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Abstract: The paper focuses on the problem of detecting unmanned aerial vehicles that violate
restricted airspace. The main purpose of the research is to develop an algorithm that enables the
detection, identification and recognition in 3D space of a UAV violating restricted airspace. The
proposed method consists of multi-sensory data fusion and is based on conditional complementary
filtration and multi-stage clustering. On the basis of the review of the available UAV detection
technologies, three sensory systems classified into the groups of passive and active methods are
selected. The UAV detection algorithm is developed on the basis of data collected during field
tests under real conditions, from three sensors: a radio system, an ADS-B transponder and a radar
equipped with four antenna arrays. The efficiency of the proposed solution was tested on the basis of
rapid prototyping in the MATLAB simulation environment with the use of data from the real sensory
system obtained during controlled UAV flights. The obtained results of UAV detections confirmed
the effectiveness of the proposed method and theoretical expectations.

Keywords: UAV; anti-drone system; data fusion; drone detection; identification; recognition; sensing
technologies; tracking algorithm

1. Introduction

During the last two decades, unmanned aerial vehicles have experienced enormous
development [1,2]. Since unmanned aerial vehicles (UAVs) were released for general civil
use, the number of incidents involving them have been constantly increasing. Unfortunately,
the threats they pose may endanger public and personal safety.

This article comprehensively raises the issue of anti-drone systems technology. The
current state of knowledge in this area is presented, as well as an overview of the existing
market solutions in the field of anti-drone systems that enable counteracting UAVs [3–7].
Radar, visual, acoustic and radio technologies that are used for UAV detection are charac-
terised. The fundamental research problem raised in the article concerns the data fusion
from the AeroScope radio system, EchoGuard radar equipped with four antenna sets and
ADS-B in order to develop a UAV detection algorithm in 3D space. The article elaborates
on the process of pre-processing data from the afore-mentioned sensors, the data synchro-
nisation process and radar data fusions in order to develop a drone detection algorithm.
The algorithm was tested on actual data.

In general, the main goal of the paper was to develop an algorithm based on the data
fusion from various sensors, enabling the detection, identification and recognition in 3D
space of a UAV violating restricted airspace.

The structure of the paper is as follows. First, a brief review of anti-drone systems
and a wide range of UAV detection technologies is provided. Then, the concept of the test
procedure in real-word conditions, in the presence of both single and multiple drones, is
presented. Section 5 contains a description of selected sensors along with data analysis,
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which has a significant impact on the choice of data fusion method and the development
of an algorithm. Section 6 presents the data fusion algorithm along with a description
of the individual stages of system design. Finally, Section 7 presents the results of UAVs
detection, performed on the data of the actual experiment. The conclusions are discussed
in the last section.

2. Review of Anti-Drone Systems

Currently, there are numerous solutions in the field of anti-drone systems available on
the market. Their main task is to counteract UAVs by detecting and combating them using
kinetic methods or energy directed at the UAV in the form of an electromagnetic pulse [8,9].
The most advanced technical solutions use full azimuth coverage of 360◦ and hemispherical
elevation coverage in the range of −45◦ to 225◦. The accuracy of computing the azimuth
resolution for these types of systems can even reach the value of ±0.5◦, and the accuracy of
computing the elevation is ±0.7◦. Other competitive systems of this type are available on
the market, most often used for limited spatial coverage, both in azimuth and elevation.
An example is the AARONIA system based on the AARTOS detector (RF detector), which
provides an elevation coverage of 10◦, and the SpotterRF system (3D-500 Radar), which
provides an elevation coverage of 90◦. In addition to the above-mentioned systems that are
approved for operation in urban areas, there are also systems that, due to their emission
parameters, are not approved for urban usage. These include the Blighter (A400 Radar),
ROBIN (ELVIRA), ELTA (ELM2026) and Echodyne (EchoGuard) systems, which not only
are not approved for urban usage, but also allow you to only cover the space of: 180◦ in
azimuth and 20◦ in elevation, 360◦ in azimuth and 60◦ in elevation, 90◦ in azimuth and 60◦

in elevation and 120◦ in azimuth and 80◦ in elevation, respectively. In the latest technical
solutions, a single radar sensor is able to provide complete hemispherical spatial coverage
and semi-spherical elevation coverage, so there is no need to integrate several RF sensors.
This approach minimises mutual electromagnetic interference and at the same time enables
the efficient use of the allocated spectrum resources. Furthermore, due to the use of a
single radar sensor, the weight of the anti-drone system is significantly minimised. An
example is the RS800 solution (by ARTsys360), the weight of which is approx. 5 kg, which
is incomparably smaller than other systems operating in urban areas, such as SpotterRF
or AARONIA, whose weights are approx. 6 kg and 30 kg, respectively. A highly crucial
parameter of anti-drone systems is the detection range. This parameter largely depends
on the radar cross section (RCS) of the UAV and the speed at which the recognised UAV
is moving. Furthermore, a UAV radar cross-section signature may be a highly efficient
distinguishing feature in the process of drone detection and classification as shown in [10].
On average, the detection range of drones for this type of systems ranges from 800 m
to 3500 m, moving at a speed of approx. 40 m/s. The exemplary EchoGuard radar by
Echodyne is able to detect drones at a distance of 900 m, people at a distance of 2200 m
and vehicles at a distance of 3500 m. The accuracy of detection is also a crucial parameter
of anti-drone systems, the value of which should be as high as possible, especially when
detecting and tracking quickly manoeuvring objects in low-altitude urban areas [11]. In
addition to technical parameters, it is also worth mentioning the functional parameters of
anti-drone systems, such as software-defined functionality or sensory multi-functionality.
The software-defined functionality enables additional functions of the anti-drone system,
such as automatic self-calibration, dynamic detection and frequency allocation, dynamic
disturbance detection, the automatic launch of anti-disturbance modes, remote system
operation and configuration and software updates [12]. The sensory multi-functionality
of anti-drone systems is based on the application of multisensory sensor fusion (radar,
optical, thermal imaging) enabling the detection and tracking of various types of objects,
i.e., drones, people and vehicles in full azimuth and hemispheric coverage, and feature
extraction for the classification process of detected objects [13].

