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Abstract: Event detection is an important task in the field of natural language processing, which
aims to detect trigger words in a sentence and classify them into specific event types. Event detection
tasks suffer from data sparsity and event instances imbalance problems in small-scale datasets. For
this reason, the correlation information of event types can be used to alleviate the above problems.
In this paper, we design a Hierarchical Attention Neural Network for Event Types (HANN-ET).
Specifically, we select Long Short-Term Memory (LSTM) as the semantic encoder and utilize dynamic
multi-pooling and the Graph Attention Network (GAT) to enrich the sentence feature. Meanwhile,
we build several upper-level event type modules and employ a weighted attention aggregation
mechanism to integrate these modules to obtain the correlation event type information. Each upper-
level module is completed by a Neural Module Network (NMNs), event types within the same
upper-level module can share information, and an attention aggregation mechanism can provide
effective bias scores for the trigger word classifier. We conduct extensive experiments on the ACE2005
and the MAVEN datasets, and the results show that our approach outperforms previous state-of-the-
art methods and achieves the competitive F1 scores of 78.9% on the ACE2005 dataset and 68.8% on
the MAVEN dataset.

Keywords: event detection; LSTM; attention aggregation mechanism; neural module network

1. Introduction

Event detection is a crucial subtask of event extraction, which aims to identify event
trigger words and classify the corresponding event types from plain texts. Specifically,
each event is often labeled by a word or phrase called an event trigger word. In event
detection, one sentence may contain two or more trigger words, and these words will
trigger a variety of event types. As shown in Figure 1, the event detection task should
identify these trigger words “killed”, “wounded”, “blast” and classify them to the event types
Die, Injured, Attack, respectively.

Figure 1. An example sentence of the ACE2005 dataset.

Currently, the datasets used for event detection are limited. Due to the fact that event
instance annotation is expensive and complex, most of the existing datasets are small-scale,
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which suffer from data sparsity and event instance imbalance problems. For example, the
most widely-used ACE2005 English dataset only contains 599 documents, and 20 of its 33
event types have no more than 100 labeled instances, so the unbalanced event instances
problem has a great influence on the effect of the event detection task, other small datasets
have similar problems [1]. However, correlation information between various event types
in the sentence can be utilized to alleviate the above problems. For instance, in Figure 1,
from the prior knowledge, we can know that the event types Die, Injure, and Attack are
more likely to appear together in a sentence, whereas Attack and Marry are less likely to
occur at the same time. Moreover, take the following two sentences as examples:

S1: He left the company.
S2: He left the company, and planned to go home directly.

Sentence S1 only has the trigger word “left”, which may trigger End-Position and
Transport, two different event types. End-Position means he resigned from the company,
while Transport means he stayed away from the company. Meanwhile, in sentence S2,
we consider the trigger word “go” and can easily argue that word “left” triggers the
Transport event. There are some approaches that utilize the aforementioned information
to improve the performance of event detection tasks. Liao et al. [2] proposed a document-
level statistical model to achieve document-level within-event and cross-event consistency.
Liu et al. [3] proposed an approach that represented global information in the form of logic
using a probabilistic soft logic model. Li et al. [4] proposed a joint framework that extracted
triggers and arguments together to improve the performance. These methods dealt with the
correlation information of various event types independently and could not tackle the data
sparsity and event instance imbalance. Liu et al. [5] employed Type Group Regularization
to obtain information between similar event types to alleviate the above problems, and
their method was effective on the small-scale ACE2005 dataset. Deng et al. [6] proposed a
novel ontology-based framework that enriched event ontology with event–event relation
and induced more event correlations based on existing ones, and the experimental results
on their handcrafted dataset showed great performance of their method.

In this paper, the hierarchical event type information is used to alleviate the above
problems. Specifically, we define every event supertype as an upper-level module and
divide several event subtypes that are more closely related in text into one upper-level mod-
ule. Here we refer to [5] and divide the subtypes Die, Injure, Attack, and Demonstrate into
the same upper-level event type Conflict, while the others stay the same as the ACE2005
dataset. We propose a novel model named Hierarchical Attention Neural Network for Event
Types, abbreviated to HANN-ET. Inspired by previous work on hierarchical modules [7,8],
we use Neural Module Networks (NMNs) [9] to construct hierarchical event type modules.
Considering that the features of various supertypes have different weighted influences
on trigger words in the sentence, we use the attention mechanism [10,11] to calculate the
weighted influence of each upper-level module on trigger words; then we adopt a weighted
attention aggregation mechanism to integrate each upper-level module attention score
to acquire the correlation information of the event type. In the above, subtypes divided
into the same upper-level module can share information, and every upper-level module
provides an effective bias score for the trigger classifier through the attention mechanism.
After that, we get the whole upper-level event type feature representation by employing
an attention aggregation mechanism. In this way, our method effectively alleviates the
problem of event instance imbalance in datasets. Moreover, we use the Graph Attention
Network (GAT) [12] to get the syntactic representation for each word in the sentence, then
we integrate it to enrich the whole representation of input text to improve the performance
of event detection. In summary, the contributions of this paper are as follows.

