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Abstract: Tea flow rate is a key indicator in tea production and processing. Due to the small real−time
flow of tea leaves on the production line, the noise caused by the transmission system is greater than
or close to the real signal of tea leaves. This issue may affect the dynamic measurement accuracy of tea
flow. Therefore, a variational mode decomposition combined with a wavelet threshold (VMD−WT)
denoising method is proposed to improve the accuracy of tea flow measurement. The denoising
method of the tea flow signal based on VMD−WT is established, and the results are compared with
WT, VMD, empirical mode decomposition (EMD), and empirical mode decomposition combined
with wavelet threshold (EMD−WT). In addition, the dynamic measurement of different tea flow
in tea processing is carried out. The result shows that the main noise of tea flow measurement
comes from mechanical vibration. The VMD−WT method can effectively remove the noise in the
tea dynamic weighing signal, and the denoising performance is better than WT, VMD, EMD, and
EMD−WT methods. The average cumulative measurement accuracy of the tea flow signal based
on the VMD−WT algorithm is 0.88%, which is 55% higher than that before denoising. This study
provides an effective method for dynamic and accurate measurement of tea flow and offers technical
support for digital control of the tea processing.

Keywords: tea flow; dynamic measurement; variational empirical mode decomposition; wavelet
threshold; denoising

1. Introduction

Dynamic measurement of the flow rate during tea processing is an important part of
the tea automatic production line, and the measurement accuracy is a key factor to ensure
the tea quality [1]. The subsequent processing parameters can be adjusted by monitoring
the flow rate of tea [2], such as tea fixation time, drying time, etc. An excessive tea flow
rate will lead to uneven heating of tea and quality reduction [3]. An electronic belt scale
is often used for tea flow rate dynamic measurement. During production, due to the
small real−time tea flow, the weighing signal is affected by various noise sources, such as
mechanical vibration, environmental changes, and electromagnetic interference, resulting
in low dynamic measurement accuracy of the tea flow rate.

To improve the dynamic measurement accuracy of the tea flow rate, it is necessary to
use signal processing methods to denoise the dynamic weighing signal of tea. Commonly
used weighing signal denoising methods include the Kalman filter method, model−based
identification method, adaptive filtering method, neural network, least squares support
vector machine, decision regression tree, wavelet threshold denoising [4], and signal de-
composition [5–8], etc. Wang et al. [9] proposed a Kalman filter combined with piecewise
linear interpolation calibration to solve the problems of nonlinear calibration and precision
improvement of electronic scales, but only external noise was suppressed. Dario et al. [10]
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proposed Shaper−Based Filters (SBFs) to ensure accurate, robust, and rapid estimation of
the mass of the measurand. Pawlowski et al. [11] proposed adaptive filtering combined
with a centrifugal force compensation (CFC) to improve weight estimation precision, espe-
cially at higher operating speeds. A BP neural network model was built by Li et al. [12]
to compensate the auto−weighing error of the belt scale and greatly improved measure-
ment accuracy. Jiang et al. [13] proposed a SVM based on an improved particle swarm
optimization (NAPSO) to predict the dynamic measurement errors, which had a higher
accuracy and a smaller prediction error. The decision regression tree was used to predict
the measurement error by Wu et al. [14], which was simple, fast, and had a better prediction
performance than least square estimation.