For this reason, the data fusion process is a relevant technical and functional parameter
that directly affects the effectiveness of UAV detection, recognition and identification by the
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anti-drone system. Therefore, a modern anti-drone system is a heterogeneous platform on
which various sensors and effectors are installed. Only in this way is a modern anti-drone
system able to effectively detect, recognise, classify and incapacitate UAVs. Commercial
anti-drone systems on the market feature minimal sensory fusion. The mentioned systems
are not optimised in terms of the integration of radar, optical or thermal imaging sensors
on one platform. This leads to their functional degradation and selective use in the object
detection process, while minimising the effectiveness and probability of object detection.
At the moment, the analysed systems presented in Section 2 do not have the characteristics
of the so-called ‘data fusion’. Also, commercial solutions do not provide these features,
contrary to the method proposed by the authors of this article. To conclude, it can be
said that most of the anti-drone systems are dedicated to single purposes that prevent the
fusion of many different sensors. By optimising the transmitted waveform and automatic
frequency allocation to avoid mutual interference, the ability to transmit detected objects in
order to increase the probability of detection and minimise false alarms and the possibility
of fusing several sensors on a single display in the GUI, the synergistic coexistence of the
anti-drone system is ensured.

3. UAV Detection Technologies

The methods of detecting unmanned aerial vehicle (UAV) interference can essentially
be divided into passive and active methods. In [14], the authors present a comprehensive
survey on anti-drone systems and anti-drone system analysis, investigating a wide range of
anti-drone technologies and deriving proper system models for reliable drone defence. Each
of these methods has its own typical advantages and disadvantages. The most relevant
methods and their features are characterised below.

The main advantage of all passive methods is their undetectability by an intruder. This
is highly important if you plan to detect and monitor the activity of an intruder in order to
identify his intentions. Most passive methods are usually less capable of detecting threats,
although this is not always the case. Passive methods are based on receiving signals sent by
the drone in different frequency bands (it can be a radio, acoustic or optical signal). There
are also methods of detecting magnetic anomalies caused by a moving unmanned vehicle,
which by its nature causes a local disturbance of the magnetic field. Observation with the
application of an optical camera system using visible light technology or thermal imaging
is also a highly effective method. In general, optical observation systems are capable of
detecting UAVs at a certain distance. This task is performed with the use of specialised
imaging cameras and a mount that allows you to observe the entire protected area. As
far as the automatic observation method is concerned, it most often uses image analysis
algorithms that are based on the changes in the observed image. This allows moving
objects to be distinguished in relation to the stationary background. Initial detection is
followed by classification based on matching the observed image to the image pattern. This
method requires using very high-resolution cameras to ensure that the image is scanned at
a distance of several hundred metres from the camera. The required resolution increases
with the square of the distance. In [15], the authors show how the performance of a UAV
detection and tracking concept based on acousto-optical technology can be powerfully
increased through active imaging. Of course, high resolution requires enormous computing
power of the image analyser in order to be able to detect, classify and possibly identify
the object in real time. In case of performing in the dark, a system of thermal imaging
cameras is used. The advantage of this solution is the fact that the drone usually leaves a
noticeable thermal trace during the flight due to the high power generated by its automation.
In [16], the authors examined the CNN model that is suitable for visible camera-based
drone identification. One of the passive methods of UAV detection is the acoustic method,
which relies on tracking the object through listening and sensing and then analysing the
sound. This method has been known practically since the beginning of aviation and was
already used during World Wars I and II. Using a multi-microphone system, it is possible to
pinpoint the direction with an accuracy of several dozen degrees. By using signal analysis
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with the application of appropriate patterns, it is possible to identify, with high probability,
the sound emitted by the drone, which is quite distinctive. A significant drawback of the
mentioned method is the influence of ambient sounds (the so-called acoustic background),
which has a negative impact on the detection, classification and identification of UAVs. In
addition, the strength and direction of the wind have a highly crucial bearing on the range
of the acoustic method. Due to the highly limited range resulting from the high attenuation
of the acoustic wave in the space of its propagation, acoustic waves are used sporadically
for UAV detection. Another passive method is radio-electronic spectrum monitoring, which
allows the source of the radio signal to be detected and located. When using this method to
detect UAVs, it is necessary to know the radio band that is used to communicate with the
drone and the signal structure, allowing for the approximate identification and possible
exclusion of irrelevant signal sources. An antenna system with a dedicated receiver is
required to detect such a radio-electronic signal. To determine the direction from which
the signal is transmitted, it is necessary to provide a directional antenna or an array of
antennas providing information to the multi-channel data analyser. This method can be
used to determine the direction from which the signal is transmitted, but to pinpoint a
specific position (dislocation), at least two such tracking units are required to pinpoint the
position of the source by using the triangulation method [17]. Another desirable feature
is the ability to identify the radio signal sent both by the drone and the operator itself in
order to locate the position of said operator of the unmanned aerial vehicle. The ability to
read the transmitted information allows you to obtain telemetry data, for instance, the data
about the GPS position. This is possible with standard drones purchased on the market that
do not use special encryption. A potential disadvantage of the system is the problem of the
identification and interception of radio data in the case of specially developed non-standard
structures, other than the so-called ‘off-the-shelf technology’ (COTS—commercial off-the-
shelf). Another problem is the use of the drone structure for the so-called ‘silent flight’. In
this mode, the UAV turns off the two-way radio communication immediately after take-off
and can only receive the signal from the operator (uplink). Then it is impossible to detect it
in the standard radio band, and the drone flies along the programmed route and lands at a
predetermined location.

Active methods use the signal they send to detect and locate unmanned aerial vehicles.
Most often it is a radio (or radar) signal in the form of a directional electromagnetic beam.
The afore-mentioned signal reflecting off the surface of an object or target is detected [18].
Knowing the delay of the reflected signal, the distance can be determined. The method is
effective for purposes several times greater than the wavelength used in the device. Due to
the fact that most often they are centimetre waves or shorter, it is possible to detect drone-
type objects. The disadvantage of active methods is the easy detection of the ‘pinpoint’
attempt. In terms of operational activities, this enables an intruder to attempt to withdraw
from the intended activities or to hide. Active UAV detection systems operating in the
radio band are not dependent on the time of the day or weather conditions. They are
widely used for detecting and locating sources of electromagnetic waves, and in case of an
active radar beam, they are able to detect even a small object in the protected zone. In [19],
the authors design a drone detection mechanism using the RF control signal exchanged
between the drone and its remote controller. Fundamental techniques based on radar
detection work very well, but they may often be insufficient when confronted with very
small UAVs [20]. There are several studies on the analysis of radio signals emitted by
UAVs and their controllers. The authors of [21] examine the distinctive features of the
radio spectrum for some of the most popular UAV systems and propose an algorithm for
detecting the presence of UAVs in the analysed radio spectrum. In [22], the authors propose
a per-drone iterated algorithm that optimises drone-cell deployments for different drone-
cell numbers and prevents the drawbacks of the pure particle swarm optimisation-based
algorithm. The commercial UAV market is developing in an extremely swift manner and
new models are based on newer and newer technologies. Therefore, it is vital to update
the signature databases for given models, regardless of the selected detection method.
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Nevertheless, the radio analysis approach seems to have the lowest variability. Currently,
the most popular and the most flexible tool for radio spectrum analysis is software defined
radio (SDR) platforms. These are software-tunable radio system platforms that allow for
signal processing in digital form. This process is mainly based on the conversion of the
recording of the radio signal from the time domain to the frequency domain by means of
the Fourier transform and its appropriate analysis [23,24].