1. We propose a novel network model called HANN-ET to alleviate data sparsity and
event instance imbalance problems without using external resources in small-scale
datasets. It also works well on large-scale datasets.
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2. We employ a weighted attention aggregation mechanism instead of an average opera-
tion to merge the representations of all the upper-level event type modules, and we
integrate syntactic information obtained by GAT to enrich the text representation.

3. We conduct experiments on the widely used small-scale ACE2005 and large-scale
MAVEN datasets. The experimental results on both datasets demonstrate that our ap-
proach is effective for event detection tasks and achieves state-of-the-art performance.

2. Related Work

In early event detection tasks, researchers mainly use domain knowledge [13] to
manually design language features, which is labor-intensive and requires external resources.
Later, with the development of machine learning, the Hidden Markov Model (HMM) [14]
and Conditional Random Field (CRF) [15] are utilized for event detection tasks. These
models require the training of large-scale corpus, and the performance relies heavily on
feature selection.

In recent years, most works have focused on deep learning [16] for event detection
tasks. These works mainly exploit various neural networks such as Convolutional Neural
Network (CNN) [17] and Long Short-Term Memory (LSTM) [18,19] to represent semantic
vectors of text. In the last three years, syntactic relation representation has been proven
to be useful for event detection tasks, and [20–23] employed the Graph Convolutional
Network (GCN) to represent the features of syntactic dependence in a sentence. The authors
of [24,25] used a variant of Recurrent Neural Network (RNN) to obtain not only sentence-
level features but also document-level features to enrich the contextual information. Ngo N.
T et al. [26] employ the Gumbel-Softmax method [27] to learn important or relevant words
in the overall representation vector to benefit the task. These approaches all improve the
performance of event detection. However, the above methods do not consider the data
sparsity and event instances imbalance problem and ignore the correlation information and
different weighted influence of event types in a sentence.

Deng et al. [28] and Lai et al. [29] proposed few-shot learning to alleviate the problem
of data sparsity in small-scale datasets, which is a different and effective way to improve
the performance of event detection. Wang et al. [30] employed BERT [31] as the sentence
encoder and proposes an adversarial imitation model to expand more training data for
the task. Wang et al. [32] improved Pre-trained Language Models (PLMs) to better utilize
rich event knowledge in large-scale unsupervised data. They adopted the New York
Times Corpus (NYT) [33] as the unsupervised pre-training corpora and used its raw text
to build the AMR structures with a state-of-the-art AMR parser [34]. Tong et al. [35]
built an image dataset supplement and conducted deep interactions between images and
sentences for modality features aggregation. The authors of [2–4] considered the association
information between event types, but they tackled various event types independently.
Liu et al. [5] exploited Type Group Regularization to get correlation information between
event types and help sparse types benefit from tense types. Their approach is useful, but
they only conducted experiments on the small-scale ACE2005 dataset. Deng et al. [6] built
event ontology embedding through BERT and designed an event correlation inference
mechanism to get new event correlations based on symbolic rules. Then, they created a
novel dataset with event correlations based on two newly proposed datasets: MAVEN [1]
and FewEvent [26]. The results from the created dataset proved the effectiveness of their
approach. In our method, the proposed upper-level modules use correlation information
between event types through Neural Module Networks, and the experimental results on
two different datasets demonstrate that our model successfully improves the performance
of the event detection task.

3. Our Model

In this section, we will introduce the proposed model. Shown in Figure 2 is the overall
architecture of HANN-ET. Our model is mainly composed of three components:
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1. Word encoding: we first represent a sentence into hidden embeddings via the LSTM
model, then we use the dynamic multi-pooling to aggregate sentence information into
sentence-level embeddings. Meanwhile, we utilize GAT to get syntactic-level embeddings.

2. HANN-ET: we adopt Neural Module Networks to build the weighted scores about
the upper-level modules of the event types, then we employ the attention mechanism
to aggregate the scores from several upper-level modules, finally, we calculate the
weighted sum of hidden embeddings as upper-level event type embeddings.

