor. The prediction is then passed through the decoder to obtain the
smoothed, complete Mel-spectrogram.

The Mel-spectrogram is then transformed into a waveform with the help of the Wave-
Glow neural vocoder [20]. WaveGlow uses a normalising flow-based architecture inspired
from Glow [21] and WaveNet [16], but eliminates the autoregressive nature of them. The
architecture uses a single network trained to maximise the likelihood of the data and, based
on its flow nature, enables the computation of the true distribution of the training data.

As high-quality TTS systems commonly require large amounts of training data, we also
adopt a fine-tuning procedure for the FastPitch model. Two pretrained models were used:
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a single speaker one, and a multispeaker one for which the network was not conditioned on
the speaker identity. These models were then adapted to the target speaker using various
amounts of speech data, as described in Section 5.

3.2. The Speech-to-Lips Component

This subsection describes the speech-to-lips component, which takes as input an audio
of a person speaking and outputs the keypoints (the moving lips) that correspond to the
spoken words. Since the task is a sequence-to-sequence one (we want to map a sequence
of audio frames to a sequence of lip keypoints), we opt to implement the speech-to-lips
module as a Transformer network, which has shown remarkable performance on many
related tasks. The Transformer has two main components: an encoder module that uses
self-attention layers to pool the input audio, and a decoder module that uses attention
layers to aggregate information from both the encoded audio and previously generated
lips. The decoder predicts the lips keypoints at each time step in an autoregressive manner,
and is exposed to the entire input audio sequence.

Transferring representations. Given that the network processes audio streams, we
decided to reuse the encoder architecture and its pretrained weights from a state-of-the-art
speech recognition system. As such, we evaluate two variants of the network: one in
which the encoder is frozen to the pretrained weights and we train only the decoder part; a
second in which we train both components, the encoder and decoder. Note that training
the decoder is mandatory because the speech recognition decoder is designed to output a
sequence of characters, while in our task, the output is a sequence of keypoints.

Lips keypoints preprocessing. Video recordings of people talking involve variations
in terms of their position, size, and head pose. Since this information affects the lips’ coor-
dinates but is irrelevant to the task at hand, we remove these variations from our training
data by transforming the absolute coordinates of the lips into a normalised space. More
precisely, we apply the following three transformations to the extracted face landmarks:
translate such that they are centred on the lips; rotate such that the line connecting the eyes
is horizontal; scale such that the distance between the eyes is constant (we set an arbitrary
value of five).

A second preprocessing step consists in projecting the normalised lip coordinates
(40 coordinates of the lips: 20 keypoints with the x and y coordinates each) to a lower-
dimensional manifold using principal component analysis (PCA); we denote the principal
components by v1, . . . , vD. We use an eight-dimensional space for projection (D = 8),
which captures around 97% of the variation of the training data. Figure 2 illustrates the
axes of variation captured by the selected principal components. The reconstruction for
component i and magnitude s is given by µ + ∑ svi, where µ is the mean lip shape and the
scaling factor s ranges in {−1.5, 1.1, . . . , 1.5}. We observe that the principal components
capture the following variations in the data: open versus closed mouth is modelled by the
first and fifth components; 3D rotations (yaw, pitch, roll) are captured by the third (yaw),
fourth (pitch), and sixth (roll) components; lip thickness varies across the second, fifth,
seventh, and eight components.

To sum up, our method maps a stream of audio to a list of 8D points, which correspond
to the PCA coefficients α. Note that both preprocessing steps are invertible; so, at test time,
if we want to overlay the predicted lips on a given subject, we first reconstruct the lips l
based on the predicted PCA coefficients

l = µ + ∑ αivi, (1)

and then we reproject the normalised coordinates in the absolute coordinate space by
inverting the scaling, rotation, and translation transforms.

