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Abstract: High-precision indoor localization is growing extremely quickly, especially for multi-floor
scenarios. The data on existing indoor positioning schemes, mainly, come from wireless, visual,
or lidar means, which are limited to a single sensor. With the massive deployment of WiFi access
points and low-cost cameras, it is possible to combine the above three methods to achieve more
accurate, complete, and reliable location results. However, the existing SLAM rapidly advances, so
hybrid visual and wireless approaches take advantage of this, in a straightforward manner, without
exploring their interactions. In this paper, a high-precision multi-floor indoor positioning method,
based on vision, wireless signal characteristics, and lidar is proposed. In the joint scheme, we, first,
use the positioning data output in lidar SLAM as the theoretical reference position for visual images;
then, use a WiFi signal to estimate the rough area, with likelihood probability; and, finally, use the
visual image to fine-tune the floor-estimation and location results. Based on the numerical results, we
show that the proposed joint localization scheme can achieve 0.62 m of 3D localization accuracy, on
average, and a 1.24-m MSE for two-dimensional tracking trajectories, with an estimation accuracy for
the floor equal to 89.22%. Meanwhile, the localization process takes less than 0.25 s, which is of great
importance for practical implementation.

Keywords: indoor localization; visual-based localization; WiFi signal; multi-floor; lidar SLAM

1. Introduction

Location-based services (LBS) [1] have been identified as a promising technology,
with which to merge social daily lives with geographic information, which triggers a
paradigm shift in shopping, entertainment, and other business activities. Typical local-
ization applications, including express delivery, turn-by-turn navigation, and travel ar-
rangement, have, dramatically, changed people’s lives in outdoor environments, in recent
years. In terms of contributing to social civilization, the improved Tiny-Yolov3 model [2]
can help visually impaired people to navigate indoors and outdoors. Visually impaired
people wearing Google Glass can be guided to target locations inside the building, using
its floor plan [3]. A more promising area for the future lies in the indoor scenario, where
indoor localization and navigation, using smartphones or Internet of things devices, have
been considered important applications for this rapidly growing market. As reported in [4],
the global LBS market is expected to reach a total of USD 226 billion by 2022, where 18%
of the market share belongs to indoor LBS applications, with a more than 20% compound
annual growth rate (CAGR).

The Global Navigation Satellite System (GNSS) can provide precise positioning ser-
vices, for moving objects on the ground. Xu L. et al. [5] used GNSS to locate vehicles that
were moving fast on expressways, achieving a positioning accuracy of 4–6 m. With the aid of
Inertial Navigation Systems (INS), GNSS localization accuracy can be provided [6]. In the in-
door scenario, Bluetooth low-energy (BLE) [7], Ultra-Wide Band (UWB) [8], 3rd-Generation
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Partnership Project (3GPP) long-term evolution (LTE)/5G, and WiFi signals [9,10] are
adopted, instead, since the GNSS signals suffer from building shielding. Indoor-localization
technology, based on static cameras, mobile cameras, wireless, IMU, and other sensor
components has received increasing attention from scholars. As cameras become more
affordable, as well as their integration with smart devices, visual indoor positioning is
becoming popular. It is, increasingly, widely applicable in the fields of auxiliary equipment,
autonomous robots, monitoring, and positioning [11]. However, reaching the same level
of localization accuracy is quite challenging, due to the complexity and variability of the
indoor environment, so the large-scale application of indoor-location solutions has, yet,
to be realized.

With the massive deployment of low-cost digital cameras in smart entities, a potential
approach to further improve the localization accuracy is to incorporate visual information,
which is often referred to as visual-based localization (VBL) [12]. Simultaneous Localization
and Mapping (SLAM) achieves simultaneous positioning and map construction, based on
self-perception [13].

SLAM is a self-localization technology in intelligent mobile devices. It realizes its own
localization and environment mapping, through a lidar-sensing environment. The lidar
SLAM localization scheme is a mature theory and technology, and [14] has carried out
a complete mathematical deduction and verification of the SLAM localization scheme,
from the perspective of probability theory. The commonly used 2D lidar SLAM methods
are GMapping and Cartographer. Gmapping adds lidar data to the proposed distribution
on the basis of particle filtering positioning and puts forward the effective particle number,
as the resampling constraint [15]. Cartographer is Google’s open-source indoor location
technology for mobile devices, with a front end for scanning and matching as well as a back
end for closed-loop detection and optimization [16]. These SLAM localization schemes can
be used as a theoretical reference for wireless and visual localization schemes because they
can achieve single-floor millimeter-level indoor localization.