Active Methods of Disrupting and Directly Interfering with the UAV

Another way to prevent the drone from undesirable trespassing directly into the safety
zone is active interference. This can be executed by disrupting the GPS signal that is
necessary for the aircraft positioning and navigation, and also by disrupting or preventing
the signal transmission between the operator and the aircraft. Jammers are used for this
purpose. They can operate in the band of a specific device or system (e.g., GPS signal) or
in a wideband, e.g., to interfere with data transmission. This type of device is most often
equipped with a directional antenna that sends a beam aimed at the UAV that needs to be
disabled. Sector or omnidirectional antennas are also used to operate in all directions. This
solution is used in the defence of a large sector, when it is difficult to locate the target of
the attack and precisely pinpoint the direction the UAV is attacking from. The methods
of direct interference include active defence through the so-called ‘kinetic’ attack, which
may take the form of firing dismantling missiles at the UAV (whose individual parts, after
dismantling, hang on Kevlar lines and get entangled with the UAV rotors) or throwing a
neutralising net at the hostile UAV. These types of methods can only be used to a limited
extent due to the safety of the people in the vicinity. All the detection methods used, along
with the sensors and the entire measurement infrastructure, must be connected to an IT
system that supervises all activities. It is necessary to secure and organise the work of
security services [25]. The structure of the system must enable data to be received from all
sensors and security systems, archived and presented in order for appropriate actions to be
taken by the system staff. In the case of large objects, it will usually be a distributed multi-
station system with several levels of decision-making, both in the context of extracting the
signatures of processed signals and building constant vectors (patterns) in the database for
further recognition and identification [26].

In the next part of the paper, we will focus on the detection of UAVs that violate the
restricted airspace, and not on methods of disrupting and directly interfering with UAVs.
Our considerations concern the development of multisensory data fusion, which allows for
the precise detection, identification and recognition in 3D space of UAVs or UAV formations
with the distinction of individual platforms. Therefore, the review of anti-drone systems
presented in Section 2 made it possible to assess the current state of the art in the studied
area, while the available UAV detection technologies presented in Section 3, in particular in
the field of sensory systems, allowed for the selection of specific sensors that are the subject
of research in the next part of the paper.

4. Data Acquisition during Operational Activities

The main purpose of this operational procedure is to acquire data from a real sensory
system operating in real conditions similar to the future operation of the system. In order to
recreate the scenario of a monitored airspace violation, archiving necessary data is required,
such as:

• Test start time;
• UAV take-off time;
• Time of violation of the observed airspace;
• Flight path (spatial coordinates associated with recording time);
• Flight parameters.

Figure 1 illustrates the concept of the test procedure. The flight scenario was defined
so that the flight trajectory was inside the observation zone.
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The data acquisition process took place in real conditions during operational activities
under the supervision of qualified operators using unmanned aerial vehicles:

• DJI Matrice 600 with an ADS-B transponder on board;
• DJI Mavic 2.

On the basis of the review of the available UAV detection technologies carried out in
the previous section, three sensory systems classified into the group of passive and active
methods were selected. At this stage, a holistic approach was applied and the sensors
were selected in order to obtain complementarity of the data. At the sensor selection stage,
the acoustic method based on tracking and analysing the sound trace emitted by a flying
object was abandoned. A significant disadvantage of the method mentioned above is the
influence of ambient sounds (the so-called acoustic background), which has a negative
impact on the detection, classification and identification of UAVs. Another disadvantage is
the strength and direction of the wind, which have a significant impact on the range of the
acoustic method.

Therefore, taking into account the above, the following sensors were selected, from
which data were collected during the tests:

• ADS-B transponder;
• DJI AeroScope (the notation ‘AEROSCOPE’ and ‘AeroScope’ will be used interchange-

ably hereafter) radio system for tracking radio communication between the UAV and
the operator;

• EchoGuard radar equipped with four antenna arrays covering a full angle of 360◦

horizontally and ±40◦ elevation (will be referred to as ‘radar’ hereafter).

As a result of the tests performed, three data sets were obtained each time, respectively,
for each of the sensors. Further on in the paper, the symbols used in the results tables will
be explained and the time plots of selected quantities will be presented in a graphical form.

5. Sensory Data Analysis

The sensors used in the system under construction determine the use of the follow-
ing methods to develop effective data fusion algorithms ensuring UAV detection in a
controlled airspace:

• Methods based on the ADS-B system;
• Passive radiolocation methods (RF—radio frequency);
• Active radiolocation methods (radars).

5.1. ADS-B Transponder

According to the amendment to the aviation law from 31 December 2020, each UAV
should be equipped with an ADS-B transponder. The purpose of such an operation is
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to integrate the UAV with the controlled airspace in which no aircraft can move freely
without being visible on the radar by flight controllers and other aircraft, e.g., a passenger
equipped with a TCAS (Traffic Alert and Collision Avoidance System)—a collision warning
and avoidance system that responds to signals from ADS-B transponders.

The system is event-based and provides data of all the aircraft currently in the airspace
and within the range of the ADS-B receiver. Data are contained in an array of 39 columns.
Data logged by ADS-B receiver indicate the presence of various aircraft types, classified
according to the ICAO classification (International Civil Aviation Organization):

• 0 = unidentified (no information on aircraft type);
• 2 = small aircraft (from 15,500 to 75,000 lb);
• 3 = large aircraft (from 75,000 to 300,000 lb);
• 5 = heavy > 300,000 lb;
• 14 = UAV (unmanned aerial vehicle).

Therefore, data analysis requires a preliminary filtration, narrowing down further
considerations to unmanned aerial vehicles only. For the purposes of sensory information
analysis and the synthesis of the data fusion algorithm, the following vector of measurement
values describing the current state of the system was adopted:

X1 =
[

ICAO, lat1, long1, h, y, Vxy, Vz, ET
]

(1)

where:
ICAO is the aircraft type code;
lat1 is the latitude;
long1 is the longitude;
h is the altitude;
y is the heading;
Vxy is the horizontal velocity;
Vz is the vertical velocity;
ET is the category of the aircraft emitting the signal.
The data obtained from the ADS-B transponder are reliable on the condition that

the UAV is equipped with such a device. However, the problem is the mass of the ADS-
B transponder. Even miniaturised devices are not light enough to be lifted by drones
weighing less than 2 kg, and these currently fly the most in the airspace. Accordingly, as of
today, there is no guarantee that all drones will be equipped with an ADS-B transponder,
so this article proposes a fusion of data from several different sensors.