Zero-shot speaker adaptation. When predicting the lip movements of an unseen
speaker, we have observed that the lip dynamics are accurate, but unsurprisingly, their
shape resembles the one of the trained subject. We propose a method to adapt the lip shape
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to the one of the new person by replacing the lips mean in the PCA reconstruction with the
lips of the target speaker:

l′ = µ′ + ∑ αivi, (2)

where the coefficients α are obtained in the same way as before, but the mean µ′ is updated,
and is computed from the target, unseen speaker. This operation is inexpensive (as the
mean can be estimated on a few frames) and does not require retraining. Figure 3 shows the
lip shapes of three speakers and how they vary along the first principal component. Even if
the principal components were estimated on data from the first speaker, these qualitative
results suggest that the variations obtained for new speakers are plausible.

Figure 2. Axes of lips variation. On each row, we show the variation of the lips captured by one of
the top eight principal components. The reconstructions are obtained by adding the scaled principal
component to the mean lip shape. The scaling factor ranges from −1.5 to 1.5, as indicated on the top
of the columns.

Figure 3. Lip shapes. The middle column, denoted by µ, represents the shapes of the lips for three
speakers (one along each row). The columns show the variation of the shapes along the first principal
component v; more precisely, the lips in row r and column c are computed as µr + ∑ scv, with µr

being the (mean) lip shape and sc a scaling factor that ranges in {−1.5, 1.1, . . . , 1.5}. The PCA was
fitted on data from the first speaker.
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4. Experimental Setup

This section presents the datasets used for training and evaluating the proposed
methods (Section 4.1) and implementation details regarding the two components of our
system (Section 4.2).

4.1. Datasets

In order to evaluate a text-to-lip system, we need a three-modality dataset: video,
audio, and text. However, there are very few large, freely available datasets that ac-
complish this requirement. In this context, we decided to build our own dataset com-
prising high-quality data available on YouTube. For the audio part, we also relied on
well-established speech datasets. All the datasets used in our experiments are described in
the following subsections.

4.1.1. Obama Dataset

The former president of the United States, Barack Obama, has many videos on YouTube
in which he addresses the nation in a systematic fashion: front-facing the camera and
speaking clearly, with most of the videos being recorded in his office. From this series of
weekly addresses, we downloaded a set of 301 videos, which were originally introduced
by Suwajanakorn et al. [5] and subsequently used by Kumar et al. [3]. The YouTube
videos come along with both manual and automatically generated closed captions. While
the automatic captions are better aligned to the speech than the manual captions, the
latter are more accurate and also include punctuation. The punctuation is essential for
splitting the audio into sentence-length chunks, required by the TTS system. We split
the audio into sentences based on the end-of-sentence punctuation marks encountered in
the manual captions. This procedure leads to a set of around 10 k audio–video chunks
and their approximate transcripts. The duration of the chunks is between 1 and 20 s long
with transcripts between 15 to 500 characters. Very short and very long utterances were
discarded, as the TTS architecture has problems attending to short sequences, as well audio
sequences longer than 30 s. Some text examples are listed below:

Under my Administration, we’re producing more oil than at any other time in the last
eight years.

It had the support of 52 Democrats and 22 Republicans.

It’s our job as citizens to make sure we keep pushing this country we love toward our
most cherished ideals—that all of us are created equal, and all of us deserve an equal shot.

The total duration of the data is around 17 h, with most of the videos having a
resolution of 720p and a frame rate of 30 frames per second. The audio is sampled at
44.1 kHz and has a bit depth of 16. To speed up the preprocessing (in particular the face
landmark extraction), we downscaled the videos to 360p; for the speech-to-lip and TTS
systems training, we downsampled the audio data to 22 kHz and maintain the 16 bps.
Although the videos are recorded in quiet conditions, some reverberation and background
noise are present; therefore, we preprocessed the audio through the Postfish tool using
the default parameters (https://github.com/ePirat/Postfish (accessed on 15 May 2022)).
Volume normalisation and silence trimming were performed using the Librosa tool (https:
//librosa.org/doc/latest/index.html (accessed on 15 May 2022)).

The dataset was then split into train–validation–test subsets at video-level, meaning
there are no samples from a video that are independently assigned to the different splits. The
test set was composed of 500 utterance-length samples, randomly selected from 30 videos,
and was manually checked for alignment and transcription errors.