Since the signal feature-based localization (SFBL) and the VBL schemes share similar
design philosophy, e.g., to establish databases offline and perform pattern matching online,
a natural extension is to, jointly, minimize the localization errors, via combining databases
and matching algorithms in a brute-force manner, and the localization performance can
be improved to the meter level [17] or sub-meter level, with the help of high-cost lidar.
A smarter approach is to decouple SFBL and VBL processing, in a hierarchical way [18],
e.g., to perform coarse-grained localization using SFBL and fine-tune the intermediate
positions using VBL, and the resultant errors can be reduced to less than 2 m. This ap-
proach requires significant manpower for image-database generation and online-processing
complexity. To make this more practical, ref. [19] proposes projecting the query images
into a two-dimensional floor plan for pattern-matching, and [20] utilizes the special ‘EXIT’
signs, to reduce the processing complexities.

The above hybrid SFBL and VBL approaches provide a promising direction for high-
precision indoor localization, by utilizing the corresponding advantages, in a separate
manner. However, it fails to explore the interactions between the two schemes, especially
when the localization task is mixed with multi-floor scenarios. In this paper, we propose a
joint visual and wireless signal feature-based solution for high-precision multi-floor indoor
localization. As shown later, our proposed scheme can utilize the coarse localization results
from SFBL, to assist the later VBL procedures, which, eventually, simultaneously reduces
the localization errors as well as the processing complexities. The main contributions are
listed below.

• Signal-Feature-Assisted VBL. The conventional hybrid SFBL and VBL scheme, sim-
ply, selects some candidate regions using SFBL, to restrict the processing complexities
in the VBL stage. If we regard the region index identification as a ‘hard decision’,
a more reasonable scheme is to consider a ‘soft decision’, instead. Hence, in this
paper, we propose a joint visual and wireless signal feature-based localization (JVWL),



Sensors 2022, 22, 4162 3 of 19

by considering the likelihood distribution of potential positions, which eventually
helps to improve the localization accuracy.

• Single-Floor to Multi-Floor Extension. Different from the single-floor cases, where
the horizontal dimension is neglected, multi-floor localization raises many challenging
issues, regarding the existing localization mechanisms. For example, the floor structure
is more or less the same for different floors, which is generally difficult for VBL.
Therefore, we utilize a multi-domain translation architecture, on top of signal-feature-
based coarse localization, to learn the minor changes in different floor environments.

• Low-Complexity Few-Shot Learning. In addition, we study a low-complexity dataset
construction mechanism and, numerically, analyze the relationship between the local-
ization accuracy and the number of sampling images. Through some numerical results,
we show that high-accuracy localization results can be achieved with low-complexity
few-shot learning methods.

The rest of the paper is organized, as follows. Section 2 analyzes the related work
in learning-based visual localization, few-shot learning, and fusion-based localization.
The entire localization system model is described in Section 3, and the proposed joint
localization scheme for the multi-floor scene is discussed in Section 4. In Section 5, we
present our experimental results, and the concluding remarks are provided in Section 6.

2. Related Works
2.1. Learning-Based Visual Localization

Learning-based visual localization systems perform as image regression, with a large
number of datasets. For example, PoseNet has been proposed in [21], which was rec-
ognized as the first successful end-to-end pre-trained deep CNNs approach, for 6-DoF
pose regression. Long-Short-Term Memory (LSTM) units have been discussed in [22],
to avoid overfitting issues in the traditional CNNs approaches. Moreover, the feature-
fusion mechanism was later incorporated in NetVLAD [23], with multiple-CNN-based
feature extraction.

One of the most critical issues for CNN-based approaches is the limited generalization
capability, e.g., the related algorithms can, hardly, adapt to the changing environment [24].
To address this, generative adversarial networks (GANs) [25] have been proposed in the
conventional computer-vision tasks, including CycleGAN [26] and ComboGAN [27], which
are shown to achieve superior feature-extraction abilities, compared to conventional CNNs.
Motivated by this fact, ToDayGAN was proposed in [28], to use GAN-based architecture
for localization, which is shown to achieve a five-meter accuracy, with a 52.9% probability,
for both daytime and nighttime. Based on the ComboGAN architecture, a novel domain-
invariant-feature-learning approach has been proposed in [29], and the resultant probability
can be improved to 87.2%. This is, partially, because ComboGAN’s flexible combination of
encoder–decoder pairs can, effectively, learn and extract domain-invariant features across
multiple image domains.

Although the learning-based visual localization can outperform the conventional
feature-extraction-based scheme, such as speeded-up robust features (SURF), it usually
requires a huge amount of high-quality training data, e.g., hundreds of thousands of images
taken from different positions, under diverse conditions, to guarantee robustness, as men-
tioned in [28]. To reduce the complexities in collecting high-quality images, an unpaired
image-to-image translation scheme was, also, proposed in [27].

2.2. Few-Shot Learning

Few-shot learning is another promising approach, to reduce the requirement for high-
quality images. Depending on the number of sampling images, few-shot learning [30]
can, roughly, be categorized into two types, including meta-learning-based methods and
transfer-learning-based methods.