During dynamic measurement of tea flow, the noise mainly comes from mechanical
vibration. These noises are non−stationary signals and overlap with the effective signal in
the frequency spectrum, which cannot be removed using the above methods. The wavelet
threshold denoising method offers advantages such as multi−resolution and decorrelation,
and is suitable for denoising of non−stationary signals [15]. However, the selection of
the wavelet basis function and decomposition level has a great influence on the denoising
results and has certain limitations [16]. Empirical mode decomposition (EMD) is an adap-
tive denoising method. The signal is decomposed into several intrinsic mode functions
(IMFs), and then the Hilbert–Huang transformation, spectrum analysis, processing, and
reconstruction are carried out on the IMFs to realize the denoising of the signal [17]. How-
ever, EMD is prone to produce modal aliasing and endpoint effects when decomposing
the signal, and the reconstructed signal will still have noise [18]. Although EMD−WT
offers good adaptability and a reliable theoretical and mathematical derivation basis, in
practical engineering applications, high−frequency interference components still exist in
the signal spectrum [19]. The signal spectrum interval after EMD−WT decomposition is not
accurate enough, and the fault feature information cannot be accurately extracted. Zhuang
et al. [20] proposed a piecewise cubic Hermite interpolation polynomial combined with
empirical wavelet transform algorithm (PCHIP−EWT) for noisy and non−stationary signal
processing. The results showed that PCHIP−EWT could effectively separate components
with a similar spectrum, and it was more suitable for analyzing noise and non−stationary
signals than EWT. Sun et al. [21] proposed a new surface EMG signal denoising algorithm
based on an ensemble empirical mode decomposition combined with a wavelet threshold
(EEMD−WT), which demonstrated a good denoising effect under white noise interference.
It could effectively remove the random noise in surface EMG signals, but it lacked stability.

Therefore, here, a novel denoising method on VMD−WT is proposed for dynamic
and rapid detection of the tea flow rate during processing. The specific objectives are as
follows: (1) study the dynamic weighing signal of tea leaves based on the spectrum analysis
method, (2) investigate and establish the denoising method of the tea flow signal based
on VMD−WT, and compare it to the traditional denoising methods (WT, EMD, VMD, and
EMD−WT), and (3) apply the method to the actual tea flow measurement to verify the
effectiveness of the method.

2. Materials and Methods
2.1. Sample Preparation

Tea leaves (Longzhu green tea, grade 4) were collected from a local producer in
Dalan Town, with an average altitude above 550 m, between 121◦04′31′ ′~121◦11′01′ ′ E and
29◦45′04′ ′~29◦51′47′ ′ N. A conventional green tea processing method (including withering,
first fixation, first rolling, second fixation, second rolling, and drying) was employed. It
was carried out by a local tea processing factory (Ningbo Yaojiangyuan Machinery Co.,
Ltd., Ningbo, China).

2.2. Experimental Device

Tea flow rate measurement was carried out in a self−developed electronic belt scale.
Figure 1 is the schematic diagram of the experimental device. The structure of the electronic
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belt scale is a suspended carrier. The weighing sensor was placed under the weighing
roller. The weight of the tea leaves was directly transferred to the weighing sensor via the
weighing rollers. The weight signal (detected by the weighing sensor) and speed signal
(detected by the speed sensor) were transmitted to the computer for further analysis.
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where 𝑢 is the K−th modal component, 𝜔 is the center frequency of the K−th component, 𝜕௧ is the variation function with respect to time, 𝛿(𝑡) is the unit impulse function, ∗ is the 
convolution symbol, ‖∙‖ଶଶ is the square of the 2−norm of the vector, and ∑ 𝑢 = 𝑓(𝑡)  is the 
constraint condition to ensure that the sum of all modal components is the original signal. 

The quadratic penalty parameter, 𝛼, and the Lagrangian multiplier, λ, were intro-
duced to turn finding the minimum value of the constrained problem into finding the 
local optimal solution of the unconstrained model. The augmented Lagrange function is 
shown in Formula (2): 

{ } { }( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

2

22

2

, , / *
,

kj t
k k ktk

k kk k

u t j t u t
f t u t t f t u t

e ωω λ α δ π
λ

− = + 
+ − + −

 ∂
 


 (2) 

where 𝜆 is the Lagrangian multiplier, and 𝛼 is the quadratic penalty parameter. 

Figure 1. Schematic diagram of the experimental device.