3. Classification layer: we rely on sentence-level embeddings, syntactic-level embed-
dings, and upper-level event type embeddings to estimate the probability of a specific
event type for the sentence.

Figure 2. The overall architecture of HANN-ET.

3.1. Word Encoding

Same as the existing works, we regard event detection as a sequence labeling task.
Consider that the trigger words in the sentence may contain multiple words, so we adopt
the “BIO” schema to make an annotation. The event type information is obtained from a
predefined set of events. Thus, the total number of labels is 2× L + 1, 2 for “B” and “I”, 1
for “O”, and L is the number of predefined event types. Let X = x1, x2, . . . , xn be a sentence
of length n, where xi is its i-th token.

3.1.1. Sentence Encoder

In the sentence encoder component, we first transform each input token x .
i
∈ X into a

real-valued embedding vector wi. Following the previous work on event detection [24,25],
the comprehensive embedding vector wi is concatenated with its word embedding wordi,
entity type embedding neri, POS-tagging embedding posi, and position embedding pti,
where wordi is represented by looking up a pre-trained word embedding table on a large
corpus and others are randomly initialized. Here,

wi = wordi ⊕ neri ⊕ posi ⊕ pti (1)

where ⊕ represents the concatenation operation.
After the transformation of token x .

i
to vector wi, we get a sequence of vectors

W = w1, w2, . . . , wn for the input sentence X. Then, we employ a Bidirectional Long-Short
Term Memory network (Bi-LSTM) [20] as the sentence encoder to encode W and incorporate
the sentence context information into the representation vector H = h1, h2, . . . , hn. It will
be used as the input of the HANN-ET and GAT. hi is obtained from the following formula:

hi =

[−−−−→
LSTM (wi)⊕

←−−−−
LSTM (wi)

]
(2)

where
−−−−→
LSTM (wi) and

←−−−−
LSTM (wi) are the hidden states of the forward and backward

LSTM at position i, respectively.
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3.1.2. Sentence-Level Feature

As one sentence may contain two or more events, we make use of a dynamic multi-
pooling layer [17] for Bi-LSTM to get sentence-level embeddings S = s1, s2, . . . , sn. We
split each dimension of H into two parts according to the candidate triggers. The dynamic
multi-pooling is represented as follows:[

s1,pt

]
j = max

{
[h1]j, . . . ,

[
hpt

]
j

}
(3)

[
spt+1,n

]
j = max

{[
hpt+1

]
j, . . . , [hn]j

}
(4)

s =
[
s1,pt

]
⊕
[
spt+1,n

]
(5)

where [·]j is the j-th dimension of the vector, and pt is the position of the candidate trigger.
We concatenate the two max-pooling results to represent a sentence-level feature.

3.1.3. Syntactic-Level Feature

To get a syntactic-level feature, we follow the existing work [25], which employs
a multi-order Graph Attention Network [11] to weigh the importance of neighbors of
each word in each syntactic graph network. We denote the first-order syntactic graph
with adjacency matrix A, which contains three sub matrices Aalong, Arev, Aloop with the
same dimensions n× n. Then the k-th order syntactic graph is described as Ak

subg, where

subg ∈ {along, rev, loop}, Ak
rev =

(
Ak

along

)>
. Ak

loop is the identity matrix. If there is a depen-

dency arc from word xi to xj in the dependency tree, then Ak
along(i, j) = 1, otherwise 0. We

obtain the representation hk
i of the k-th-order syntactic graph Ak by the following formulas,

hk
i = GAT

(
hi, Ak

along

)
+ GAT

(
hi, Ak

rev

)
+ GAT

(
hi, Ak

loop

)
(6)

GAT
(

hi, Ak
along

)
= σ

n

∑
j=1

(
uij Ak

(along)ij

(
Walong,khi + εalong,k

))
(7)

uij =
exp
(
leakyRelu

(
Wc
[
Watthi ⊕Watthj

]))
∑j∈Ni

exp
(
leakyRelu

(
Wc
[
Watthi ⊕Watthj

])) (8)

where + is element-wise addition in Equation (6). σ in Equation (7) is the exponential linear
unit, Walong,k and εalong,k are the weight matrix and bias item, respectively. In Equation (8),
uij is a normalized weight that indicates the importance of word xj to xi, and Ni is some
neighborhood of xi in the subgraph. According to Veličković et al. [12], the negative input
slope α of the LeakyRelu function is set to 0.2, and Wc and Watt are weight matrices [11].