Meta-learning-based methods, also known as learning to learn, aim to learn a general-
ized model that can be adapted to infer new classes, using only few-shot training samples.
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For instance, an optimization framework, to update hyper-parameters in neural networks,
between the meta-training and meta-testing stages, has been proposed in [31], and an
abstracted learning metric, to measure the similarities between training images and test
images, has been exploited in [32]. All the above meta-learning-based methods require
only a limited number of sampling data, with the episodic training strategy.

Transfer-learning-based methods [33], however, apply conventional approaches to
pre-train a generalized model from the basic dataset, and are adapted to some specific
tasks, with few-shot training samples. Since the classifier weights in the neural networks
are critical to the adaptation, the existing transfer-learning-based mechanisms focus on
analyzing the feature embeddings of few-shot samples. As an example, the mean vectors of
feature embeddings have been utilized in [34], and a generalized mapping functio,n from
the feature embeddings to the weights of classifiers, has been studied in [35]. Meanwhile,
an attention module, to dynamically predict the weights of classifiers, has been proposed
in [36], which outperforms meta-learning-based methods, as illustrated in [37].

2.3. Fusion-Based Localization

As mentioned before, both the SFBL methods and the VBL schemes have pros and cons,
which have not been widely implemented to date [38]. In order to be more cost-efficient,
a hybrid SFBL and VBL scheme has been proposed in [39], where context information
from visual data and signal features from WiFi data are fused together, to provide highly
accurate localization results. A deep-fusion mechanism for wireless signals and visual
images is proposed in [40], which incorporates the wavelet-transformed-signal features and
a scale-invariant feature, from sampled images. The famous LASSO algorithm is adopted,
to achieve 0.83-m localization accuracy. In [41], the extended naive Bayes and SURF algo-
rithms are utilized, to extract the features of WiFi signals and visual images, respectively.
A particle-filter-based fusion scheme is, then, proposed for localization estimation, which
achieves 1.9-m accuracy. The above particle-filter-based fusion framework has been ex-
tended to incorporate INS signals in [17], where improved two-dimensional convolutions
are applied, to generate RGB-WM image features. According to the experimental results,
this fusion-based localization scheme can achieve less than 1.23-m accuracy.

The aforementioned fusion-based localization schemes can achieve superior local-
ization accuracy, in general. However, the computational and storage costs of image
processing are much more significant than the SFBL. In addition, if we consider the feature
extraction and fusion complexities, the real-time fusion-based localization scheme cannot
be installed on mobile devices.

2.4. Lidar-Slam Localization

As shown in Figure 1, Cartographer is a scan-matching algorithm based on graph
optimization. Cartographer incorporates laser, odometer, IMU and other multi-sensor
data. Local SLAM (Frontend): laser data through voxel filtering, odometer and IMU data
through track calculation. The Scan data are matched with the latest Submap, so the Scan
data of this frame are inserted into the optimal position on the Submap. The Submap is
updated, as new data frames are inserted. A certain amount of Scan data forms a Submap.
If no new Scan is inserted into the Submap, the Submap is considered to have been created,
and the next Submap is created, according to the step size. Global SLAM (Backend): each
Submap has cumulative errors. The cumulative error is optimized by loop detection. If the
current Scan and each created Submap is close enough, loopback detection is performed.
To reduce the computation, the branch and bound method is used to search [42].
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Figure 1. Block diagram of Cartographer scheme.

3. System Model

In this section, we introduce the overall procedures of the proposed JVWL scheme
and discuss the construction of databases in what follows.

3.1. Overall Description

As shown in Figure 2, the proposed JVWL scheme first collects Ns sample received
signal strength indications (RSSIs) from NAP WiFi access points, and Np query images with
Nw × Nl pixels and NRGB color channels from on-device cameras, where the corresponding
observations are denoted as R(L) ∈ RNs×NAP and I(L) ∈ ZNp×Nw×Nl×NRGB for a given
locationL, respectively. RSSIs of NRP reference points (RPs) are collected offline to construct
WiFi fingerprint database, DBW , which consists of NRP RP locations, {Li

RP}, and the
measured RSSIs, {R(Li

RP)}. The image database, DB I , is constructed in a similar manner,
which contains the location LI , and the associated images, {I(LI )}.

The entire localization procedures consist of a WiFi RSSI-based coarse localization
and a visual-image-based fine localization (kindly note that the above RSSI and visual
information can easily be obtained by the sensors on the mobile robots, such as WiFi
receivers and cameras.), as explained below.