2.3. Data Processing Method
2.3.1. Principle of VMD

Variational mode decomposition (VMD) is a novel variable−scale adaptive decom-
position method proposed by Dragomiretskiy et al. [22]. It can choose the decomposition
level by itself and avoid modal aliasing and the endpoint effect, to an extent [23,24]. The
VMD algorithm finds the optimal variational model through multiple iterations [25] and
decomposes the complex original signal into multiple modal components, ui, with sparse
characteristics. Among them, each modal component could achieve the determined center
frequency and frequency bandwidth through Hilbert–Huang transformation, and the sum
of the frequency bandwidth of each component in the decomposition result is the smallest.
The original signal can be obtained by adding each component. Thus, the constrained
variational equation of the variational mode decomposition is:

min
{uk},{ωk}

{
∑k ‖∂t[(δ(t) + j/(πt)) ∗ uk(t)]e−jωkt‖2

2

}
s.t.∑k uk = f (t)

(1)

where uk is the K−th modal component, ωk is the center frequency of the K−th component,
∂t is the variation function with respect to time, δ(t) is the unit impulse function, ∗ is the
convolution symbol, ‖·‖2

2 is the square of the 2-norm of the vector, and ∑
k

uk = f (t) is the

constraint condition to ensure that the sum of all modal components is the original signal.
The quadratic penalty parameter, α, and the Lagrangian multiplier, λ, were introduced

to turn finding the minimum value of the constrained problem into finding the local
optimal solution of the unconstrained model. The augmented Lagrange function is shown
in Formula (2):

L({uk}, {ωk}, λ) = α∑k ‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2
2

+‖ f (t)−∑k uk(t)‖2
2 + 〈λ(t), f (t)−∑k uk(t)〉

(2)

where λ is the Lagrangian multiplier, and α is the quadratic penalty parameter.
The alternating direction method of multipliers (ADMM) was used to iteratively

update un+1
k , ωn+1

k , and λn+1. The optimal solution of the constrained variational model
can be obtained by searching the saddle point through Formula (2).

The following VMD iterative operation is as follows:

(1) Initialize
{

u1
k
}

,
{

ω1
k
}

, λ1, n = 0.
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(2) The iterative un+1
k and ωn+1

k were transformed from time domain to frequency domain
by using the Parseval/Plancherel Fourier equidistant method under the norm, and
the following results were obtained, as shown in Formulas (3) and (4):

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)/2

1 + 2α(ω−ωk)
2 (3)

ω̂n+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

where ûn+1
k (ω) is the Wiener filter of the current remainder, with a prior 1/(ω−ωk)

2,
and the time domain is calculated as the real part of ûn+1

k (ω) by Fourier transform,
where ω̂n+1

k is the center frequencies of the modal component, and where f̂ (ω) is the
frequency domain form of f (t).

(3) λ is updated as shown in Formula (5):

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(5)

where λ̂n+1(ω) is the Lagrange operator after iteration, and τ is the noise−
tolerance parameter.

(4) The suspensive condition of iteration is shown in Formula (6):

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε (6)

where ε is convergence criterion. Step (2) is repeated until the function converges,
which is to satisfy the condition of Formula (6).

2.3.2. Principle of Wavelet Threshold Denoising

Wavelet transform is a time–frequency joint analysis method with variable resolution,
which could automatically adjust the time window and frequency window according to
the changing characteristics of the signal [26]. The wavelet coefficient of useful signals
and noise interference were obtained by discrete wavelet transform of noisy signals [27].
According to the mathematical statistics of the two signals, the useful signal usually contains
the low−frequency part with stable behavior and the high−frequency part with unstable
change, and the larger amplitude is random signal, while the noise signal is usually the
high−frequency part of the signal, and the smaller amplitude is dispersed in the periodic
signal of the whole signal acquisition waveform [28]. Therefore, the respective wavelet
coefficients after wavelet transform have different trends with the change of scale. The
wavelet coefficients of useful signals increase or remain unchanged with the increase of
scale, and the noise decreases with the increase of scale. Noise and useful signals can be
effectively separated.

The basic principle of wavelet transform is to convolve the wavelet function, ψ(t), and
the signal function, f (t). The signal is discrete. To facilitate processing, the continuous
wavelet transform has to be discretized. The discrete wavelet basis function, ψ(t), is set.
After scaling a and shifting b, a = aj

0, b = kaj
0b0 can be taken to obtain a family of function

as ψj,k(t), as shown in Formula (7). The convolution of ψj,k(t) and signal f (t) can obtain
the discrete wavelet transform, DWTf (b, a), as shown in Formula (8), and the inverse
transform was performed to obtain the reconfigurable signal f (t), as shown in Formula (9).