5.2. AeroScope Radio System

The essence of the method is the detection of the RF radio communication signal
between the UAV and the ground operator. The flying platform communicates with the
controller in a specified frequency band. Once this frequency band has been identified,
there is a high probability that a UAV is within the detection range.

The system is event-based and provides pre-processed data in the form of a table with
19 columns, each of which contains temporal data of a specific physical quantity. For the
purposes of further analysis of the sensory information and the synthesis of the data fusion
algorithm, the following vector of measurement quantities describing the current state of
the system has been assumed:

X2 = [V, lat2, long2, d, h, y, DT, Did] (2)

where:
V is the flight velocity;
lat2 is the latitude;
long2 is the longitude;
d is the distance of the UAV from the sensory system;
h is the altitude;
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y is the heading;
DT is the UAV type;
Did is the UAV identifier.
Based on the obtained flight logs, the time diagrams of basic physical quantities and

the reconstructed UAV flight altitude are presented below.
On the graph showing the changes in the distance of the UAV in relation to the

AeroScope receiver (Figure 2) and the graph showing the flight altitude (Figure 3), there are
noticeable disturbances in the form of large deviations from the regular flight path. Near
the 100th and 175th sample, there are visible abrupt changes in distances of a large value,
which are not realistic to achieve during the flight with a standard UAV. It can be concluded
that these are disturbances that need to be filtered in the step of signal processing. The
solution to this problem has been widely discussed in [27].
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5.3. EchoGuard Radar

The radar system is equipped with four antenna assemblies. The scanning range
of a single radar/antenna is 120◦ in azimuth (±60◦) and 80◦ in elevation (±40◦). The
antennas are placed every 90◦ covering the entire area of 360◦ in azimuth. Taking into
account the scanning range of a single antenna of 120◦, common scanning areas for adjacent
antennas appear.
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The system provides data in the form of a table containing 24 columns, each of which
is the time data of individual state variables. For the purposes of further analysis of the
sensory information and the synthesis of the data fusion algorithm, the following vector of
measurement quantities describing the current state of the system has been assumed:

X3 =
[

PUAV, CL, RCS, az, el, R, x, y, z, Vx, Vy, Vz
]

(3)

where:
PUAV is the probability of UAV detection;
CL is the confidence level;
RCS is the radar cross-section;
az is the estimated azimuth;
el is the estimated elevation;
R is the estimated distance between the UAV and radar;
x, y and z are the estimated UAV coordinates relative to the radar (in the Cartesian

coordinate system);
Vx, Vy and Vz are the velocity components of the UAV in the x, y and z axes, respectively.
Based on the flight logs stored, the time graphs of two indicators that will be used in

the multisensory data fusion process are presented below: the probability of UAV detection
(Figure 4) and the detection confidence level (Figure 5).
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Information from several indicators, such as the detection probability (Figure 4) and
the confidence level (Figure 5), may indicate detections classified with high probability as
the UAV.
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6. Sensory Fusion Concept

The flight logs contain information acquired by three types of sensors. Each of them
has a different operating principle, and thus is a source of broad-spectrum data that
complement each other. Moreover, each aforementioned information source bears some
uncertainty and inaccuracy; therefore, the fusion of the information provided by all these
sources makes it possible to improve the certainty of detection. There are several known
data fusion methods based on, e.g., the Kalman filter, complementary filter, weighted
function or prediction methods. The most common method of multisource data fusion is
based on the Kalman filter concept [28]. Such an approach fits well in the situations when
the dynamics of individual data sources vary significantly, which is not the issue of the
study presented. The performed in-depth data analysis focused our investigation on data
fusion through their conditional complementarity depending on the current conditions,
imposed by the type of the identified UAV and its equipment (e.g., the presence of the
ADS-B system). Moreover, data selected to be fused are the result of multistage analysis
and extraction. For this reason, the application of the Kalman filter-based approach, which
was nevertheless considered, was ultimately abandoned at the early stage of the project
development. The conditional complementary filtration, which is the second reasonable
methodology for multi-source data fusion, was used instead. The data analysis carried out
in the previous section allowed for the formulation of several observations:

• Each sensor works asynchronously in an event-based way;
• Data provided by the AeroScope and EchoGuard radar systems contain interference

in the form of short duration pulses of high amplitude;
• The ADS-B system provides information about all the aircrafts in the airspace which

are within the range of the ADS-B receiver, both manned and unmanned;
• None of these sensors allows a complete detection, recognition and identification procedure;
• The desired effect can be achieved by fusing data from several sensors on the basis of

intelligent information complementarity.

Figure 6 illustrates the concept of the data fusion process. As can be seen, this pro-
cess is performed sequentially, through three stages. There are six independent informa-
tion sources at the process input: ADS-B and AEROSCOPE transponders as well as four
ECHOGUARD radar antennas. Since the data coming from transponders have different
features than those provided by radar, they are processed independently. At the first
pre-processing stage, outliers are detected and removed from the data sets. In the next
phase, the data are synchronized in relation to the system initialization moment, with the
given sampling period.

Sensors 2022, 22, 4323 10 of 23 
 

 

6. Sensory Fusion Concept 
The flight logs contain information acquired by three types of sensors. Each of them 

has a different operating principle, and thus is a source of broad-spectrum data that com-
plement each other. Moreover, each aforementioned information source bears some un-
certainty and inaccuracy; therefore, the fusion of the information provided by all these 
sources makes it possible to improve the certainty of detection. There are several known 
data fusion methods based on, e.g., the Kalman filter, complementary filter, weighted 
function or prediction methods. The most common method of multisource data fusion is 
based on the Kalman filter concept [28]. Such an approach fits well in the situations when 
the dynamics of individual data sources vary significantly, which is not the issue of the 
study presented. The performed in-depth data analysis focused our investigation on data 
fusion through their conditional complementarity depending on the current conditions, 
imposed by the type of the identified UAV and its equipment (e.g., the presence of the 
ADS-B system). Moreover, data selected to be fused are the result of multistage analysis 
and extraction. For this reason, the application of the Kalman filter-based approach, which 
was nevertheless considered, was ultimately abandoned at the early stage of the project 
development. The conditional complementary filtration, which is the second reasonable 
methodology for multi-source data fusion, was used instead. The data analysis carried out 
in the previous section allowed for the formulation of several observations: 
• Each sensor works asynchronously in an event-based way; 
• Data provided by the AeroScope and EchoGuard radar systems contain interference 

in the form of short duration pulses of high amplitude; 
• The ADS-B system provides information about all the aircrafts in the airspace which 

are within the range of the ADS-B receiver, both manned and unmanned; 
• None of these sensors allows a complete detection, recognition and identification 

procedure; 
• The desired effect can be achieved by fusing data from several sensors on the basis 

of intelligent information complementarity. 
Figure 6 illustrates the concept of the data fusion process. As can be seen, this process 

is performed sequentially, through three stages. There are six independent information 
sources at the process input: ADS-B and AEROSCOPE transponders as well as four 
ECHOGUARD radar antennas. Since the data coming from transponders have different 
features than those provided by radar, they are processed independently. At the first pre-
processing stage, outliers are detected and removed from the data sets. In the next phase, 
the data are synchronized in relation to the system initialization moment, with the given 
sampling period. 