• Coarse Localization f (·) In the coarse localization, the proposed JVWL scheme first
computes the likelihood probability with respect to (w.r.t.) NRP RPs, i.e., p̂RP(L) =
[ p̂1

RP(L), . . . , p̂i
RP(L), . . . , p̂NRP

RP (L)], by inquiring the WiFi fingerprint database, DBW .
By comparison with the observed WiFi RSSIs, the likelihood probability w.r.t. the ith

RP can be obtained via a standard support vector machine (SVM) scheme, which has
proven to be effective in fingerprint classification tasks [43], e.g.,

p̂i
RP(L) = f1(R(L),DBW). (1)

To reduce the searching complexity of the latter fine localization, we partition the
target areas into NA consecutive areas based on NRP RPs,

{
Aj({Li

RP}
)}

, as shown in
Figure 3. The likelihood probabilities of NA areas are, as follows:

p̂A(L) = [ p̂1
A(L), . . . , p̂j

A(L), . . . , p̂NA
A (L)] (2)
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Camera

RSSI Measurement Query Images

WiFi Fingerprint

Database

Image

Database
Coarse Localization

Feature Extraction

Fine Localization

Figure 2. The overall procedures of the proposed JVWL scheme. It contains two stages, including
WiFi RSSI-based coarse localization and visual-image-based fine localization.

This can be calculated by summing over the likelihood probabilities of RPs, where
each element p̂j

A(L) is given by,

p̂j
A(L) = f2(p̂RP(L)) = ∑

i∈Aj({Li
RP})

p̂i
RP(L). (3)

The coarse localization results are, thus, given by selecting J? most possible areas
according to the likelihood probabilities, p̂A(L). Mathematically, if we denote Ω?

j (L)
and Ω?

j (L) to be the index set of selected areas and its complementary set, the can-
didate localization area A?(L) and the corresponding likelihood probability p̂A?(L)
can be expressed as

A?(L) =
⋃

j∈Ω?
j (L)
Aj
(
{Li

RP}
)

, (4)

p̂A?(L) = { p̂j
A(L)}, ∀j ∈ Ω?

j , (5)

where p̂j
A(L) ≥ p̂j′

A(L) for any j ∈ Ω?
j (L) and j′ ∈ Ω?

j (L), and the cardinality of
Ω?

j (L) is J?. By cascading (1)–(5), we denote the entire coarse localization process as

(A?(L), p̂A?(L)) = f
(

R(L),DBW ,
{
Aj
(
{Li

RP}
)})

.

• Fine Localization g(·) In the fine localization, the proposed JVWL scheme maps the
Np query images, I(L), to the estimated location, L̂ ∈ A?(L), according to the image
database DB I . To control the searching complexity, we only use a subset of the entire
image database in the practical deployment, e.g.,
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DB I(A?(L)) , {I(LI), ∀LI ∈ A?(L)} ⊂ DB I , (6)

and the mathematical expression of the fine localization process is given by

L̂ = g
(
I(L),DB I(A?(L))

)
. (7)

AP 1

AP 3

AP 2

AP 4

0.35

0.15

0.25

0.25

0.6

10.4 0.6

0.4

Figure 3. The illustration of coarse localization. The nearest Np RPs are selected by the KNN
algorithm and form a circle area, which is the coarse localization area. The gray dots and red dots are
RP positions and test positions, respectively.

3.2. Database Construction

In order to construct the databases DBW and DB I , a site survey of WiFi RSSI fin-
gerprints and camera images is conducted with NRP and |LI | positions, respectively.
To make a more reliable database, NW rounds of RSSIs collections and NIR rounds of
images are performed to construct DBW and DB I , e.g., DBW =

{(
RNW (Li

RP),Li
RP
)}

and
DB I =

{(
INI (LI),LI

)}
, respectively. Since DB I(A?(L)) is equal to

∪j∈Ω?
j (L)DB I

(
Aj
(
{Li

RP}
))

(8)

we can partition the image database DB I into NA parts in the offline stage, e.g.,{
DB I

(
Aj
(
{Li

RP}
))}

(9)

and efficiently construct DB I(A?(L)) in the online stage. For the convenience of data
collection and future update, a mobile robot equipped with WiFi, camera, lidar and IMU
sensors are used to construct DBW and DB I , with corresponding ground-truth positions.
More implementation details are presented in Section 5.

4. Proposed Multi-Floor Scheme

In this section, we describe the problem formulation and the proposed multi-floor-
localization scheme. To be more specific, we propose a joint-optimization framework for
visual and wireless localization, based on which a novel neural network structure and loss
function are, then, presented.

4.1. Problem Formulation

To obtain a reliable localization error performance, we introduce the subscript k to the
ground-truth and estimated locations and formulate the multi-floor localization problem,
as follows.
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Problem 1 (Multi-Floor Localization).

minimize
L̂k

1
K

K

∑
k=1

min
j∈Ω?

j (L̂k)

‖L̂k −Lk‖2
2

p̂j
A(L̂k)

(10)

subject to
(
A?
(
L̂k
)
, p̂A?(L̂k)

)
= f

(
R(L̂k),

DBW ,
{
Aj
(
{Li

RP}
)})

, (11)

L̂k, Ĉk = g
(
I(Lk),DB I

(
A?
(
L̂k
)))

, (12)

L̂k ∈ A?
(
L̂k
)
, ∀k, (13)

where K is the total number of localization tasks, Ĉk represents the category of the current user’s floor.