Text processing and data selection. Although the manual transcripts seemed to
be of very high-quality, combined with the splitting algorithm, we noticed that the cor-
respondence between the audio and the text was not completely accurate. Therefore,
we performed a series of postprocessing steps. The first step included the normalisa-
tion of all nonalphabetic symbols present in the captions, such as numbers, currency

https://github.com/ePirat/Postfish
https://librosa.org/doc/latest/index.html
https://librosa.org/doc/latest/index.html
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symbols, and so on. A first pass was performed using the Num2Words Python pack-
age (https://pypi.org/project/num2words/ (accessed on 15 May 2022)); then, the entire
dataset was manually checked for nonalphabetic symbols. The second step involved the
use of an automatic speech recognition (ASR) system [22] to transcribe the audio chunks.
A word error rate (WER) measure was computed between the ASR results and the closed
captions. High WER utterances were discarded. Even with a highly accurate ASR system,
errors can still propagate to the transcripts. As a result, we ran an additional quality check
based on the TTS system’s loss. We used an intermediate checkpoint trained on the entire
Obama data, set the batch size to 1, froze the layers, and ran the low WER utterances
through the architecture. Audio chunks exhibiting a low loss measure were considered as
having the correct transcripts, as the TTS system’s loss function includes the alignment of
audio-to-text. From this step, a set of 3281 samples were retained. In order to extend the
dataset as much as possible, we also manually checked 1480 samples and added them to
the training set. The total duration of the final audio dataset is 8 h.

Due to the rather complex grapheme-to-phoneme rules present in English, which
can make it hard for a TTS system to learn the appropriate alignment and pronunciation,
we performed the phonetic transcription of the text prompts associated with the audio
data. The front-end tool of the Festival TTS system [23] was used to generate the phonetic
representations of the transcripts.

4.1.2. Trump Dataset

To test the capabilities of our speech-to-lip system to adapt to unseen speakers, we
collected a small dataset of a different speaker: the former president, Donald Trump. We
manually inspected multiple videos of him found on YouTube and finally selected two
that satisfy the following criteria: are reasonably long; he is the single speaker appearing;
his head is mostly forward-facing, without extreme pose variations. The first video (https:
//www.youtube.com/watch?v=KJTlo4bQL5c (accessed on 15 May 2022)) is around one
hour long and represents his speech at the Conservative Political Action Conference; this
video was used for training. The second video (https://www.youtube.com/watch?v=
xrPZBTNjX_o (accessed on 15 May 2022)) is almost ten minutes long and represents his
presidential address on the COVID-19 pandemic; this video was used for testing. As for
the Obama dataset, we downscaled the video to a resolution of 360p. As we did not use
this speaker for the text-to-speech component, we did not extract the textual component of
the data.

4.1.3. Datasets for TTS and ASR Models’ Pretraining

Both text-to-speech and speech-to-lip components use pretrained models and fine-tuning
towards the target speaker. The following datasets were used for the model pretraining.

LibriSpeech is a corpus of approximately 1000 h of 16-kHz, multispeaker, read English
speech derived from read audiobooks of the LibriVox project, and has been carefully
segmented and aligned [24]. LibriSpeech was used in our experiments to pretrain the
ASR-based feature extractor in the speech-to-lip module.

LibriTTS [25] is derived from the LibriSpeech corpus and includes multispeaker En-
glish data of approximately 585 h sampled at a 24-kHz sampling rate. The LibriTTS corpus
is designed for TTS research and has normalised text transcripts, as well as an automatic se-
lection of samples that do not contain severe background noise and reverberation. LJSpeech
dataset [26] is a high-quality single female speaker dataset containing around 24 h of read
speech audio clips. The data are transcribed and aligned at utterance level. LibriTTS and
LJSpeech were used to pretrain the TTS models.

