The Identification of ECG Signals Using Wavelet Transform and WOA-PNN
Abstract
:1. Introduction
- The local windowed wavelet transform is used to extract P and T waves and obtain their time points, which can avoid the problem of a too-large R peak, which affects the extraction accuracy.
- The MIV algorithm is used to optimize the characteristic values of ECG identification in the PNN, eliminate the characteristic values with large errors in the detection or extraction process and simplify the algorithm complexity.
- The WOA-PNN algorithm is proposed to adaptively optimize the hyper parameters in the ECG identification model to improve the accuracy of the model.
- Experiments were performed on different ECG signal databases, including two normal ECG signal databases and one arrhythmia ECG database, to verify the robustness of the proposed method.
2. Ecg Characteristic Detection Based on Wavelet Transform Algorithm
2.1. Qrs Wave Detection
2.2. P Wave and T Wave Detection
3. Ecg Identification Based on the WOA-PNN Algorithm
3.1. Introduction to PNN Algorithm
3.2. Miv Algorithm Characteristic Values Screening
3.3. WOA Parameter Adaptive Optimization
3.3.1. Introduction of WOA
3.3.2. WOA-PNN Algorithm
4. Simulation Experiment
4.1. Experimental Data
4.2. Results of Qrs Wave, P Wave and T Wave Detection
4.3. Ecg Identification Simulation Results of WOA-PNN Algorithm
4.3.1. Results of Characteristic Values Screening of the Miv Algorithm
4.3.2. Single Ecg Cycle Identification Result Contrast
4.3.3. Three Ecg Cycle Identification Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.; Si, Y.; Yang, W.; Zhang, G.; Liu, T. A Novel Heart Rate Robust Method for Short-Term Electrocardiogram Biometric Identification. Appl. Sci. 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Karimian, N.; Guo, Z.; Tehranipoor, M.; ForteG, D. Highly Reliable Key Generation From Electrocardiogram (ECG). IEEE Trans. Biomed. Eng. 2017, 64, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Komeili, M.; Armanfard, N.; Hatzinakos, D. Liveness Detection and Automatic Template Updating Using Fusion of ECG and Fingerprint. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1810–1822. [Google Scholar] [CrossRef]
- Wu, S.; Chen, P.; Swindlehurst, A.L.; Hung, P. Cancelable Biometric Recognition with ECGs: Subspace-Based Approaches. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1321–1336. [Google Scholar] [CrossRef]
- Barros, A.; Resque, P.; Almeida, J.; Mota, R.; Oliveira, H.; Rosario, D.; Cerqueira, E. Data Improvement Model Based on ECG Biometric for User Authentication and Identification. Sensors 2020, 20, 2920. [Google Scholar] [CrossRef]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. Biometric authentication based on PCG and ECG signals: Present status and future directions. Signal Image Video Process. 2014, 8, 739–751. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Goshvarpour, A. Human identification using a new matching Pursuit-based feature set of ECG. Comput. Methods Programs Biomed. 2019, 172, 87–94. [Google Scholar] [CrossRef]
- Lim, C.L.P.; Woo, W.L.; Dlay, S.S.; Gao, B. Heartrate-Dependent Heartwave Biometric Identification with Thresholding-Based GMM–HMM Methodology. IEEE Trans. Ind. Inform. 2019, 15, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yin, L.; He, C.; Wen, B.; Hong, X.; Li, Y. A Multiscale Autoregressive Model-Based Electrocardiogram Identification Method. IEEE Access 2018, 6, 18251–18263. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Liu, M.; Hu, X.; Pang, B.; Yao, Z.; Jiang, H.; Chen, H. A 410-nW efficient QRS processor for mobile ECG monitoring in 0.18-μm CMOS. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, 17–19 October 2016; pp. 14–17. [Google Scholar]