Then, we employ the attention aggregation mechanism [36] to get the whole multi-
order representations as syntactic-level embedding Hs = hs1, hs2, . . . , hsn:

sk
i = tanh

(
Washk

i + εas

)
(9)

vk
i =

exp
((

sk
i

)>
uctx

)
∑K

k=1 exp
((

sk
i
)>uctx

) (10)

hsi =
K

∑
k=1

vk
i hk

i (11)

here Was and εas are the weight matrix and the bias term, respectively; uctx is a randomly
initialized vector that represents the influence of graph structure of each order.
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3.2. HANN-ET

As shown in Figure 2, we build several upper-level event type modules through Neural
Module Networks. Every upper-level module gives an attention score for each hidden
embedding to represent the correlation with the specific upper-level module. Moreover,
a trigger word may belong to more than one upper-level module, and every upper-level
module does not equally relate to the trigger words. Hence, we employ a weighted attention
aggregation mechanism to merge the scores from several upper-level modules together.
Then, we compose all hidden embeddings with their corresponding attention scores as the
whole upper-level event type feature. According to the properties of the ACE2005 dataset,
we design eight upper-level modules for it. For the MAVEN dataset, [1] has shown the
tree-structure hierarchical event type schema. Eventually, we build five upper-level event
type modules.

3.2.1. Upper-Level Modules

As shown in Figure 3, following previous work [37], for a specific upper-level module
t, we adopt a multi-layer perceptron to get ht

i as a hidden representation of hi,

ht
i = tanh(Wa[hi ⊕ et]) (12)

where Wa is the trainable weight matrix and et is a trainable vector that represents the
semantic feature of a specific upper-level module t. The initial representation of the vector
et is different for different upper-level modules. Then, for the hidden representation ht

i , we
get the attention score of the specific upper-level module t through a softmax function:

ut
i =

exp
(
Wbht

i
)

∑n
j=1 exp

(
Wbht

j

) (13)

where Wb is the trainable weight matrix.

Figure 3. Attention score of the specific upper-level module.

3.2.2. Attention Aggregation

The attention mechanism as an idea does not have a specific network structure for
restriction [10]. It contains a general understanding of the global elements and captures the
connections between the main elements. In the commonly used self-attention networks,
the calculation formulas are as follows:

Attention(Q, K, V) = so f tmax

(
Q·K>√

dk

)
V (14)

In Equation (14), Q, K, V are the inputs, and dk is the dimension of Q. The attention
score represents the weight influence of V on the networks.



Sensors 2022, 22, 4202 7 of 15

As shown in Figure 4, inspired by the previous aggregation work [10,36], we use the
attention mechanism to aggregate the scores from several upper-level modules. We first
get qt

i as an attentional module representation of ut
i via multi-layer perceptron, then we

measure the importance of the specific module and get a normalized importance weight
αt

i through a softmax function. Finally, we obtain the vector pi as a weighted sum of all
modules based on the weights. The calculation formulas are as follows:

qt
i = tanh

(
Weut

i + be
)

(15)

αt
i =

exp
((

qt
i
)>ue

)
∑T

j=1(exp
(

qj
i

)>
ue)

(16)

pi = ∑T
t=1 αt

i u
t
i (17)

here We and be are the weight matrix and the bias term, respectively. In Equation (16), ue is
a randomly initialized vector and jointly learns during the training process to measure the
importance of event type representation of each upper-level module. T is the number of
upper-level modules.

Figure 4. Attention weights for all upper-level modules.

Finally, we calculate the weighted sum of hidden embeddings as the upper-level event
type embeddings:

E = ∑n
i=1 pihi (18)

3.3. Classification Layer

We concatenate sentence-level embeddings S, upper-level event type embeddings E,
and syntactic-level embeddings Hs into embeddings Z as the input for the classification
layer. The layer is followed by a softmax function to estimate the probability for all event
types of instance X:

Z = S⊕ E⊕ Hs (19)

p(t|X) =
exp(WoZ + εo)

∑2L+1
1 exp(WoZ + εo)

(20)

where Wo and εo are the weight matrix and the bias term, respectively. After softmax
classification, the event label with the largest probability is regarded as the result.

We exploit a bias loss function [25,30] to enhance the influence of event type labels
during training since the number of “O” tags is much larger than that of event type tags.
The loss function is defined as follows:

J(θ) = −
Ns

∑
i=1

ni

∑
j=1

logp
(

yt
j

∣∣∣si, θ
)
·I(O) + µlog

(
yt

j

∣∣∣si, θ
)
·(1− I(O)) (21)



Sensors 2022, 22, 4202 8 of 15

where Ns is the number of sentences, ni is the number of words in the i-th sentence,
I(O) = 1, if the tag is “O”, otherwise 0, µ is the bias weight.