ψj,k(t) = a−j/2
0 ψ

(
a−j

0 t− kb0

)
(7)
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DWTf (b, a) = a−1/2
∫ +∞

−∞
f (t)ψ∗

(
a−j

0 t− kb0

)
dt (8)

f (t) = c
+∞

∑
−∞

+∞

∑
−∞

dj,kψj,k(t) (9)

where dj,k is the convolution f (t) and ψj,k(t).

2.3.3. Denoising Steps Based on VMD−WT Algorithm

When the VMD algorithm is used to denoise the dynamic weighing signal, the noisy
signal is adaptively decomposed into multiple modal components, and the center frequency
and bandwidth of each component are determined. However, the useful signal and the
main noise in the signal are in the low−frequency part, and the wavelet threshold method
has strong local time–frequency domain analysis ability. Therefore, we combined VMD
and the wavelet threshold method, and applied it to the denoising of the tea dynamic
measurement signal. The main steps of the algorithm are as follows:

(1) Decompose the noisy weighing signal into multiple IMFs through VMD. Select-
ing appropriate decomposition layers can effectively avoid over−decomposition or
under−decomposition, which has a great influence on the decomposition result of the
signal. Therefore, the instantaneous frequency mean method [29] was used to solve
the decomposition level in this case. Hilbert–Huang transform was performed on
IMFs to calculate the mean instantaneous frequency of each IMF component, and the
mean instantaneous frequency at different decomposition levels, K, was compared.
When there is a significant curvature change at a certain K value, the decomposition
level is K−1.

(2) The modal component was determined to be signal−dominated or noise−dominated.
The frequency domain analysis of the tea dynamic weighing signal was carried out
to determine the frequency characteristics of the effective signal, and the modal
components dominated by noise were removed according to the center frequency and
bandwidth of each modal component. Then, the signal was reconstructed.

(3) The reconstructed signal was denoised by the wavelet threshold.
(4) The denoised signal was reconstructed by wavelet.

The flow chart of denoising of the tea dynamic weighing signal based on VMD−WT
is shown in Figure 2.

2.4. Evaluation Indicators

The signal−to−noise ratio (SNR) [30] was used to evaluate the denoising performance,
which is calculated by Formula (10). The SNR is the ratio of useful signal power and noise
power. The larger the SNR, the better the denoising performance. The weighing signal
was converted into a weight value, and the measurement relative error was calculated.
The relative error is calculated by Formula (11). The mean absolute error is the sum of
all relative errors divided by the number of samples, as shown in Formula (12). The
mean absolute error is usually used to represent the cumulative measurement accuracy of
dynamic weighing devices.

SNR = 10 log10
Ps

Pn
(10)

e = |qa − qr|/qr × 100% (11)

ê =
1
n

n

∑
i=1
|ei| (12)

where Ps is the power of useful signal, Pn is the power of noise, e is the relative error, qr is
the real weight, qa is the actual weight, and ê is the mean absolute error.
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3. Results and Analysis
3.1. Spectrum Analysis of Weighing Signal

The Fourier transform method could be used to analyze the frequency components
contained in the weight signal, and extract features of the effective signal and noise. In
practical operation, the non−load signal of the belt scale could be approximated as noise,
and the loaded signal is subtracted from the non−load signal to obtain the approximate
useful signal. Therefore, the Fourier transform method was used to analyze the spectrum
of the non−load signal and the loaded signal, and to extract features of each component in
the signal.

This experiment was carried out in the laboratory environment with a self−developed
electronic belt scale. When the belt was stable during continuous measurement, the
non−load signal and loaded signal of tea were collected from the weighing sensor, respec-
tively. Signal acquisition experimental methodology was as follows: The non−load signal
was measured at a speed of 0.2 m/s for a period time, followed by putting tea under the
same working conditions, and keeping the flow rate at 1 kg/min. The acquired signal was
divided into ten segments consisting of the same number of non−load signal points and
loaded signal points, respectively. The sampling frequency of the signal was 1000 Hz, and
the number of sampling points was 600.