 
Figure 6. Diagram illustrating sensory fusion concept. Figure 6. Diagram illustrating sensory fusion concept.



Sensors 2022, 22, 4323 11 of 23

In the last stage synchronized data are fused in two steps. In the first one, indepen-
dently, detections registered by transponders are merged using an averaging operation,
while detections recorded by the four radar antennas are fused with the complementary
filter. After this, these two independent channels are combined by the conditional merging.

6.1. Data Pre-Processing

Since it is much easier to analyse and process distance-based indices in the Cartesian
space, all data on the location of detected objects are converted to the common Cartesian
coordinate system, fixed to the centre of the radar station and oriented as follows: North-
East-Up. Transponder data are converted from geographical coordinate space (lon-lat-alt).
Radar readings are measured in a Cartesian frame fixed to individual radar antennas, and
these data also have to be converted into the common coordinates frame.

As was mentioned above, the first step of the procedure consists of removing bad
samples which are not going to be used in the fusion process. Since the data packages
emitted by transponders have a relatively long spatial range, the receivers which are part of
the system described can record information coming from many, often very distant, flying
objects. So, the first operation which has to be performed is removing these detections
using the distance-based thresholding. The ADS-B sensor can receive data broadcast by
large aircrafts which are out of the scope of the system described. Therefore, in the first
stage of signal processing, AV emitter type filtration was used. This means that from
among all the aircraft identified by the system, only the data related to unmanned aerial
vehicles (UAVs) should be extracted. In this case, a dedicated conditional filtering was
used in which the ‘PingDetectionemitterType = 14’ parameter was used to extract the UAV.
This parameter defines the category of the aircraft, and the value of ‘14’ unambiguously
determines the unmanned aerial vehicle.

Taking into account the radar, the distance-based thresholding is also the first reason-
able criterion of removing outlying detections. However, the radar software algorithms
mark each detection with two additional tags which are useful in further data analysis. The
first one, which is named UAV Probability, ranges from 0 to 1 and describes the certainty that
the object detected belongs to the UAV class. The second one is the Confidence Level, which
takes the values from the range of [0–100] and reflects the confidence that this detection is
not measurement noise. In the pre-processing, high values of these tags are used to narrow
down the set of analysed data.

6.2. Data Synchronisation

The multi-sensory fusion method outlined so far is based on the assumption that all
data provided by particular sensors of the system are synchronous. Such an assumption
is necessary to analyse spatial relations between detected objects. This means that for
each instance n of discrete time, data sets determining detections collected at the same
time can be distinguished: Sk(n), k = 1, . . . , K, where n is the index of the given sensor.
In real systems, such as the system described in this paper, both moments of detections
and moments of recording them are event-related. This means that after classifying the
given measurement (reading) as a detection of a UAV by the sensor algorithm, it is stored
in the log-register with the time-stamp of the given sensor. The time-stamp is related
to the particular sensor’s clock. Therefore, the first stage of the data fusion process is
data synchronisation. For each instance n of discrete time, the following mapping has to
be made:

Lk(i)→ Sk(n) (4)

where i denotes the detection index recorded in the log-register of the kth sensor, whereas n
defines subsequent moments in time, tn = n∆t, n = 1, 2, . . ., discretised with the sampling
period ∆t. It is performed by labelling elements of original sets Lk with indices belong-
ing to the given set Sk(n). Each set contains detections acquired in the period of time
tε< (n− 1)∆t, n∆t >. In particular, these sets may be empty, which means there was not
any detection in the given time interval. Each record of data provided by individual sensors



Sensors 2022, 22, 4323 12 of 23

is given a unique identification number. In each sample period n, multiple detections of the
same ID can be registered. During the process of synchronising, these detections have to be
merged into a single one. This operation can be performed by using various operators. In
the case of this work, the averaging operation was applied.

6.3. ADS-B and AEROSCOPE Data Fusion

The idea of a complementary filter is well known from inertial measurement units
IMU, the task of which is to estimate the orientation of the UAV based on measurements
from independent sensors, characterised by the complementation of information in the
frequency domain [29–34]. While analysing the sensory data acquired by the system, it was
noticed that within some areas, the detections provided by multiple sensors complement
each other. Detections of the ADS-B and AeroScope systems are very similar, provided that
the observed UAV is a DJI platform. In cases where the observed area is violated by a UAV
of another manufacturer, then the ADS-B system detections will complement the radar
indications. Taking into account the above observations, a data fusion based on conditional
complementarity was proposed (Figure 7).
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Considering the filter’s activity in the assumed time interval, it checks first whether
the ADS-B and AeroScope systems have detected the presence of the UAV. If both sensors
registered detections, then these detections are averaged in the considered time interval. If
the detection appeared only in the data doming from the ADS-B, it means that the detected
UAV is not a DJI drone, and in this case, detections provided by the ADS-B are taken as the
result of the fusion. However, when the ADS-B and AEROSCOPE systems do not show
UAV activity, and the detections appear only in the radar readings, then most likely there is
a UAV of a different manufacturer than DJI in the observed area, with neither an ADS-B
nor an AEROSCOPE transponder installed. Therefore, the output data of this part of the
system take the form of a conditional sum:

T(n) = S5(n) ∪ S6(n) ∪ S5,6(n) (5)

where S5,6(n) is the average of the elements of data sets S5 and S6.

6.4. Radar Data Fusion

Radar enables detection, localisation and motion parameter measurements of an object
moving within its range. The detection range of a radar is dependent on its sensitivity and
the spatial configuration of its antennas. Also, environmental conditions taken together
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with the aforementioned factors imply that the same object tracked by multiple antennas
may be detected with different accuracy and certainty. For example, the certainty of an
object detection moving at the limit of the sensor’s range is usually lower than the object
localised in the center of the detection area.

So, having information about detections coming from multiple radar antennas moni-
toring the same observation area, it is usually possible to improve detection accuracy and
certainty. Figure 8 gives an interpretation of this case. There is a moving object within the
range of two antennas of the radar station (S1 and S2; their detection areas are plotted with
red and blue colors). The real localisation of the object in subsequent moments in time is
marked with black circles, while its current location in the nth moment is marked with a
blue circle. Detections of this object registered by antennas S1 and S2 are marked with the
red circle and the blue star, respectively. The result of the fusion of information provided
by these two sensors is plotted with the black circle.
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In the case of multiple detections, the problem is determining which of the detections
represent the same object, then how to make their fusion. In this paper, we applied the
distance-based clustering and complementary filtration with weighting factors calculated
as functions of the certainty factor.