4.2. Implementation Details

Text-to-speech. For the TTS models’ training process, we focused on the Obama
dataset. In our initial experiments, we found that training a system only on the Obama
data yields subpar results in terms of naturalness of the synthetic output (see Table 1,

https://pypi.org/project/num2words/
https://www.youtube.com/watch?v=KJTlo4bQL5c
https://www.youtube.com/watch?v=KJTlo4bQL5c
https://www.youtube.com/watch?v=xrPZBTNjX_o
https://www.youtube.com/watch?v=xrPZBTNjX_o
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system id O-8). Therefore, we decided to pretrain two large models on the LJSpeech and
LibriTTS datasets, and to fine-tune them towards our target data. The models were trained
over 1000 epochs and use the phonetic transcription provided by the Festival tool. In the
LibriTTS model, although it contains multiple speakers, we did not condition the output on
the speaker id, but rather aimed at obtaining an eigen voicelike model. For this model, as the
data are recorded in semiprofessional environments, we also performed a dereverberation
preprocessing step. We can summarise the two pretrained models as follows:

• LJ-24h—trained on the 24 h of LJSpeech dataset recordings, which translate into
13,077 utterances;

• LT-47h—trained on a subset of 31,526 utterances (around 47 h belonging to 558 speakers)
from the LibriTTS dataset.

Starting from the phonetic transcription, dereverberation process, and pretrained
models, we carried on the training procedure for several TTS systems using the Obama
dataset. The systems pertain to the different pretrained models, the use of dereverberation
for the Obama samples, and the amount of data selected to perform fine-tuning. The list of
Obama TTS systems is presented in Table 1, along with their objective evaluation in terms
of word error rate (WER) and cosine similarity to the natural recordings. The fine-tuning
was run over the data for an additional 500 epochs.

Table 1. TTS models trained for the target speaker and the objective evaluation over the test set in
terms of WER and cosine similarity to the natural recordings. The dereverberation column refers to
the target speaker’s data. The cosine similarity for the Natural and Natural-dvb rows is computed
as an intradata measure by comparing random sample pairs from within the speech set. The arrows
in the table header indicate the direction of best performance for the respective measure. Boldface
numbers highlight the best results for the respective column.

Training Data Cosine

ID Duration (h) No. of Utts Dereverb Init. WER ↓ Similarity ↑
Natural 8 4761 no – 9.32 0.684
Natural-dvb 8 4761 yes – 9.22 0.683

O-8 8 4761 no – 14.72 0.673

LJ-8 8 4761 no LJ-24h 8.48 0.697
LT-8 8 4761 no LT-47h 7.31 0.709
LJ-8-dvb 8 4761 yes LJ-24h 11.45 0.723
LT-8-dvb 8 4761 yes LT-47h 11.42 0.683

LJ-1 1 545 no LJ-24h 10.50 0.690
LT-1 1 545 no LT-47h 8.76 0.690
LJ-1-dvb 1 545 yes LJ-24h 9.48 0.722
LT-1-dvb 1 545 yes LT-47h 8.64 0.713

LJ-0.3 0.3 175 no LJ-24h 12.98 0.679
LT-0.3 0.3 175 no LT-47h 9.68 0.677
LJ-0.3-dvb 0.3 175 yes LJ-24h 11.43 0.704
LT-0.3-dvb 0.3 175 yes LT-47h 9.08 0.681

Speech-to-lip. The input to the speech-to-lip network are Mel filterbank features
extracted from the audio files. The output consists of lips landmarks extracted automatically
from the corresponding video. Concretely, we used the dlib library [27] to extract facial
landmarks, which produced 68 landmarks for each frame; we keep those twenty landmarks
corresponding to the lips (indices 48–68). Occasionally, dlib detects zero or more than one
face (most of the time erroneously since there is a single face appearing in the video shots);
we deal with these exceptions as follows: if there is no face detected, we interpolate in time
based on the neighbouring faces; if there is more than one face detected, we keep the one
with the largest confidence. Next, we project the absolute coordinates into a normalised
space by translating, rotating, and scaling (translate to centre the lips, rotate to have the
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eye-line horizontal, scale to ensure that the distance between eyes is five pixels). Finally, the
lips are projected to a low-dimensional space using a principal component analysis (PCA)
model fitted on a subset of landmarks from the train split of the Obama dataset. We use the
top eight principal components, which capture about 97% of the total data variation.