The collected signal was divided into ten sections, and the spectrum analysis was
adapted. The results are shown in Appendix Figures A1 and A2. The spectrum analysis
of the non−load signal and loaded signal are shown in Figure 3a, b, respectively. The
frequency component of the non−load signal was mainly located at 15 Hz, with a small
number of frequency components at 45, 60, 90, 120, and 220 Hz. The frequency components
of the loaded signal were located at 3.3 Hz, with a small number of frequency components
at 10, 15, 45, 60, 90, 120, and 220 Hz.



Sensors 2022, 22, 4294 7 of 15

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16 
 

 

respectively. Signal acquisition experimental methodology was as follows: The non−load 
signal was measured at a speed of 0.2 m/s for a period time, followed by putting tea under 
the same working conditions, and keeping the flow rate at 1 kg/min. The acquired signal 
was divided into ten segments consisting of the same number of non−load signal points 
and loaded signal points, respectively. The sampling frequency of the signal was 1000 Hz, 
and the number of sampling points was 600. 

The collected signal was divided into ten sections, and the spectrum analysis was 
adapted. The results are shown in Appendix Figures A1 and A2. The spectrum analysis 
of the non−load signal and loaded signal are shown in Figure 3a, b, respectively. The fre-
quency component of the non−load signal was mainly located at 15 Hz, with a small num-
ber of frequency components at 45, 60, 90, 120, and 220 Hz. The frequency components of 
the loaded signal were located at 3.3 Hz, with a small number of frequency components 
at 10, 15, 45, 60, 90, 120, and 220 Hz. 

  
(a) (b) 

Figure 3. Spectrum analysis of the non−load and loaded signals of the electronic belt scale: (a) 
Non−load signal; (b) Loaded signal. 

During dynamic measurement of tea flow, there are mainly three kinds of interfer-
ence signals: mechanical interference signal, material interference signal, and environ-
mental interference signal. Among the above three interference signals, the mechanical 
interference signal is the main interference signal, which accounts for 50%. The material 
interference signal accounts for 40%, and its value decreases with the increase of weight. 
The environmental interference signal accounts for 10%, which is the minimum among 
three interference signals [31]. By comparing the spectrum statistical analysis of the 
non−load signal and the loaded signal, both contained a frequency component of 15 Hz, 
and its amplitude was about 200 dB. The loaded signal contained a frequency component 
of 10 Hz, with a slightly lower amplitude than that of the frequency component of 15 Hz. 
The mechanical interference signal was a 15 Hz frequency component, and the material 
interference signal was a frequency component of 10 Hz. In the load curve, the signal 
component with a frequency of about 3.3 Hz was the main component, while the noise 
signal was mainly the frequency component above 10 Hz, and mechanical interference 
signals, material interference signals, and weighing signals were in the low−frequency 
spectrum. 

3.2. Time–Frequency Domain Analysis of Weighing Signal Based on VMD−WT 
The VMD−WT method was further used to denoise the tea flow signal. The weighing 

signal was first decomposed by the VMD method, and the component that conformed to 
the frequency characteristics of the effective signal was extracted, and then the wavelet 

Figure 3. Spectrum analysis of the non−load and loaded signals of the electronic belt scale:
(a) Non−load signal; (b) Loaded signal.

During dynamic measurement of tea flow, there are mainly three kinds of interference
signals: mechanical interference signal, material interference signal, and environmental
interference signal. Among the above three interference signals, the mechanical interference
signal is the main interference signal, which accounts for 50%. The material interference
signal accounts for 40%, and its value decreases with the increase of weight. The en-
vironmental interference signal accounts for 10%, which is the minimum among three
interference signals [31]. By comparing the spectrum statistical analysis of the non−load
signal and the loaded signal, both contained a frequency component of 15 Hz, and its
amplitude was about 200 dB. The loaded signal contained a frequency component of
10 Hz, with a slightly lower amplitude than that of the frequency component of 15 Hz.
The mechanical interference signal was a 15 Hz frequency component, and the material
interference signal was a frequency component of 10 Hz. In the load curve, the signal com-
ponent with a frequency of about 3.3 Hz was the main component, while the noise signal
was mainly the frequency component above 10 Hz, and mechanical interference signals,
material interference signals, and weighing signals were in the low−frequency spectrum.