4. Experiments
4.1. Experimental Setting
4.1.1. Datasets and Evaluation Metrics

We utilize the ACE2005 and the MAVEN corpus as our datasets. The ACE2005 is the
most widely-used dataset, which contains 599 documents, 5349 annotated instances, and
33 event types. It is a small-scale dataset. On the contrary, the MAVEN is a comprehensive
and large dataset for event detection that contains 4480 documents, 118732 event mention
instances, and 168 event types. For a reasonable comparison, we perform experiments
on both datasets separately on several modern baselines in two conditions: predefined
split and cross-validation. In the case of predefined split, we employ the same data split
in the ACE2005 dataset as existing work [17,18,22,25], where 40 newswire documents
are used as the test set, the development set with 30 other documents randomly selected
from different genres, and the other 529 documents are used for training. In the MAVEN
dataset, we operate the same as [1], where 2913 documents are utilized as the training
set, 710 documents for the development set, and 857 documents for the test set. In a
cross-validation situation, we divide the ACE2005 dataset equally into 15 parts; each part
contains about 40 documents. The MAVEN dataset is divided equally into 5 parts, and each
part has 896 documents. We exploit the Stanford CoreNLP toolkit for sentence splitting,
tokenizing, POS-tagging, and dependency parsing. We use Precision (P), Recall (R), and
F1-score as the evaluation metrics. The formulas are as follows.

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

F1 =
2PR

P + R
(24)

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false
negative cases of the prediction results, respectively. The information about the machine in
use to train the model is shown in Table 1.

Table 1. The experiment environment’s hardware and software.

Type Configuration Parameters

hardware

CPU Intel(R) Core(TM) i7-10875H
CPU @ 2.30GHz

GPU Nvidia GeForce RTX2060

memory 16G DDR4 3200MHz

software

operating system Windows 10

compilation environment Python 3.7

deep learning framework Tensorflow 1.13

4.1.2. Hyper-Parameter Setting

We make our parameter selection according to the performance of the development
set of datasets and previous work. The word embedding is obtained by the Word2Vec
model, while entity type embedding, POS-tagging embedding, and position embedding
are generated by looking up the randomly initialized embedding table. We set the word
embedding size to 100 dimensions and the rest embedding size to 50 dimensions [21]. The
hidden state size of the Bi-LSTM network is set to 100. According to Luong et al. [37],
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the semantic vector of upper-level module et and trainable matrix Wb are set to 900 and
900 dimensions, respectively. We set the highest order K to 3 and the dimension of graph
feature to 150 [12]. We fix the maximum input sentence length n to 50 by padding shorter
sentences and cutting longer ones. We set the batch size to 30 and exploit AdaDelta as
the model optimization with an initial learning rate of 0.001 [25]. We set the dropout rate
to 0.5 and the L2-norm regularization to 1 × 10−5 to avoid overfitting [23]. The bias loss
parameter µ is set to 1. The values of hyper-parameters are shown in Table 2.

Table 2. Hyper-parameter values.

Parameters Values

word embedding dimension 100
entity type embedding dimension 50

POS-tagging embedding dimension 50
position embedding dim 50

LSTM hidden size 100
et dimension 900

Wb dimension 900
batch size 30

learning rate 0.001
dropout 0.5

regularization 1 × 10−5

µ 1

4.2. Overall Performance

We use the modern baselines below for the predefined split and cross-validation
experiments on two datasets and compare them with our method:

(1) CRF [15], a traditional machine learning method, views the event detection task as a
sequence labeling problem for trigger words; the candidate events are obtained based
on candidate trigger words which are identified through dictionary marching on the
split sentences.

(2) DMCNN [17] builds a dynamic multi-pooling CNN model to learn sentence features.
It uses CNN for basic feature extraction, and in the trigger classification stage, dynamic
multi-pooling is proposed to split the feature map into two parts according to the
candidate trigger, by which the most important features of each part can be obtained.

(3) JRNN [19] employs a bidirectional RNN as a feature extractor for the joint event
extraction task, including event detection and arguments classification. It proposes a
memory matrix that can effectively capture the dependencies between argument roles
and trigger subtypes.

(4) HBTNGMA [25] fuses sentence-level and document-level information to enhance the
semantic features. First, it exploits a hierarchical and bias tagging network to capture
event interdependency and detect multiple events in one sentence collectively; then it
devises a gated multi-level attention mechanism to automatically extract and integrate
contextual information.