When training the speech-to-lip network, in order to have balanced batches and
improve the speed, each video shot is split into eleven-second chunks with an overlap of
one second. At test time, if we are given an audio file longer than eleven seconds, we carry
out a similar procedure as for training: we split the audio file into eleven-second chunks
with a second overlap; predict the lips for each of the chunks separately; then, average out
the overlapping regions (the averaging operation is carried in the low-dimensional space
of the PCA).

The training is set to 100 epochs and the final model averages the weights of the top
ten best models on the validation set [28]. We use a warm-up learning scheduler, which
increases the learning rate linearly for 5000 steps up to 0.02 and then decreases it as a
function of 1/

√
s, where s is the step value. The batch size is set to 6 samples.

5. Experimental Results

This section presents quantitative results for the two components described in the pa-
per (the text-to-speech module, in Section 5.1, and the speech-to-lips module, in Section 5.2)
as well as their integration (in Section 5.3). We also provide qualitative samples corre-
sponding to these results at the following link: https://zevo-tech.com/humans/flexlip/
(accessed on 15 May 2022).

5.1. Objective Evaluation of the TTS Models

The quality of a TTS system in general pertains to its naturalness and intelligibility, as
well as speaker similarity. To evaluate the TTS systems, we analysed the objective measures
of word error rate (WER) and a speaker–encoder-based cosine similarity over the entire
Obama test set. These two measures have recently been found to have a high correlation
to the perceptual measures obtained in listening tests [29,30]. The WERs are extracted
based on the automatic transcripts provided by the SpeechBrain ASR system [22], while
the cosine similarity uses SpeechBrain’s speaker embedding network. Both the ASR and
the speaker embedding networks are based on an ECAPA-TDNN architecture [31]. For the
speaker similarity measure, we averaged the cosine similarity measure values between the
synthesised samples and their natural counterparts. To estimate the cosine similarity over
the natural samples, we employed an intradata evaluation and compared random pairs of
samples. This means that the linguistic content is different, and it can affect the estimation
of the speaker similarity, as these types of speaker embedding networks do not truly factor
out the spoken content and background conditions. The results are shown in Table 1. We
explore several different dimensions of the TTS system’s training procedure: (i) using only
the target speaker’s data (id: O-8) vs. using a pretrained model (ids: LT-* and LJ-*);
(ii) using dereverberation over the target data; (iii) number of training samples used from
the target speaker. We should point out the fact that the 1- and 0.3-hour subsets are selected
from the manually checked training set, and that the dereverberation refers to the target
speaker’s data, not the pretraining data. By inspecting the results, the first interesting
thing to notice is that the WER over the natural samples (id: Natural) is worse than the
best-performing system (id: LJ-8). However, during the manual check of the test set, we
noticed that some of the samples contained high background noise and reverberation. This
can definitely affect the performance of the ASR system. Although, even after applying
the dereverberation method over the natural samples (id: Natural-dvb), the results were
similar. We could explain this by the fact that the background noise is one of the major
causes of degradation, while for the TTS system, the different background conditions are,
in principle, averaged out within the model.

Dereverberation. Being also within the area of background conditions, the dereverber-
ation algorithm was employed as a measure to improve the quality of the output synthetic
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speech; the cosine similarity measures support this preprocessing step. All systems trained
with the dereverberated data exhibit higher cosine similarity measures with the natural
samples. On the other side, in terms of WER, it seems that only when using the manually
checked speech data does the dereverberation improves the overall results. When using all
the data available (ids: LJ-8 and LT-8), the results over the dereverberated data are not as
good as for the original dataset. The interpretation of these results can be based on the fact
that, although the full target speaker dataset may still contain some transcription errors and
various background noises, the high amount of available data is able to leverage the errors.
It is also true that, although the dereverberation algorithm ensures a better perceptual
quality of the audio samples, it may introduce signal-level artefacts that will interfere with
the model training step. When using a smaller amount of the target speaker’s data (i.e.,
20 min or 1 h), any improvement of the training data is directly transposed into the output
of the synthesis system, and the dereverberated versions of these systems perform better
than their non-dereverberated counterparts.