3.2. Time–Frequency Domain Analysis of Weighing Signal Based on VMD−WT

The VMD−WT method was further used to denoise the tea flow signal. The weighing
signal was first decomposed by the VMD method, and the component that conformed to
the frequency characteristics of the effective signal was extracted, and then the wavelet
threshold was used to denoise the component to remove the noise with a similar frequency.

The decomposition layer number should be selected first before VMD analysis. Accord-
ing to the instantaneous frequency mean value method, the original signal was analyzed,
and the decomposition level was selected here to be 1 to 9. Figure 4 shows the change of
the corresponding instantaneous frequency mean value when different K values were used.

As shown in Figure 4, the instantaneous frequency mean value of each component
presented obvious curve changes, when K was 6. Hence, level 5 was chosen as the de-
composition level in this case. In other words, the signal was decomposed into 5 IMF
components. The parameters of the VMD method were set as follows: decomposition level
was 5, the penalty factor, α, was 2000, the convergence criterion, ε, was 10−7, and the initial
center frequency, ω, was 0.

Figure 5 shows VMD decomposition results of the tea dynamic weighing signal.
The main frequency of each IMF component was determined by the instantaneous fre-
quency mean value method, as shown in Table 1. According to the spectrum analysis of
the weighing signal in Figure 3, the effective components in the signal were mainly the
low−frequency part below 10 Hz, namely the IMF1 component with the main frequency
of 3 Hz. The IMF component with the main frequency greater than 10 Hz was removed.
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However, after reconstructing the IMF1 component, the SNR of the signal was not high,
and the denoising performance was not ideal. According to the spectrum analysis of
IMF1, a small number of frequency components around 10 and 15 Hz still existed, and
the frequency of both the noise signal and the effective signal was in the low−frequency
range. The VMD method could remove most of the high−frequency noise caused by
environmental interference, while it was not able to effectively separate the noise signal
from the IMF1. Therefore, further study should be carried out to remove the 10 and 15 Hz
frequency components in the IMF1.
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Table 1. The main frequency of each IMF component.

IMF1 IMF2 IMF3 IMF4 IMF5

Main frequency 3 Hz 87 Hz 216 Hz 354 Hz 411 Hz

The WT method was performed after the reconstruction of the IMF1 component.
The parameters of the WT method were as follows: the decomposition level was 6, the
wavelet basis function was “sym6”, and the threshold function was set as hard thresholding.
Figure 6 shows the VMD−WT and VMD denoising results of the tea dynamic weighing
signal. The frequency components above 10 Hz were successfully removed after denoising
with VMD−WT. As shown in Figure 7, the signal curve was smoother than the VMD
reconstruction. This means that the mechanical interference noise and weighing object
interference noise were removed, and the effective noise within 10 Hz was retained. It
can be concluded that the VMD−WT method can effectively remove noise from the time–
frequency domain weight signal.
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3.3. Comparison of Denoising Results Based on Different Methods

To verify the denoising performance of VMD−WT, four traditional denoising methods
(WT, EMD, EMD−WT, and VMD) were also used to remove the noise of the tea dynamic
weighing signal, and the SNR was used to evaluate the denoising performance.

Figure 8 shows the frequency spectrum of the tea dynamic weighing signal with dif-
ferent denoising methods. The denoising performance of EMD was slightly better than that
of VMD, while some of the useful signals were removed. The modal aliasing might exist
during signal decomposition [32], as shown in Appendix Figure A3. It indicates that VMD
performed better in signal feature extraction. The WT method was not effective in remov-
ing high−frequency noise, but it showed better denoising results in the low−frequency
range. Moreover, the EMD method and the VMD method had better capability to denoise
high−frequency noise. Both the EMD−WT method and the VMD−WT method showed
good denoising capability for the tea dynamic weighing signal.