(5) JMEE [21] utilizes the self-attention and highway network to enhance GCN for event
detection. It employs a syntactic Graph Convolution Network module to perform
feature extraction by introducing shortcut arcs from syntactic structures. In the trigger
classification module, a self-attention mechanism is added to capture the associations
between multiple events in a sentence.

(6) AD-DMBERT [30] proposes an adversarial imitation model to expand more training
data for the task. It creates a large event-related candidate set based on the ACE2005
dataset and then applies an adversarial training mechanism to iteratively identify
those informative instances from the candidate set. It selects CNN and BERT as
representative encoders to encode the given instances.

(7) MOGANED [22] improves GCN by combining multi-order word representation from
different GAT layers. It uses Bi-LSTM to encode the input sentence to a sequence of
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vectors and proposes a multi-order Graph Attention Network that performs graph
attention convolution over multi-order syntactic graphs. After that, it exploits an
attention mechanism to aggregate multi-order representations of each word to predict
its label.

(8) EE-GCN [23] proposes a novel architecture to use dependency label information,
which conveys rich and useful linguistic knowledge for event detection tasks. It
designs an edge-aware node update module that aggregates syntactically connected
words through specific dependency types to generate expressive word representations.
Furthermore, it devises a node-aware edge update module to refine the relation
representations with contextual information.

(9) OntoED [6] links each event instance to a specific type in a target event ontology. It
builds event ontology embedding through BERT and designs an event correlation
inference mechanism to induce more event correlations based on existing ones. By
the above, data-rich event types can propagate correlation knowledge to data-poor
ones, and new event types can establish linkages to the event ontology.

Table 3 shows the overall performance of these baselines on two datasets in cases of
predefined split. From the results, we have the following observations: (1) As compared
with the basic models, DMCNN, JRNN, and HBTNGMA, HANN-ET achieves significant
improvements on both datasets and achieves F1 scores of 77.6% and 65.6%, respectively.
Furthermore, it outperforms or achieves competitive results with the JMEE, MOGANED,
and EE-GCN, which also use dependency parsing information. This proves the effec-
tiveness of our proposed upper-level modules and weighted attention. (2) MOGANED
achieves the highest precision score of 79.5% but a lower recall score in the above models on
the ACE2005 dataset; it is not hard to think that this is caused by the incorrect propagation
from the dependency parsing tool. JMEE also suffers from this problem. In contrast, EE-
GCN introduces dependency label information to capture more fine-grained trigger-related
features, and HANN-ET builds the upper-level modules to obtain event type features;
both models improve recall to some extent and achieve recall scores of 78.6% and 78.8%,
respectively. (3) It is noteworthy that compared to all the baselines, HANN-ET[B] achieves
the best recall and F1 scores on the ACE2005 dataset of 79.6% and 78.9%, respectively, and
the highest F1 scores on the MAVEN dataset of 68.8%. Compared with HANN-ET, the
recall scores of HANN-ET[B] on the ACE2005 and MAVEN datasets improved by 0.8% and
4.7%, respectively, the F1 scores improved by 1.3% and 3.2%, respectively. It is not hard to
analyze that the pre-training language model BERT learns event semantics and structure
from large-scale unsupervised data and can significantly improve the recall score on the
two datasets. (4) Compared with DMBERT and OntoED, which also adopt BERT to get
more rich contextual features, HANN-ET[B] gets better F1 scores on both datasets. (5) All
models perform worse on the MAVEN dataset than on the ACE2005 dataset. In fact, larger
datasets can lead to more robust performance of the models. Overall, our method utilizes
correlation information between event types through neural module networks to improve
the performance of the event detection task, and the competitive results demonstrate the
effectiveness of our model.

Table 4 shows the overall performance of the models on the two datasets in the cross-
validation case, and the overall results are similar to those in Table 3. From Table 4, we
can see that HANN-ET outperforms or achieves competitive results with several models
on two datasets, and HANN-ET[B] achieves the best performance, with F1 scores of 78.6%
and 69.2% on the two datasets, respectively. The cross-validation method is suitable for
validating the performance of models on a small-scale dataset, such as the ACE2005. The
experimental results demonstrate that our proposed model is effective and improves the
performance of the event detection task in the cross-validation case.
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Table 3. Overall performance on two datasets in the case of predefined split (%).