We have a large-scale dataset Dbase from DB I , containing many-shot-labeled examples
from each base class (domain) Cbase and a small-scale datasetDnovel of only few-shot-labeled
examples. The task of few-shot learning in our scheme is to learn a robust classifier using
the few-shot-labeled examples in Dnovel , with the examples in Dbase as auxiliary data.

The main component of all few-shot algorithms is a feature extractor gθ(·), which is a
convolutional neural network with parameters θ. Given an image x, the feature extractor
will output a d-dimensional feature gθ(x). How can the feature extractor gθ(·) learn image
features that can be readily exploited for novel classes with few training data during the
second stage? With this goal in mind, we propose leveraging the recent progress in GAN
feature learning, to further improve the current few-shot-learning approaches.

Based on the above multi-floor-localization problem, we decompose the original
problem into two stages. It computes the feature vector, with respect to database images
in the first stage, and compares the feature with every feature vector in the database,
to obtain the final results in the second stage. The corresponding mathematical formulation
is given below.

Problem 2 (Regression-Based Localization).

minimize
gθ(·),L̂k

1
K

K

∑
k=1

min
j∈Ω?

j (L̂k)

‖L̂k −Lk‖2
2

p̂j
A(L̂k)

(14)

subject to
(
A?
(
L̂k
)
, p̂A?(L̂k)

)
= f

(
R(L̂k),

DBW ,
{
Aj
(
{Li

RP}
)})

, (15)

vk = gθ

(
I(Lk),DB I

(
A?
(
L̂k
)))

, (16)

L̂k, Ĉk = g̃(vk), (17)

L̂k ∈ A?
(
L̂k
)
, ∀k, (18)

where vk denotes the extracted feature vector of all the images at the current floor.

In the formulation of Problem 2, g(·) has been decomposed into two simplified func-
tions, gθ(·) and g̃(·). The function gθ(·) and g̃(·) are modeled as a typical feature-extract
and feature-retrieve problem, to predict the precise location and floor index. The function
gθ(·) consists of a generator G and discriminator D, for each domain.

In the feature-extraction model gθ(·), assuming that a generator function GAB that can
transform domain A into domain B exists, such that b = GAB(a), a ∈ A, b ∈ B. Additionally,
another generator GBA transforms in the reverse direction, that is, ã = GBA(b̃). Similarly,
GBA should, also, transform domain B to domain A.

In the function g̃(·), we first use the corresponding feature extractor to extract the
feature vector for the query image, then compare the feature with every feature vector
in the database, using a cosine distance metric, choosing the most similar feature as the
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retrieval result. Compared with the conventional visual-based localization technologies,
the proposed multi-floor-localization scheme only needs to evaluate over the potential area
A?
(
L̂k
)
, which undoubtedly reduces the computational complexity.

Problem 3 (GAN-Based Localization).

gθ(·)∗ = arg min
gθ(·)
{LGan(GAB, DB) + LGan(GBA, DA)

+λ1Lcyc(GAB, GBA) + λ2L f ea(EA, EB, GAB, GBA)}
(19)

where λ1 and λ2 are hyperparameters used to balance the training direction.

We apply a cycle consistency L1 loss between domain A and B, as follows:

Lcyc(GAB, GBA) = Ea−p(a) [‖ GBA(GAB(a)− a ‖1]+

Eb−p(b) [‖ GAB(GBA(b)− b ‖1],
(20)

where a − p(a) and b − p(b) are the image collections at the correspond domain, and E
is the expectation function. Discriminator DA and DB work in each domain and try to
discriminate between A, Ã and B, B̃, respectively. We apply adversarial losses, such as:

LGan(GAB, DB) = Eb−p(b) [logDB(b)]

+Ea−p(a) [1− logDB(GAB(a))],
(21)

LGan(GBA, DA) = Ea−p(a) [logDA(a)]

+Eb−p(b) [1− logDA(GBA(b))].
(22)

To improve the training efficiency and make the model more practical for the local-
ization task, we adopt a feature consistency loss of [29], built on the encoded features of
different domains.

L f ea(EA, EB, GAB, GBA) =

Ea−p(a) [‖ EB(GAB(a))− EA(a) ‖2]

+Eb−p(b) [‖ EA(GBA(b))− EB(b) ‖2],

(23)

where EA and EB denote the encoder of the generator in domain A and domain B, respectively.