Pretrained models. With respect to the use of pretrained models, when using only the
target speaker’s data (id: O-8), the WER and cosine similarity results are less-performing
than any of the fine-tuned models. It also appears that, even though the complete 8-h
dataset from the target speaker may still contain alignment errors between the audio and
the transcript, these are not reflected in the overall results of the LJ-8 and LT-8 systems.
This concludes the fact that having large amounts of data can average out some of the
errors in the transcript. However, using only an eighth of the speech data (i.e., 1 h) can
nearly match the top-line results of our TTS systems (see system id LT-1). Another result of
our analysis is the fact that having multiple speakers in the pretrained model can provide a
better starting point for our target speaker adaptation—comparing LJ-* with LT-* systems
in terms of WER—and improve its intelligibility. However, it does not influence the speaker
similarity, where the results are rather similar.

Amount of training data. As a general conclusion, using as little as 20 min of tran-
scribed data can achieve similar results as the top-line systems. This means that in scenarios
where only limited data are available, given a pretrained multispeaker model, good-quality
TTS systems for the target speaker can still be obtained.

5.2. Evaluating the Speech-to-Lips System

This section presents an empirical evaluation of the speech-to-lips networks and
their variants. We measure the performance of the systems by mean squared error (MSE)
between the ground-truth lips and the predicted lips averaged across the number of
keypoints, frames, and video segments. Unless specified otherwise, the MSE is computed
in the normalised and low-dimensional space (eight-dimensional).

Transferring representations. Instead of training the speech-to-lip network from
scratch (from random initial weights), we incorporate learned audio representations into
the speech-to-lip module by transfer learning. We initialise the audio encoder from a
state-of-the-art ASR system and evaluate two variants: either keep the encoder frozen
or allow to update its weights together with the decoder’s. The results are presented in
Table 2. We observe that the best results are obtained when the audio encoder is initialised
from the ASR and is fine-tuned with the rest of the system. This approach has conceptual
advantages over the other two variants: compared with a fully random initialisation, it has
the benefit of reusing learnt information; compared with the frozen pretrained encoder, it
has the advantage of being more flexible.

Speaker adaptation and zero-shot adaptation. In the next set of experiments, we
investigate the best ways of reusing a pretrained speech-to-lip model for an unseen speaker.
We explore three adaptation strategies: (i) Applying the pretrained model “as is” on audio
data from the new speaker; (ii) Fine-tuning the pretrained model on a small amount of data
from the new speaker (we attempt with datasets of 5, 10, 20, and 40 min); (iii) performing
zero-shot adaptation by updating the PCA mean with the lip shape of the unseen speaker
(as described in Section 3.2).
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Table 2. Transferring representations. Evaluation of the speech-to-lip system in terms of the mean
squared error (MSE) on the Obama test set. We consider three combinations of encoding the audio
input in terms of initialisation (either random or from a pretrained automatic speech recognition
system) and whether we train this component or keep it frozen. The arrows in the table header
indicate the direction of best performance. Boldface numbers highlight the best results for the
respective column.

Encoder

Init. Train MSE ↓
random yes 0.130

from ASR frozen 0.132
from ASR yes 0.064

The impact of data. To understand how the amount of training data affects the speech-
to-lip model, we performed a systematic study in which we trained the model on varying
quantities of data: from the full training dataset (of 16 h) to smaller fractions (eight hours,
four hours, and so on until only 15 min). The subsampling of the training data was carried
at the video level, and not at the chunk level. We believe that this setup is more realistic,
as it emulates the scenario in which we have access only to a few videos. Note, however,
that this subsampling strategy might yield less-diverse training samples than subsampling
chunks from the entire training dataset. For these experiments, we adjusted the warm-up
cycle of the learning rate for the smaller datasets. More precisely, we linearly scaled the
number of warm-up steps with the fraction of the data used.

The quantitative results are presented in Figure 4. We notice two regimes: (i) using
at least four hours of video seems to yield reasonable performance, close to that obtained
using the entire dataset of sixteen hours; (ii) using less than one hour of data, the results
are degraded.