Methods
ACE2005 MAVEN

p R F1 p R F1

CRF(2012) 65.3 59.7 62.4 53.8 52.4 53.1
DMCNN(2015) 75.6 63.6 69.1 66.3 55.9 60.6

JRNN(2016) 66.0 73.9 69.3 59.2 64.8 61.9
HBTNGMA(2018) 77.9 69.1 73.3 62.5 63.4 62.9

JMEE † (2018) 76.3 71.3 73.7 61.6 63.2 62.4
DMBERT(2019)[B] 77.9 72.5 75.1 62.7 72.3 67.1

MOGANED † (2019) 79.5 72.3 75.7 63.4 64.1 63.8
EE-GCN † (2020) 76.7 78.6 77.6 62.2 66.9 64.5
OntoED(2021) [B] 77.9 76.8 77.3 63.1 71.2 66.9

HANN-ET † 76.4 78.8 77.6 63.9 67.5 65.6
HANN-ET † [B] 78.3 79.6 78.9 65.7 72.2 68.8

† means the model is using a dependency structure, and [B] denotes a model adopting BERT as the instance
encoder. Bold entries represent that the value is the highest result in the current comparative models.

Table 4. Overall performance on two datasets in the case of cross-validation (%).

Methods
ACE2005 MAVEN

p R F1 p R F1

CRF(2012) 65.6 59.2 62.2 54.5 51.8 53.1
DMCNN(2015) 75.8 65.2 70.1 65.8 57.2 61.2

JRNN(2016) 66.5 74.3 70.2 59.5 64.9 62.1
HBTNGMA(2018) 78.4 67.8 72.7 62.8 63.6 63.2

JMEE † (2018) 76.1 70.9 73.4 61.3 63.7 62.5
DMBERT(2019)[B] 78.2 73.7 75.9 62.5 73.6 67.6

MOGANED † (2019) 79.8 72.6 76.0 63.8 65.2 64.5
EE-GCN † (2020) 76.3 78.6 77.4 62.6 67.7 65.1
OntoED(2021)[B] 77.6 77.1 77.3 63.5 71.3 67.2

HANN-ET † 75.8 78.4 77.1 63.6 68.7 66.1
HANN-ET † [B] 77.9 79.3 78.6 66.1 72.6 69.2

† means the model is using a dependency structure, and [B] denotes a model adopting BERT as the instance
encoder. Bold entries represent that the value is the highest result in the current comparative models.

4.3. Ablation Study
4.3.1. The Validation of the Components

This section aims to demonstrate the effectiveness of upper-level event type modules,
attention aggregation, and integrated feature models. To make the results of these methods
below more robust, we conduct the ablation experiments in the case of cross-validation in
the same way as Section 4.1.1 on the ACE2005 and MAVEN datasets. First, we designed
several comparative architectures that have similar structures to our model to prove the
validity of upper-level modules:

(1) DMCNN and HANN-ET-CNN, whereas the two models employ CNN as a sentence
encoder and do not contain the GAT module.

(2) Bi-GRU (Gated Recurrent Unit) with a multi-pooling layer and HANN-ET-GRU,
whereas the two models utilize GRU as a sentence encoder and do not contain the
GAT module.

(3) Bi-LSTM with a multi-pooling layer and HANN-ET-LSTM, whereas the two models
employ LSTM as a sentence encoder and do not contain the GAT module.

(4) To validate the impacts of attention aggregation and integrated feature model, we
conduct an experiment on the HANN-ET-Mean model, which has the same modules
as HANN-ET-LSTM but adopts mean operation to aggregate the attention scores.

As seen from Table 5, we can observe that: (1) As compared to three baseline extractors,
the corresponding HANN-ET-based models achieve better performance on both datasets.
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The F1 scores of the three HANN-ET-based models on the ACE2005 dataset improved
by 1.1%, 2.2%, and 3.5%, respectively, and on the MAVEN dataset improved by 0.9%,
1.2%, and 2.5%. The results suggest that the upper-level event type modules have a
great influence on event detection. (2) HANN-ET-Mean gets a lower performance than
HANN-ET-LSTM, it means the attention aggregation mechanism is better than the average
operation for aggregating upper-level module scores. HANN-ET, which integrates the
syntactic representation via the GAT model, achieves the best performance in the above
models and achieves F1 scores of 77.1% and 66.1% in the two datasets, respectively; it
indicates that the proposed integrated model can effectively improve the performance of
the event detection task.

Table 5. Results of ablation experiments on two datasets in the case of cross-validation (%).