4.2. Multi-Floor-Model Architecture

The overall procedures of the proposed multi-floor-localization scheme are shown
in Figure 4, including the GAN-based feature-extraction model and the retrieval-based
localization model.

In the GAN-based feature-extraction model gθ(·), we adopt the basic framework
of multi-domain translation architecture ComboGAN [27]. Our proposed GAN-based
localization architecture is shown as Figure 5, including GAN loss LGan, cycle consistency
loss Lcyc, and feature-consistency loss L f ea. We design the loss function L of the neural
network, according to the previous problem formulation, which is given by

L = min {LGan + λ1Lcyc + λ2L f ea}. (24)
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Figure 4. The overall procedures of the proposed multi-floor-localization scheme. The query image
is encoded as a feature vector and, then, used to retrieve the feature and image with the largest
similarity in the database.

Figure 5. The proposed GAN-based localization architecture, which consists of generators and
discriminators. The generators are divided into domain-specific pairs of encoders and decoders
for each domain. The architecture of translation is A→ B, where A and B are randomly selected.
The pass B→ A is performed in the same fashion.

The detailed configurations and parameters of our neural network are listed in
Table 1 (Note that each convolutional layer in the Generators part corresponds to ’Conv-
InstanceNorm-ReLU’ )sequence. The transposed convolutional layer is denoted by Uconv1-
3. The residual basic block is denoted as Res1-9.

The training procedure involves focusing on two of the total N domains at a time.
At the beginning of each iteration, we selected two domains A, B ∈ {1, 2, · · · , N}, A 6= B
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from N domains, uniformly and at random. To make the GAN-based feature-extraction
model more practical, for few-shot localization tasks, we proposed a training strategy based
on a pre-trained model. We, first, trained a model using a large amount of labeled data from
the base domains, encoding the knowledge from base domain data into the pre-trained
model. Then, the pre-trained model was adopted as a feature extractor, to generate the
feature embeddings of the labeled few-shot samples from the novel domain, which can be,
directly, used as the initialization of the encoder for further fine-tuning.

Table 1. An Overview of Network Configuration and Parameters.

Module Layers Parameters

Generators

Conv1 256× 256× 64
Conv2 128× 128× 128
Conv3 64× 64× 256
Res1-9 64× 64× 256

Uconv1 64× 64× 256
Uconv2 128× 128× 128
Uconv3 256× 256× 3

Discriminator

Conv1 128× 128× 64
Conv2 64× 64× 128
Conv3 32× 32× 256
Conv4 16× 16× 512
Conv5 16× 16× 1

Our retrieval-based localization is based on GAN-based feature learning, as shown in
Figure 4, which can better describe the function g(·). In the online stage, we trained the
GAN-based feature-extraction model mentioned above, to pre-encode each database image
into a one-dimensional vector, which can avoid redundant calculations. In the offline stage,
we, first, used the corresponding trained encoder networks to extract features for the query
image, then compared the features with every feature vector in the database, using a cosine
distance metric. We chose the image with the most similar features, as the retrieval result.

5. Experiment Results

In this section, we conduct several numerical experiments to show the effectiveness of
our proposed system.

5.1. Experimental Environment

The proposed localization scheme was verified in the corridor environment of a typical
office building, as shown in Figure 6, which contains six floors, with 4000 square meters
of area for each floor. The layout of each floor is more or less the same, with dramatically
changing lighting conditions throughout the day. Meanwhile, the WiFi signals are, generally,
unreliable, due to the regular daily activities of working staff. In the above settings, both
the SFBL and the VBL schemes cannot achieve satisfying localization results, which is a
great challenge for the fusion-based localization schemes.

To obtain the ground-truth positions and establish the databases, e.g., DBW and DB I ,
we conducted the following implementation works. First, the Cartographer was used to
build SLAM maps on each floor, as shown in Figure 7. The mobile robot could obtain its
own positioning in real-time, and the reference coordinate origin was the starting point for
mapping on each floor. Secondly, the coordinates of the camera and IMU module, relative
to the robot center point, were calculated according to their installation positions. In SLAM,
the transformation matrix from an image-coordinate system to a laser-coordinate system
was calculated, and the image, IMU, wireless signal, and laser data are aligned. Third,
several reference points were set on the 2D SLAM diagram to plan the s-shaped path of the
mobile robot (the S-shaped path increases the z-axis Angle data in IMU), and the S-shaped
trajectory passed through all the reference points. Finally, we set up several ramps, so that
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the height varied and the positioning accuracy was measured, according to the 3D distance.
To ensure the localization accuracy, the mobile robot periodically collected wireless signals
and image data, to keep DBW and DB I updated.

Figure 6. The layout of the experimental corridor environment, the mobile robot constructing DBW

and DB I , automatically, and several image samples from DB I .

Figure 7. Partial SLAM map for floor 4.