- Lee, J.N.; Byeon, Y.H.; Pan, S.B.; Kwak, K.C. An EigenECG Network Approach Based on PCANet for Personal Identification from ECG Signal. Sensors 2018, 18, 4024. [Google Scholar] [CrossRef] [Green Version]
- Burguera, A. Fast QRS Detection and ECG Compression Based on Signal Structural Analysis. IEEE J. Biomed. Health 2019, 23, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, S.; Kim, D. Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns. Sensors 2018, 18, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. IEEE J. Biomed. Health 2018, 22, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Y.; Liu, C.Y.; Li, Y.W.; Li, Y.X.; Wang, J.Y.; Lin, B.R.; Li, J.Q. Noise Rejection for Wearable ECGs Using Modeified Frequency Slice Wavelet Transform and Convolutional Neural Networks. IEEE Access 2019, 7, 34060–34067. [Google Scholar] [CrossRef]
- Zarei, A.; Asl, B.M. Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal. IEEE J. Biomed. Health 2019, 23, 1011–1021. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Zhou, D.; Zeng, X. HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Jung, W.-H.; Lee, S.-G. ECG Identification Based on Non-Fiducial Feature Extraction Using Window Removal Method. Appl. Sci. 2017, 7, 1205. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Pyun, J.Y. ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks. Sensors 2020, 20, 3069. [Google Scholar] [CrossRef]
- Huang, J.S.; Chen, B.Q.; Yao, B.; He, W.P. ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Chu, Y.F.; Shen, H.B.; Huang, K.J. ECG Authentication Method Based on Parallel Multi-Scale One-Dimensional Residual Network with Center and Margin Loss. IEEE Access 2019, 7, 51598–51607. [Google Scholar] [CrossRef]
- Sidek, K.A.; Khalil, I.; Jelinek, H.F. ECG Biometric with Abnormal Cardiac Conditions in Remote Monitoring System. IEEE Trans. Syst. Man Cybern. Syst. 2014, 4, 1498–1509. [Google Scholar] [CrossRef]
- Gutta, S.; Cheng, Q. Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition. IEEE J. Biomed. Health 2016, 20, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Yeun, C.Y.; Yoo, P.D. An Enhanced Machine Learning-Based Biometric Authentication System Using RR-Interval Framed Electrocardiograms. IEEE Access 2019, 7, 168669–168674. [Google Scholar] [CrossRef]
- Wei, X.; Diao, M.; Hu, Z.; Hu, X.; Gao, Y.; Huang, R. QoE Prediction for IPTV Based on Imbalanced Dataset by the PNN-PSO algorithm. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 112–117. [Google Scholar]
- Yan, C.H.; Zhang, T.L.; Sun, Y.Q.; Tang, H.S.; Li, H. A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine. Spectrochim. Acta Part B At. Spectrosc. 2019, 154, 75–81. [Google Scholar] [CrossRef]
- Qi, M.F.; Fu, Z.G.; Chen, F. Research on a feature selection method based on median impact value for modeling in thermal power plants. Appl. Therm. Eng. 2016, 94, 472–477. [Google Scholar] [CrossRef]
- Ling, Y.; Zhou, Y.Q.; Luo, Q.F. Levy Flight Trajectory-Based Whale Optimization Algorithm for Global Optimization. IEEE Access 2017, 5, 6168–6186. [Google Scholar] [CrossRef]
- Sun, W.Z.; Wang, J.S. Elman Neural Network Soft-Sensor Model of Conversion Velocity in Polymerization Process Optimized by Chaos Whale Optimization Algorithm. IEEE Access 2017, 5, 13062–13076. [Google Scholar] [CrossRef]
- Elazab, O.S.; Hasanien, H.M.; Elgendy, M.A.; Abdeen, A.M. Parameters estimation of single- and multiple-diode photovoltaic model using whale optimisation algorithm. IET Renew. Power Gener. 2018, 12, 1755–1761. [Google Scholar] [CrossRef]
- Debnath, L. Wavelet Transforms and Their Applications; Birkhäuser: Basel, Switzerland, 2002. [Google Scholar]
- Emeritus, D.S. The Wavelet Transform; Springer: London, UK, 2011. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Available online: www.physionet.org (accessed on 3 January 2021).