Let us assume that the given area is monitored by four radar antennas of different
spatial configurations. Let us also assume that M unidentified objects are moving within
this area. The set of detections captured by the kth antenna in the time n is denoted as

Sk(n) =
{

dk
i

}
, i = 1, 2, . . . , M, k = 1 . . . 4 (6)

where
dk

i =
(

Pk
i , ck

i

)
, ck

i ∈ [0, 1] (7)

The Pk
i denotes the ith detection of the kth antenna described in Cartesian spatial

coordinates, while ck
i is the detection certainty factor estimated by the internal algorithm of

the radar system.
The first stage of the fusion procedure is identifying the given object among all

detections captured by particular antennas. It is performed by determining the similarity
(in the sense of the metric used) of elements belonging to the sets S1 . . . S4. The similarity is
related to the spatial proximity of the elements; therefore, the most convenient and intuitive
metric is the Euclidean one, which was used in the described approach.
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Two elements captured by different sensors at the same moment n in time are consid-
ered to be similar if the distance between them is smaller than some threshold value:∣∣∣dk

i − dl
j

∣∣∣ < THR, k, l = 1, 2, . . . , 4, i ∈ [1, Mk], j ∈
[
1, Mj

]
(8)

This threshold depends on many issues, such as the spatial resolution of the sen-
sors, and is tuned experimentally. The result of the similarity checking process is the
similarity matrix:

As = {an,m}, n ∈ [0, Ns], m ∈ [1, 4] (9)

where m is equal to the number of sensors and n is the number of pairs of elements classified
as similar, respectively. For example, the matrix row of elements [1 0 2 0] means that the
first element of the set S1 is similar to the second element of the set S3, which in turn implies
that antennas 1 and 3 detected the same physical object.

The next step of the data aggregation procedure is merging the detections of the same
object captured by multiple radar antennas, indicated by the similarity matrix. Each row of
this matrix indicates a pair of detections which are close enough in the sense of the threshold
applied. In the approach presented, the complementary weighted average was used for
merging the similar detections. The weighting factors are computed the way providing
that the detection captured with a higher certainty factor also has a higher influence on the
fusion result. Let us assume two detections classified as similar are given by

dk
i =

(
Pk

i , ck
i

)
and dl

j =
(

Pl
j , cl

j

)
(10)

The fusion
(

P̃, c̃
)

of these two elements is calculated as

P̃ = w1Pk
i + w2Pl

j (11)

c̃ = max
(

Pk
i , Pl

j

)
(12)

The weighting factors are computed complementarily as the functions of certainty factors:
w1 = 0.5

(
1 + 1

1+e−α(ck
i −THR)

)
, w2 = 1− w1 f or ck

i > cl
j

w1 = 0.5

(
1 + 1

1+e
−α(cl

j−THR)

)
, w2 = 1− w1 f or ck

i ≤ cl
j

(13)

After this stage of the fusion process, for the nth moment in time, the following vector
of detections is obtained:

R(n) =
[
d̃1(n), d̃2(n), . . . , d̃Mn(n)

]
, Mn ≤ M (14)

6.5. Final Fusion

At this stage of the process, detections coming from two separate information channels
(transponders and radar) have to be merged into one. Let us denote the set containing
fused readings coming from transponders ADS-B and AeroScope, recorded in the sampling
period n as T(n). On the other hand, there is a set of radar detections fused recorded in the
same sampling period—R(n). The fusion of these stets is performed using the following
conditional scheme:

F(n) =


T(n) i f T(n) 6= ∅ ∩ R(n) = ∅
R(n) i f T(n) = ∅ ∩ R (n) 6= ∅
F̃(n) otherwise

(15)
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The first two cases of this scheme are obvious and will not be commented upon. Let us
take a closer look at the third one, describing the situation where both the transponders and
the radar registered detections. In such a case, there is a need to distinguish two cases. First,
when readings coming from the transponders and the radar refer to the same object, they
have to be merged. Second, when detections registered by the radar and the transponder
receivers are disjointed, both detections are stored in the files of the system records. Hence,
the following conditional procedure is performed:

F̃(n) =
{

Ti(n) ∪ Rj(n) i f
∣∣Ti(n)− Rj(n)

∣∣ > THR
Ti(n) i f

∣∣Ti(n)− Rj(n)
∣∣ ≤ THR

(16)

So, if the distance between detections Ti(n) and Rj(n) is greater than the assumed
threshold THR, both detections are saved in the records. Otherwise, there is a high possibil-
ity that two detections refer to the same object. In this case, detection Ti(n) coming from
the transponder is kept, since it is more reliable.

6.6. Detection Identification and Tracking

At the last stage of the process of retrieving information upon violation of the observed
airspace, identification of the detection and tracking the identified object must be provided.
This is the most important information from the end user perspective, and performing these
operations simultaneously is highly complex. Of course, all the preceding data processing
is absolutely necessary to perform the last stage, and this must be highlighted. The
identification of the objects detected by individual radar antennas is based on signatures
given to them by the radar software algorithms. Similarly, data sent by transponders
contain their own signatures identifying the objects. Further, while merging the detections,
this information is lost. Therefore, it is very important to combine new incoming detections
with those previously registered. In other words, the following similarity must be found:

Fi(n) ∼ Fj(n− 1), i = 1, 2, . . . ,
=
F(n), j = 1, 2, . . . ,

=
F(n− 1), (17)

where the time index n denotes the current detection while n – 1 is the previously ob-
tained one.

One of the possible solutions to the aforementioned problem is using the predictive
approach. The method proposed consists of comparing the detection’s prediction to the
current detection, using the Euclidean metric:

Fi(n) ∼ F̂j(n), i = 1, 2, . . . ,
=
F(n), j = 1, 2, . . . ,

=
F(n− 1), (18)

where F̂j(n) denotes the detected objects’s location prediction calculated for the current
moment n. The prediction is the function of the past readings:

F̂j(n) = f
(

Fj(n), Fj(n− 1), . . . , Fj(n− H)
)
, (19)

where H is the number of past readings taken for calculating the prediction. Another
option that allows the location prediction of the considered object to be obtained is using
information on its velocity. Since the radar provides estimates of the detection’s velocities
measured in relation to three axes, it is easy to find the prediction of the object location
using these data:

F̂j(n) = f
(

Fj(n− 1), vx,j(n− 1), vy,j(n− 1), vz,j(n− 1)
)

(20)

One more possibility of finding similarity between current and past detections is
comparing them directly using the Euclidean metric.