All sampled images in our experiments were scaled to 286× 286 pixels, and randomly
cropped to 256× 256 pixels, according to [28], for training and testing. In the training
stage, learning rates were fixed at 0.0002 for generators and 0.0001 for discriminators,
for the first half, and this, linearly, decreased to zero, during the second half. The batch
size was fixed to 1 and the number of epochs was chosen as 100× N. In our experiments,
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the data-training processes were conducted on a localization server with NVIDIA Titan
X GPU and the Pytorch platform. Other detailed parameter values are listed in Table 2.
Kindly note that when the offline training processes were completed, we could provide the
online localization service, immediately.

Table 2. The detailed parameter values of the experiments.

Parameter Value Parameter Value

Ns 50 NAP 5

Np 492 Nw 752

Nl 780 NRGB 3

NRP 24 NA 15

NW 2 NI 2

J? 4 N 4

GPU NVIDIA Titan X Plat f orm Pytorch

5.2. Localization Accuracy and Computational Complexity

In the following experiments, we, first, investigated the localization accuracy, in terms
of the cumulative distribution function (CDF) of 3D distance errors, to show the effective-
ness of the proposed JVWL algorithm. To obtain an in-depth understanding, we plotted
the estimation accuracy of floors and the corresponding mean squared errors (MSE) of
estimated two-dimensional tracking trajectories (For simplicity, we only calculated the
MSE of tracking trajectories, when the floor estimation was correct). Moreover, we, also,
compared the associated computational complexities, in terms of the total computational
times. All the above experiments were compared with the following two baseline schemes,
e.g., Baseline 1, an SVM-based, WiFi-only localization scheme, and Baseline 2, a WiFi and
vision-integrated scheme, as proposed in [20].

In Figure 8, we compare the localization accuracy in terms of the 3D distance errors of
the proposed JVWL scheme with baselines. As shown in this figure, the proposed method
(red) can achieve a 0.62-m localization accuracy with a CDF equal to 0.5, which achieves
more accurate and reliable localization results than Baseline 1 (green, 1.78 m) and Baseline 2
(blue, 3.12 m).

In Figure 9, we plotted a snapshot view of tracking trajectories for different localization
schemes, where our proposed JVML scheme (red) is closer to the ground truth (yellow)
than other schemes. The detailed estimation accuracy of floors and the corresponding
MSE of the estimated two-dimensional tracking trajectories are summarized in Table 3.
Numerically, the proposed JVWL scheme achieves an 89.22% estimation accuracy of floors,
which is far superior to Baseline 1 (57.93%) and Baseline 2 (66.87%). In addition, we show
that the proposed JVWL scheme can achieve an MSE of estimated tracking trajectory up to
1.24 m, which outperforms Baseline 1 (3.43 m) and Baseline 2 (2.64 m).

Although the proposed scheme provides a satisfactory localization performance in
terms of 3D distance errors, the estimation accuracy of floors, and the corresponding MSE
of two-dimensional tracking trajectory, the implementation complexity is still open. In this
experiment, we compared the total computational time cost with two baseline schemes.
As listed in Table 3 The floor estimation accuracy of Baseline 1 is less than 60% and the MSE
result is more than 3 m, which is not suitable for practical implementation., the average
running time of the proposed JVWL scheme is around 0.25 s, which is five times less than
Baseline 2. Meanwhile, the memory requirement for the proposed JVWL scheme is around
10 MB, which is much lower than Baseline 2. This is due to the fact that the matching
algorithm adopted in Baseline 2 requires significant storage and searching abilities.
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Figure 8. CDF of localization errors for different localization methods.

Figure 9. Localization trajectories for different schemes, including ground truth (yellow), JVWL (red),
Baseline 1 (green), and Baseline 2 (blue).

Table 3. Localization accuracy, total running time, and memory space comparison for different
localization methods.

Methods Running Time Memory Space Accuracy MSE

Baseline 1 0.01 s 4.8 MB 57.93% 3.43 m

Baseline 2 1.2 s 25 MB 66.87% 2.64 m

JVWL 0.25 s 10 MB 89.22% 1.24 m
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5.3. Effects of Grid Sizes

In this experiment, we investigated the grid size effects to balance the localization
accuracy and the associated deployment cost. Distances between adjacent RPs were selected
as 1 m, 1.5 m, and 2 m, respectively. In Figure 10, we compared the 3D distance errors of the
proposed JVWL scheme under different grid sizes. As shown in this figure, we were able to
achieve 0.62 m, 0.83 m, and 1.19 m for grid sizes of 1 m, 1.5 m, and 2 m, respectively. Since
the deployment cost of data collection and labeling for the grid size of 1.5 m was around
50% more than the grid size of 1 m and the localization accuracy improved by only 25.3%,
we recommend choosing 1.5 m, as the grid size for the practical database construction.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Distance Error (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Empirical CDF

Grid Size = 1 m
Grid Size = 1.5 m
Grid Size = 2 m

Figure 10. CDF of localization errors, for different training cell sizes. Three training datasets with
different cell sizes were tested, to explore the most efficient deployment method.