Figure 4. The impact of training data. We report the mean squared error (MSE) on the Obama test set
for multiple speech-to-lip networks trained on varying fractions of data—1/64, 1/32, 1/16, and so
on—up to the entire dataset, which consists of around 16 h of data. All models have their encoder
initialised from a pretrained ASR and fully trained (not frozen).

We start from the best speech-to-lip model trained on the full Obama data, with
the encoder initialised from an ASR and fully fine-tuned (the model corresponding to
the last row in Table 2). The evaluation setup follows the previous one, but differs in a
couple of aspects:

• Data: for evaluation and fine-tuning, we used the Trump dataset, which was trawled
from the internet, as described in Section 4.1.2. For simplicity, we evaluate on chunks
of data (eleven-second chunks with overlap of one second), preprocessed in the same
way as for training; based on the experiments on the Obama dataset, we have found
very similar results for the per-chunk and per-sentence evaluations.
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• Evaluation metrics: in addition to the mean squared error (MSE) computed in the
normalised PCA space (8-dimensional; 8D), we also report the MSE computed in the
original, 40-dimensional (40D) space. This second evaluation is especially relevant for
the zero-shot adaptation method, which only affects the reconstructed lips.

The results are presented in Table 3. We observe that the first adaptation approach,
which directly uses the Obama-trained model, yields a performance of 0.345 MSE 8D or
0.071 MSE 40D. Unsurprisingly, the results are much worse than what we observed when
applying the model to the in-domain Obama dataset, 0.064 MSE 8D (as shown in Table 2),
likely due to the mismatch of the datasets. The performance can be improved by the second
adaptation method, fine-tuning on the speaker-specific data, which leads to better results
with more data, reaching the best value of 0.096 MSE 8D and 0.021 MSE 40D (shown in bold
in Table 3). These results are close to those obtained on the Obama dataset with around
two–four hours of data (see Figure 4), showing that starting from a pretrained model can
alleviate the need of large quantities of training data. Finally, we see that the proposed
zero-shot adaptation method yields a significant improvement over the baseline: the error
halves from 0.071 to 0.034 MSE 40D (the figure in italics from Table 3), which is close to
the best result we achieve, of 0.021 MSE 40D. Note that this performance improvement is
obtained without performing any training on the new speaker: we just update the PCA
mean at test time.

As an additional experiment, we attempt to combine the second and third approaches
for adaptation: we update the mean of the PCA to Trump’s lips shape also for the fine-tuned
models. While the results are better than the zero-shot variant, they do not improve over
the fine-tune-only variant that uses Obama’s lips shape. We believe that this happens
because the fine-tuning process helps in adjusting for the new speaker’s lip shape, which
then—when changed at test time—negatively affects the system.

Table 3. Speaker adaptation and zero-shot adaptation. We report two variants of the mean squared
error (MSE) on the Trump test set: one computed in the 8-dimensional PCA space (MSE 8D), the other
computed in the reconstructed 40-dimensional original space (MSE 40D). The table presents results
for three adaptation methods, as follows: 1. The first two entries from the first row correspond to the
system pretrained on the Obama dataset. 2. The entries in rows 2–5 correspond to the pretrained
model fine-tuned on various amounts of Trump data. 3. The third column corresponds to updating
the PCA mean at test time to Trump’s shape; the first entry in the third column (shown in italics)
represents the proposed zero-shot speaker adaptation. The arrows in the table header represent the
direction of the best performance for the respective measure. Boldface numbers highlight the best
results for the respective column.

MSE ↓ 8D MSE ↓ 40D

Training PCA Mean

Data Obama Trump

1 obama 0.345 0.071 0.034
2 trump 5 m 0.109 0.024 0.024
3 trump 10 m 0.101 0.022 0.032
4 trump 20 m 0.099 0.022 0.031
5 trump 40 m 0.096 0.021 0.030