In all the aforementioned options, if the distance between the current and previous
detection are recognized as similar, the current detection is given to the identifier of the
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previous one. Otherwise, the current one is treated as a new detection and is given a
new ID.

7. Results

The purpose of the task was to validate by simulation the algorithm developed for
detecting single, as well as multiple, UAVs. As part of this task, the results generated by the
algorithm implemented were verified by comparing them to the data obtained as a result
of the planned experiment. Before commencing validation tests, measurement data were
acquired by the sensory system during test flights. The tests covered:

• Single UAV flight—DJI Matrice 600;
• Simultaneous flight of two UAVs—DJI Matrice 600 and DJI Mavic 2.

In the case of using the DJI Matrice 600 platform, a full set of measurement data was
provided, which includes ADS-B, AeroScope and radar (four sector antennas). In turn,
using the DJI Mavic platform, AeroScope and radar data were provided.

7.1. Single UAV Detection

The first test consisted of performing an operator-controlled flight of the UAV of type
DJI Matrice 600 within the monitored area of restricted airspace. As was mentioned before,
this drone was equipped with both ADS-B and AREOSCOPE transponders. The radar
antennas were mounted on the 8 m high mast. During the experiment, data coming from
all sensors were saved. After the flight, the data acquired were post-processed. Time
synchronisation with the sampling period equal to 1 [s] was forced. Figure 9 shows the
result of the fusion procedure described in the previous section, presented using a 3D graph.
Detections registered by the radar system, after filtering and merging data coming from
four antennas, are marked with the blue crosses. In the case of radar data fusion, additional
detections appeared, clearly visible on the 2D projection of the flight trajectory (Figure 10),
which were the result of the assumed threshold values of complementary filtration. The
threshold values used in the filtration process were: PUAV = 0.7 and CL = 80%.
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On the other hand, the UAV flight path registered by transponder systems ADS-B and
AREOSCOPE after the fusion process is plotted with a red circle. As one can notice by
looking at this picture, there is a slight offset between the transponders’ and radar’s data
regarding the flight altitude measurements. This phenomenon is illustrated more precisely
in Figure 11. The reason for such a discrepancy in the presented results comes from the
fact that the assembly offsets of the radar antennas were not measured precisely enough.
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Finally, a complete fusion of the transponder and radar data are presented in Figure 9 with
green stars. As was explained in the previous section, data coming from transponders,
registered by a GPS system, are considered as more reliable than radar measurements.
Therefore, in cases where there are both radar and transponder data in the given sampling
period, the fusion results in neglecting the radar readings.
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Figure 10 shows the 2D interpretation of the aforementioned fusion aspects: the entire
flight path (a) and the enlarged part of the flight path for the time interval of 200–300 [s].

7.2. Multiple UAV Detection

System tests were performed comprehensively and followed the system integration
stage. At this stage of the project, the end-to-end test was performed. The test scenario
assumed the simultaneous flights of two drones—the Mavic 2 and Matrice 600 Pro. The
flight altitude of the first one was about 50 [m], whereas the second drone was flying at
the altitude of 30 [m]. The radar antennas assembly configuration was the same as in the
experiment described in Section 7.1. Also, the notation used for marking individual stages
of data processing is the same. Again, as in the previous scenario, data acquired from
transponders were used as the reference to the radar measurements. This time, let us start
the results analysis from observing the recorded altitude data, presented in Figure 12.

Let us consider the flight of the M600 drone. Analysing the AREOSCOPE data, we
can see an almost flat, very precise record of the flight altitude at the level of 32 [m]. Taking
into account the ADS-B readings, also mounted onboard the M600, the readings are not
so accurate and oscillations of the amplitude of about 10 [m] can be observed. As for the
radar detections of this object, a slight offset of about −5 [m] can be seen. Finally, after the
fusion of data from these three sources, the M600 flight altitude path was extracted (black
line). On the other hand, analysing the Mavic 2 drone flight, we can conclude that the data
describing the altitude registered by radar and AEROSCOPE are more similar to each other.
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As in the first case, the fusion procedure gave a quite reliable flight path identification
(red line).

Figure 13 shows detected objects on the longitude–latitude plane. Readings from
transponders are marked as explained by the picture legend. As mentioned before, they are
considered as a reference to the data fusion results. We can observe a slight offset between
the ADS-B and AEROSCOPE data identifying the M600 drone. Looking at the radar fusion
results, it can be noticed that both drones were detected, identified and tracked.
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Finally, the fusion of all informational channels results in registering precise tracks
of objects violating the observation area. This is shown even better in the last figure as a
3D plot (Figure 14). Since transponders’ data contain information about the type of the
UAV, these objects were identified as two drones: M600 and Mavic2. Of course, due to only



Sensors 2022, 22, 4323 20 of 23

having radar readings, it is not possible to perform high level identification. Nevertheless,
as is shown in Figure 13, the radar was able to identify two separate tracks of UAVs flying
within the monitored space.

Sensors 2022, 22, 4323 20 of 23 
 

 

 
Figure 14. Flight trajectory in 3D space−final result of data fusion. 

8. Conclusions 
This paper concerned the problem of the detection of unmanned aerial vehicles vio-

lating restricted airspace. At the outset, the review of available market solutions in the 
field of anti-drone systems and existing detection technologies made the reader aware of 
the possibilities of counteracting unmanned aerial vehicles. The performed analysis also 
showed the shortcomings of the existing anti-drone systems and indicated new research 
directions. In the next stage, the data provided by the sensory system during field tests in 
real conditions was analysed. The algorithm of fusing data acquired by multiple sensors, 
enabling the UAV detection, identification and recognition in 3D space, was proposed. 
The developed detection system includes the following three subsystems: pre-processing, 
time synchronisation and data fusion, which is based on complementary conditional fil-
tering. The efficiency of the proposed solution was tested on the basis of rapid prototyping 
in the MATLAB simulation environment using data from the real sensory system obtained 
during controlled UAV flights. 

It must be concluded that if a UAV entering the range of the monitoring system is 
equipped with an ADS-B or AEROSCOPE transponder, there is no problem with detect-
ing and identifying the aerial vehicle. Unfortunately, the most likely scenario is that the 
UAV violating the restricted airspace will intentionally not be equipped with such de-
vices. Then, the system detection abilities are based on radar readings. The radar used in 
this project is very sensitive and is able to detect small objects—either miniature drones 
or other objects. This property of the sensor raises further problems with data interpreta-
tion. Usually, the radar captures many more objects than the ones being subject to the 
observation. In this paper, we proposed multistage filtration to reject the false detections. 
The efficiency of the proposed approach was proved by multiple tests. The next crucial 
problem addressed in this paper was the data fusion of detections registered by multiple 
radar antennas with overlapping fields of view. The complementary filter-based fusion, 
presented in Section 6.3, solved this problem in a satisfactory way. The next issue is the 
identification and tracking of the detected object using radar readings. In the fusion pro-
cess, unique signatures of detections given to the objects by the radar software disappear 
and new identifications have to be given to the fused data. In the next phases of the system 
operation, this identification must be tracked to provide continuous observation of the 

Figure 14. Flight trajectory in 3D space−final result of data fusion.