5.4. Effects of Few-Shot

To demonstrate the effects of few-shot learning, we selected different “few-shot”
approaches, e.g., to select 10%/20% of sampling images, uniformly (denoted as Uni_10 and
Uni_20) and randomly (denoted as Ran_10 and Ran_20), to construct the training dataset.

In Figure 11 and Table 4, we compare the CDF of 3D distance errors, the estimation
accuracy of floors, and the corresponding MSE of two-dimensional tracking trajectories of
different “few-shot” approaches. As shown in Figure 11, selecting the sampling images
uniformly is much better than selecting them randomly, and the averaged 3D distance errors
can be improved, changing from more than 3 m to less than 1 m. A similar phenomenon
occurs for the estimation accuracy of floors and the corresponding MSE of two-dimensional
tracking trajectories, as listed in Table 4. For example, the estimation accuracy can be
improved from less than 65% to more than 85%, and the corresponding MSE can be
improved from more than 4.5 m to less than 2 m.

In Figure 12, we, linearly, increased the percentages of the sampling image selection,
to demonstrate the corresponding “few-shot” effects. Intuitively, with more sampling
images in the training dataset, the 3D distance errors and the estimation accuracy of floors
can be improved. Moreover, as shown in Figure 12, the running times are controllable, when
the percentages of sampling image selection are less than 20%. Based on the above results,
we believe that our proposed JVWL scheme can, effectively, utilize few-shot samples,
and 20% will be a reasonable number.
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Figure 11. The CDF curves of 3D distance errors of different training sets for the proposed JVWL
algorithm, in an experimental corridor environment.

Table 4. Localization accuracy with different numbers and distribution of few-shot samples.

Few-shot Samples Accuracy MSE

Uni_10 85.80% 1.50 m

Uni_20 89.22% 1.24 m

Ran_10 55.49% 5.16 m

Ran_20 62.40% 4.60 m

0 20 40 60 80 100
Percentage of Sampling Images (%)

0

1

2

3

4

5

Di
st
an
ce
 E
rro
r (
m
)

(a)
Uni 3D errors
Ran 3D errors
Uni Running Times
Ran Running Times

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ru
nn
in
g 
Ti
m
es
 (s
)

20 40 60 80 100
Percentage of Sampling Images (%)

60

70

80

90

100

Ac
cu
ra
cy
 (%
)

(b)
Uni Accuracy
Ran Accuracy

Figure 12. Influences of distribution of few-shot samples in our experiments. (a) represent results for
localization distance error and average time consumption for different few-shot sample distributions.
(b) shows results for the estimation accuracy of floors for different distributions of few-shot samples.
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6. Conclusions and Discussion

In this paper, we propose a joint visual- and wireless-signal feature-based approach,
for high-precision multi-floor indoor localization. By applying a hybrid coarse and fine
localization framework, we could formulate the JVWL problem, accordingly. Through
some theoretical analysis, a GAN-based-deep-learning scheme is proposed, for multi-floor
localization architecture. Compared with the conventional SFBL and VBL schemes, our
localization scheme could achieve 0.62 m 3D localization accuracy on average, and 1.24 m
MSE of two-dimensional tracking trajectories, with a floor-estimation accuracy equal to
89.22%, which significantly improves the localization accuracy in the multi-floor scenarios.
Meanwhile, the proposed JVWL scheme takes less than 0.25 s for the localization process,
which is five times less than conventional WiFi and vision integrated schemes.

Compared with the industrial-laser SLAM solution, the JVWL solution has some
advantages. First, the JVWL solution solves the multi-layer localization that laser SLAM
cannot handle, especially the symmetrical environment of each floor. Secondly, JVWL
scheme is suitable for people’s livelihoods, such as in service positionings, which is a low-
cost and efficient positioning scheme. For example, it can be used in shopping guidance
in shopping malls, personnel positioning in COVID-19 makeshift hospitals, positioning
in construction site clusters, etc. Finally, the JVWL scheme is convenient for mobile termi-
nal applications.

Our proposed localization system, still, has limitations, such as a low positioning
accuracy, the need to build fingerprint database, an offline map, etc. Although this accuracy
is sufficient for ordinary scenes, it is, still, difficult for industrial and special scenes. Con-
structing a fingerprint database is complicated and heavy work, which is a challenge for
field implementation. Lidar SLAM maps can be built by remote-controlled mobile robots,
or by carrying lidar in a backpack. In the future, we plan to fuse visual, wireless, and lidar
data through loose coupling, hoping to make improvements in terms of cost reductions,
ease of use, accuracy, and other indicators.
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