5.3. Evaluating the Complete Text-to-Keypoints System

In this section, we evaluate our text-to-lip method in an end-to-end manner—that is,
given a text input, we want to asses the quality of the generated lips. A major challenge of
this joint evaluation is that the generated lips are not guaranteed to be synchronised with
the ground-truth lips, since the synthesised audio is not necessarily synchronised with the
natural audio. To address this issue, we propose two approaches, both aimed at aligning the
intermediary audio representation. The first approach uses dynamic time warping (DTW)
to align the Mel-frequency cepstral coefficient (MFCC) representation of the two audio
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sources. We use forty-dimensional MFCCs, and to facilitate the transfer of the alignment
at the lip level, we extract the MFCCs using a hop length that yields the same number of
coefficient vectors as the number of video frames. In the second approach, we make crucial
use of our model’s ability to control the phoneme-level durations within the TTS system.
More precisely, we set the durations to those obtained by running a forced-aligner over the
phonetically transcribed evaluation text and its corresponding natural audio.

For the current evaluation, we consider the best TTS models as determined from the
objective evaluation, i.e., LJ-8 and LT-8 (see Table 1) in terms of WER. We consider that the
intelligibility of the speech is more likely to affect the correct lip movement, as opposed
to having a speech input, which has a smaller speaker similarity measure. To estimate an
upper bound of the performance, we also measure the performance obtained by starting
with natural audio. As in the previous experiments, we report the mean squared error
(MSE) computed in the 8D PCA space between the generated lips and the automatically
extracted landmarks from the original video sequence.

The results are shown in Table 4. We can observe that using a DTW-based alignment,
the estimated MSE measure is worse than the one obtained when using the original phone
durations. This means that being able to control this particular aspect of the generated
audio enables us to perform a more accurate evaluation of the speech-to-lip component.
With respect to the natural vs. synthesised speech, the differences are not substantial,
0.094 vs. 0.064 in favour of natural speech. These differences partially pertain to the fact
that the forced aligner is not perfect, and slight alignment errors are still present between
the natural and synthesised audios. However, it is impossible to evaluate how much of
the total error is determined by the misalignments versus the lip landmark generation
network. Perceptual differences over the lip generation performance between the two types
of speech inputs can also be analysed from our samples’ page (https://zevo-tech.com/
humans/flexlip/ (accessed on 15 May 2022)).

Table 4. From text to keypoints. We report the mean squared error on the Obama test set with respect
to the use of natural vs. synthetic audio data. We also report the MSE values over the Dynamic Time
Warping (DTW) alignments of the synthetic audio to the natural audio vs. controlling the phoneme
durations (phone ∆) within the TTS system. The arrow in the table header represent the direction of
best performance for the respective measure.

Audio Alignment MSE ↓
Natural – 0.064

TTS · LJ-8 DTW 0.179
TTS · LT-8 DTW 0.181

TTS · LJ-8 phone ∆ 0.095
TTS · LT-8 phone ∆ 0.094

6. Conclusions

In this paper, we proposed a flexible text-to-speech-to-lip pipeline that allows the user
to control various facets of its outputs: the phone durations, the pitch contour of the voice,
the audio altogether, the shape of the lips. Our model is based on two components: a
text-to-speech network and a speech-to-lip network. For the text-to-speech component, we
proposed using the FastPitch [18] architecture, which we carefully evaluated in multiple
settings (involving the quantity and quality of the training data) and showed that the
synthetic speech of the best models is intelligible and resembles the original speaker’s voice.
For the speech-to-lip part, we used a Transformer network to map the Mel-spectrogram
representation of the audio to PCA-encoded lips, which capture the dynamics of the lip
movements. We have made the observation that the shape is encoded by the PCA mean
and this can be easily replaced at test time (in a zero-shot adaptation setting), yielding
results close to those obtained when retraining with 40 min of data. Finally, we have
made crucial use of the controllability of our pipeline to carry out an objective end-to-end
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evaluation—by setting the phone durations to match the natural audio, we managed to
obtain synchronised generated and natural lips, ensuring a relevant score. Importantly,
these results have shown that the speech-to-lip module is robust to using synthetic data
at input, as the performance of the full pipeline is close to that of the speech-to-lip with
natural audio. As future work, we plan to extend our pipeline to the video domain (with
a keypoints-to-video component) and use the proposed objective evaluation approach to
evaluate objectively the output of the end-to-end system.
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