Methods
ACE2005 MAVEN

p R F1 p R F1

DMCNN 75.8 65.2 70.1 65.8 57.2 61.2
HANN-ET-CNN 75.1 67.7 71.2 62.7 61.5 62.1
Bi-GRU-pooling 72.4 73.2 72.8 61.9 64.7 63.3
HANN-ET-GRU 73.9 76.2 75.0 62.6 66.5 64.5
Bi-LSTM-pooling 72.6 72.9 72.7 62.5 63.2 62.8
HANN-ET-LSTM 75.2 77.3 76.2 63.3 67.4 65.3
HANN-ET-Mean 73.5 76.0 74.7 62.1 66.1 64.0

HANN-ET 75.8 78.4 77.1 63.6 68.7 66.1

Bold entries represent that the value is the highest result in the current comparative models.

4.3.2. The Experiments on General and Sparse Event Types

Our proposed model aims to utilize the correlation information between event types
and provide effective bias scores through the attention mechanism to improve the perfor-
mance on sparse event types. The small-scale ACE2005 dataset is suitable for this section of
the experiment. We split the ACE2005 dataset into general and sparse groups based on the
number of instances. According to our investigation, the number of instances of general
and sparse event types in the most widely used ACE 2005 dataset is shown in Table 6.
As seen in Table 6, there are 13 general subtypes and 20 sparse subtypes in the ACE2005
dataset. In sparse event types, the number of instances of each subtype is less than 100. We
still employ cross-validation to conduct the experiments with several advanced baselines
on general and sparse event types, respectively. Differently from Section 4.2, we also divide
the ACE2005 dataset into 15 parts, but for general event types, the L in Equation (20) is set
to 13. Similarly, the L is set to 20 for sparse event types.

Table 6. The number of instances of general event types and sparse event types in the ACE2005 dataset.

Subtype Number

General event types

Attack Transport Die Charge-Indict
Meet End-Position Transfer-Money

Elect Injure Transfer-Ownership
Phone-Write Start-Position

Trial-Hearing

4460

Sparse event types

Be-Born Marry Divorce Sue
Start-Org Merge-Org Appeal Pardon

End-Org Demonstrate Nominate
Arrest-Jail Release-Parole Convict

Fine
Sentence Execute Extradite Acquit

Declare-Bankruptcy

889

The evaluation results are shown in Table 7. From the results, we have the following
observations: (1) As compared with general subtypes, all the above methods achieve lower
recall scores on the sparse event types since sparse subtypes contain few labeled instances
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in the ACE2005 dataset. (2) HANN-ET[B] achieves the best recall and F1 scores with all the
baselines on general and sparse subtypes when employing BERT to represent contextual
word information, and HANN-ET achieves competitive results on general and sparse
subtypes without extra resources. The results prove the effectiveness of our approach in
tackling the sparse event types.

Table 7. Results of experiments on general and sparse event types, respectively (%).

Methods
General Subtypes Sparse Subtypes

p R F1 p R F1

DMCNN(2015) 87.5 80.3 83.7 89.2 46.2 60.9
JRNN(2016) 90.8 81.6 86.0 89.7 49.6 63.9

JMEE † (2018) 91.7 82.4 86.8 90.8 50.3 64.7
MOGANED(2019) 91.4 81.2 86.0 91.5 50.7 65.2
EE-GCN † (2020) 92.2 83.7 87.7 90.7 51.6 65.8
OntoED(2021)[B] 93.6 82.9 87.9 92.3 52.8 67.2

HANN-ET † 92.5 83.5 87.8 90.6 53.2 67.0
HANN-ET † [B] 93.1 84.4 88.5 91.4 54.5 68.3

† means the model is using a dependency structure, and [B] denotes a model adopting BERT as the instance
encoder. Bold entries represent that the value is the highest result in the current comparative models.

5. Conclusions

In this paper, we proposed a novel model named HANN-ET, which designed the
upper-level modules to capture the correlation information of the event types. We consid-
ered three aspects at the sentence, syntactic, and upper-level event type, to enhance the
overall semantic representation of the text. Our proposed model alleviates data sparsity
and event instances imbalance problems in small-scale datasets for event detection tasks.
Moreover, it does not depend on any external resources and improves the performance
on large-scale datasets of event detection tasks. The experimental results on the ACE2005
and the MAVEN datasets show that our model is effective and achieves competitive per-
formance on both datasets. The ablation study indicates the importance of the correlation
information between the event types and the effectiveness of proposed upper-level mod-
ules. In the future, we will focus on improving the event detection task by Pre-trained
Language Models, such as BERT, which uses a deep bidirectional Transformer structure to
learn rich semantic representations from the large unlabeled corpus. Improvements to the
Pre-trained Language Models are a trend for subsequent event detection tasks.
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