Figure 9 shows the SNR of the tea dynamic weighing signal with different denoising
methods. Among the five methods, the weighing signal denoising based on the VMD−WT
method showed the best results, with a SNR of 28.38 dB. The measurement sensitivity
and accuracy of tea flow were greatly improved compared with the raw signal (the SNR
was 2.47 dB). Therefore, the VMD−WT method is an effective method for adaptively
removing the noise in the tea weighing signal and improving the accuracy of the dynamic
measurement of tea flow.

3.4. Dynamic Measurement Results of Tea Flow Based on VMD−WT

To further verify the effectiveness of this method, the weighing test was performed
in the self−developed electronic belt scale, and the signals were collected ten times. The
sampling frequency of the weighing system was 5 Hz, and the running speed of the belt
scale was 0.2 m/s. To keep the test under the same working conditions, the electronic belt
scale was kept continuously running. The experimental steps were as follows: First, the
non−load experiments were carried out, and then the loaded experiments of 2000, 3000,
4000, and 5000 g of tea were carried out, respectively. Each group of weights was subjected
to ten experiments, and the average error of each group of weights was calculated. The
final cumulative error results are presented in Table 2.

As shown in Table 2, by counting the relative error of 50 measurements, the cumulative
measurement error before denoising was 1.95%, and the cumulative measurement error
after denoising was 0.88%. The cumulative measurement accuracy after denoising with
the VMD−WT method was improved, which was 55% higher than the cumulative mea-
surement accuracy before denoising. The experimental results show that the VMD−WT
method could effectively remove the noise of the dynamic weighing signal of tea and
improve the measurement accuracy in the dynamic measurement of the tea flow rate.
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Table 2. Comparison of cumulative measurement error results after denoising and before denoising.

Test
2000 g 3000 g 4000 g 5000 g

before after before after before after before after

No.1 2.38% 1.15% 1.84% 0.77% 1.50% 0.51% 1.29% 0.09%
No.2 1.98% 0.95% 1.64% 0.48% 2.56% 1.54% 1.22% 0.40%
No.3 2.57% 1.23% 1.21% 0.45% 1.48% 0.45% 1.31% 0.56%
No.4 1.19% 0.34% 1.57% 0.65% 1.87% 0.59% 3.43% 1.78%
No.5 1.85% 0.57% 1.65% 0.66% 1.65% 0.55% 1.35% 0.57%
No.6 3.56% 1.65% 2.54% 1.33% 2.35% 1.02% 1.75% 0.94%
No.7 2.35% 1.23% 1.35% 0.53% 1.78% 0.85% 1.86% 0.85%
No.8 1.57% 0.67% 2.73% 1.27% 3.23% 1.44% 2.76% 1.32%
No.9 1.39% 0.85% 2.07% 1.02% 1.98% 0.75% 2.13% 1.56%

No.10 1.67% 0.89% 1.85% 0.83% 1.71% 0.62% 1.96% 1.21%

Cumulative measurement error before
denoising 1.95% Cumulative measurement

error after denoising 0.88%

4. Conclusions

During the tea flow dynamic measurement, the noise caused by mechanical vibration
and other factors disturbs the weighing signal, which leads to low measurement accuracy.
A denoising method based on the VMD−WT method was proposed to adaptively remove
the noise in the tea weighing signal and improve the accuracy of the dynamic measurement
of tea. The VMD method was used to decompose the tea weighing signal, and the IMF
components conforming to the frequency characteristics were extracted. Then, the WT
method was used to remove the noise close to the effective signal frequency. The result
showed that the noise was mainly mechanical interference noise (15 Hz) and weighing
object interference noise (10 Hz). The VMD−WT method could effectively remove this
part of the noise, and the denoising performance was better than that with WT, EMD,
EMD−WT, and VMD. The cumulative measurement accuracy of tea flow measurements
remained at about 0.88%, which was 55% higher than the measurement accuracy before
denoising. This study provides a novel method for improving the dynamic measurement
accuracy of the tea flow rate, which is important for tea digital control and processing.
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