8. Conclusions

This paper concerned the problem of the detection of unmanned aerial vehicles vi-
olating restricted airspace. At the outset, the review of available market solutions in the
field of anti-drone systems and existing detection technologies made the reader aware of
the possibilities of counteracting unmanned aerial vehicles. The performed analysis also
showed the shortcomings of the existing anti-drone systems and indicated new research
directions. In the next stage, the data provided by the sensory system during field tests in
real conditions was analysed. The algorithm of fusing data acquired by multiple sensors,
enabling the UAV detection, identification and recognition in 3D space, was proposed. The
developed detection system includes the following three subsystems: pre-processing, time
synchronisation and data fusion, which is based on complementary conditional filtering.
The efficiency of the proposed solution was tested on the basis of rapid prototyping in the
MATLAB simulation environment using data from the real sensory system obtained during
controlled UAV flights.

It must be concluded that if a UAV entering the range of the monitoring system is
equipped with an ADS-B or AEROSCOPE transponder, there is no problem with detecting
and identifying the aerial vehicle. Unfortunately, the most likely scenario is that the UAV
violating the restricted airspace will intentionally not be equipped with such devices. Then,
the system detection abilities are based on radar readings. The radar used in this project is
very sensitive and is able to detect small objects—either miniature drones or other objects.
This property of the sensor raises further problems with data interpretation. Usually, the
radar captures many more objects than the ones being subject to the observation. In this
paper, we proposed multistage filtration to reject the false detections. The efficiency of the
proposed approach was proved by multiple tests. The next crucial problem addressed in
this paper was the data fusion of detections registered by multiple radar antennas with
overlapping fields of view. The complementary filter-based fusion, presented in Section 6.3,
solved this problem in a satisfactory way. The next issue is the identification and tracking
of the detected object using radar readings. In the fusion process, unique signatures of
detections given to the objects by the radar software disappear and new identifications have
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to be given to the fused data. In the next phases of the system operation, this identification
must be tracked to provide continuous observation of the identified object. This problem
was solved in this project by using the predictive clustering method. In this case, satisfactory
results were obtained as well. However, though the operational abilities of the monitoring
system based on the presented methodology were in general satisfactory, further works
on improving its efficiency are required. The most crucial issues that must be revisited are
the radar data fusion in terms of overlapping observation areas and the detection tracking.
Applying more sophisticated methods of providing a more reliable prediction of the tracked
object seems to be a favourable starting point for the method’s improvement.
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Glossary

ICAO aircraft type code
lati latitude indicated by the ith sensor
longi longitude indicated by the ith sensor
h altitude
y heading
V flight velocity
Vxy horizontal velocity
Vz vertical velocity
ET category of the aircraft emitting the signal
d distance of the UAV from the sensory system
DT UAV type
Did UAV identifier
PUAV probability of UAV detection
CL confidence level
RCS radar track RCS (radar cross-section)
az estimated azimuth
el estimated elevation
R estimated distance between UAV and radar
x, y, z estimated UAV coordinates relative to the radar (in Cartesian coordinate system)
Vx, Vy, Vz velocity components of UAV in the x, y and z axes, respectively
Sk(n) data sets determining detections collected in the same time
k sensor index
n subsequent moments in time tn = n∆t, n = 1, 2, . . .
∆t sampling period
Lk(i) mapped detection set
i detection index recorded in the log-register
T(n) set of fused detections from ADS-B and AREOSCOPE
Pk

i ith detection of kth antena
ck

i detection certainty factor
As detection similarity matrix
R(n) set of fused radar detections
F(n) fusion of T(n) and R(n) sets
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4. Wojtanowski, J.; Zygmunt, M.; Drozd, T.; Jakubaszek, M.; Życzkowski, M.; Muzal, M. Distinguishing Drones from Birds in a UAV

Searching Laser Scanner Based on Echo Depolarization Measurement. Sensors 2021, 21, 5597. [CrossRef]
5. Flak, P. Drone Detection Sensor with Continuous 2.4 GHz ISM Band Coverage Based on Cost-Effective SDR Platform. IEEE Access

2021, 9, 114574–114586. [CrossRef]
6. Yang, S.; Qin, H.; Liang, X.; Gulliver, T.A. An Improved Unauthorized Unmanned Aerial Vehicle Detection Algorithm Using

Radiofrequency-Based Statistical Fingerprint Analysis. Sensors 2019, 19, 274. [CrossRef] [PubMed]
7. Garcia, A.J.; Lee, J.M.; Kim, D.S. Anti-Drone System: A Visual-based Drone Detection using Neural Networks. In Proceedings

of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 21–23
October 2020. [CrossRef]

8. Martian, A.; Chiper, F.L.; Craciunescu, R.; Vladeanu, C.; Fratu, O.; Marghescu, I. RF Based UAV Detection and Defense Systems:
Survey and a Novel Solution. In Proceedings of the International Black Sea Conference on Communications and Networking
(BlackSeaCom), Bucharest, Romania, 24–28 May 2021. [CrossRef]

9. Sakharov, K.Y.; Sukhov, A.V.; Ugolev, V.L.; Gurevich, Y.M. Study of UWB Electromagnetic Pulse Impact on Commercial
Unmanned Aerial Vehicle. In Proceedings of the 2018 International Symposium on Electromagnetic Compatibility (EMC
EUROPE), Amsterdam, The Netherlands, 27–30 August 2018. [CrossRef]

10. Semkin, V.; Yin, M.; Hu, Y.; Mezzavilla, M.; Rangan, S. Drone Detection and Classification Based on Radar Cross Section
Signatures. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 25–28
January 2021. [CrossRef]

11. Molchanov, P.A.; Contarino, V.M. New distributed radar technology based on UAV or UGV application. Radar Sensor Technology
XVII. In Proceedings of the Proceedings Volume 8714 Spie Defense, Security, and Sensing, Baltimore, MD, USA, 29 April–3 May
2013. [CrossRef]

12. Ferreira, R.; Gaspar, J.; Sebastao, P.; Souto, N. A Software Defined Radio Based Anti-UAV Mobile System with Jamming and
Spoofing Capabilities. Sensors 2022, 22, 1487. [CrossRef] [PubMed]
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