- Lugovaya, T.S. Biometric Human Identification Based on Electrocardiogram. Master’s Thesis, Faculty of Computing Technologies and Informatics, Electrotechnical University “LETI”, Saint-Petersburg, Russia, June 2005. [Google Scholar]
- Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. 2001, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.N.; Akram, M.U.; Usman, A.; Khan, S.A. ECG Biometric Identification for General Population Using Multiresolution Analysis of DWT Based Features. In Proceedings of the 2015 2nd International Conference on Information Security and Cyber Forensics (InfoSec 2015), Cape Town, South Africa, 15–17 November 2015; pp. 5–10. [Google Scholar]
- Dar, M.N.; Akram, M.U.; Shaukat, A.; Khan, M.A. ECG Based Biometric Identification for Population with Normal and Cardiac Anomalies Using Hybrid HRV and DWT Features. In Proceedings of the 2015 5th International Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–5. [Google Scholar]
- Sarkar, A.; Abbott, A.L.; Doerzaph, Z. ECG Biometric Authentication Using a Dynamical Model. In Proceedings of the 7th International Conference on Biometric Theory, Applications and Systems (BTAS), Arlington, VA, USA, 8–11 September 2015; pp. 1–6. [Google Scholar]
- Wang, D.; Si, Y.J.; Yang, W.Y.; Zhang, G.; Li, J. A Novel Electrocardiogram Biometric Identification Method Based on Temporal-Frequency Autoencoding. Electronics 2019, 8, 667. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.; Ogiela, M.R.; Ogiela, L.; Mesicek, L.; Lee, M.; Choi, J.; Kim, P. ECG-Based Advanced Personal Identification Study with Adjusted (Qi (*) Si). IEEE Access 2019, 7, 40078–40084. [Google Scholar] [CrossRef]
- Li, N.; Zhu, L.; Ma, W.; Wang, Y.; He, F.; Zheng, A.; Zhang, X. The Identification of ECG Signals Using WT-UKF and IPSO-SVM. Sensors 2022, 22, 1962. [Google Scholar] [CrossRef]
Q | R | S | P | T | |
---|---|---|---|---|---|
ECG-ID | 93.24 | 100 | 91.96 | 89.24 | 87.52 |
MIT-BIH normal | 89.57 | 100 | 87.08 | 84.28 | 82.93 |
MIT-BIH arrhythmia | 82.47 | 100 | 81.03 | 80.80 | 78.83 |
Weighted average | 89.50 | 100 | 88.03 | 86.07 | 84.32 |
Distance | R-R | T-T | R-T | R-P | S-T | R-P |
---|---|---|---|---|---|---|
MIV | 1.0862 | 0.6744 | 0.570 | 0.4713 | 0.3176 | 0.2987 |
Distance | Q-P | R-P | P-T | Q-P | S-T | R-T |
MIV | 0.2449 | 0.2138 | 0.1724 | 0.07955 | 0.04933 | 0.02933 |
Distance | R-T | P-P | R-Q | R-S | ||
MIV | 0.01 | 0.00644 | 0.00222 | 0.00022 | ||
Amplitude | R-Q | R-S | Q-P | S-T | P-P | T-T |
MIV | 0 | 0 | 0 | 0 | 0 | 0 |
Database | Method | Accuracy (%) |
---|---|---|
ECG-ID | WOA-PNN | 97.16 |
PNN | 95.65 | |
Softmax [41] | 92.3 | |
SFFS KNN [40] | 91.26 | |
Random Forest [39] | 83.9 | |
KNN [38] | 83.2 | |
MIT-BIH Arrhythmia | WOA-PNN | 95.48 |
PNN | 94.48 | |
SVM [43] | 93.41 | |
Decision tree [43] | 92.68 | |
Random Forest [42] | 92.68 | |
Bayes [42] | 90.24 | |
Logistic [42] | 83.54 | |
SVC [42] | 83.52 |
ECG-ID | MIT-BIH Normal | MIT-BIH Arrhythmia | Weighted Average | |
---|---|---|---|---|
PNN | 99.33 | 99.76 | 98.08 | 99.00 |
WOA-PNN | 99.79 | 100 | 98.54 | 99.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; He, F.; Ma, W.; Wang, R.; Jiang, L.; Zhang, X. The Identification of ECG Signals Using Wavelet Transform and WOA-PNN. Sensors 2022, 22, 4343. https://doi.org/10.3390/s22124343
Li N, He F, Ma W, Wang R, Jiang L, Zhang X. The Identification of ECG Signals Using Wavelet Transform and WOA-PNN. Sensors. 2022; 22(12):4343. https://doi.org/10.3390/s22124343
Chicago/Turabian StyleLi, Ning, Fuxing He, Wentao Ma, Ruotong Wang, Lin Jiang, and Xiaoping Zhang. 2022. "The Identification of ECG Signals Using Wavelet Transform and WOA-PNN" Sensors 22, no. 12: 4343. https://doi.org/10.3390/s22124343
APA StyleLi, N., He, F., Ma, W., Wang, R., Jiang, L., & Zhang, X. (2022). The Identification of ECG Signals Using Wavelet Transform and WOA-PNN. Sensors, 22(12), 4343. https://doi.org/10.3390/s22124343