Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies
Abstract
:1. Introduction
2. Sensing Mechanisms Using Flexible Metamaterials
3. Experimental Methods
3.1. Device Fabrication and Characterisation
3.2. Electromagnetic Characterisation and Sensing Experiments
4. Experimental Results and Discussion
4.1. Acoustofluidic Effect
4.2. Sensing Based on Flexible Metamaterials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Ma, Y.; Huang, Y. Material Innovation and Mechanics Design for Substrates and Encapsulation of Flexible Electronics: A Review. Mater. Horiz. 2021, 8, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Aliqué, M.; Simão, C.D.; Murillo, G.; Moya, A. Fully-Printed Piezoelectric Devices for Flexible Electronics Applications. Adv. Mater. Technol. 2021, 6, 2001020. [Google Scholar] [CrossRef]
- Guo, J.; Yu, Y.; Cai, L.; Wang, Y.; Shi, K.; Shang, L.; Pan, J.; Zhao, Y. Microfluidics for Flexible Electronics. Mater. Today 2021, 44, 105–135. [Google Scholar] [CrossRef]
- Spanu, A.; Casula, G.; Cosseddu, P.; Lai, S.; Martines, L.; Pani, D.; Bonfiglio, A. Flexible and Wearable Monitoring Systems for Biomedical Applications in Organic Flexible Electronics: Fundamentals, Devices, and Applications. In Organic Flexible Electronics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 599–625. [Google Scholar]
- Cheng, C.; Li, X.; Xu, G.; Lu, Y.; Low, S.S.; Liu, G.; Zhu, L.; Li, C.; Liu, Q. Battery-Free, Wireless, and Flexible Electrochemical Patch for In Situ Analysis of Sweat Cortisol via near Field Communication. Biosens. Bioelectron. 2021, 172, 112782. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.Z.; Shamsi, M.H. Desktop Fabrication of Lab-on-Chip Devices on Flexible Substrates: A Brief Review. Micromachines 2020, 11, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, R.; Reboud, J.; Torun, H.; McHale, G.; Dodd, L.E.; Wu, Q.; Tao, K.; Yang, X.; Luo, J.T.; Todryk, S. Integrating Microfluidics and Biosensing on a Single Flexible Acoustic Device Using Hybrid Modes. Lab Chip 2020, 20, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Zips, S.; Hiendlmeier, L.; Weiß, L.J.K.; Url, H.; Teshima, T.F.; Schmid, R.; Eblenkamp, M.; Mela, P.; Wolfrum, B. Biocompatible, Flexible, and Oxygen-Permeable Silicone-Hydrogel Material for Stereolithographic Printing of Microfluidic Lab-on-a-Chip and Cell-Culture Devices. ACS Appl. Polym. Mater. 2020, 3, 243–258. [Google Scholar] [CrossRef]
- Wu, J.; Dong, M.; Rigatto, C.; Liu, Y.; Lin, F. Lab-on-Chip Technology for Chronic Disease Diagnosis. NPJ Digit. Med. 2018, 1, 7. [Google Scholar] [CrossRef]
- Tymm, C.; Zhou, J.; Tadimety, A.; Burklund, A.; Zhang, J.X. Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cell. Mol. Bioeng. 2020, 13, 313–329. [Google Scholar] [CrossRef]
- García-Meca, C.; Lechago, S.; Brimont, A.; Griol, A.; Mas, S.; Sánchez, L.; Bellieres, L.; Losilla, N.S.; Martí, J. On-Chip Wireless Silicon Photonics: From Reconfigurable Interconnects to Lab-on-Chip Devices. Light Sci. Appl. 2017, 6, e17053. [Google Scholar] [CrossRef]
- Zhuang, J.; Yin, J.; Lv, S.; Wang, B.; Mu, Y. Advanced “Lab-on-a-Chip” to Detect Viruses–Current Challenges and Future Perspectives. Biosens. Bioelectron. 2020, 163, 112291. [Google Scholar] [CrossRef] [PubMed]
- Probst, C.; Schneider, S.; Loskill, P. High-Throughput Organ-on-a-Chip Systems: Current Status and Remaining Challenges. Curr. Opin. Biomed. Eng. 2018, 6, 33–41. [Google Scholar] [CrossRef]
- Khalid, N.; Kobayashi, I.; Nakajima, M. Recent Lab-on-Chip Developments for Novel Drug Discovery. WIREs Syst. Biol. Med. 2017, 9, e1381. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Yetisen, A.K. Commercialization of Microfluidic Devices. Trends Biotechnol. 2014, 32, 347–350. [Google Scholar] [CrossRef]
- Mukherji, S.; Mondal, D. 5—Lab-on-Chip (LOC) Devices for Point of Care (POC) Applications. In Medical Biosensors for Point of Care (POC) Applications; Narayan, R.J., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 99–131. ISBN 978-0-08-100072-4. [Google Scholar]
- Zhou, J.; Tao, X.; Luo, J.; Li, Y.; Jin, H.; Dong, S.; Luo, J.; Duan, H.; Fu, Y. Nebulization Using ZnO/Si Surface Acoustic Wave Devices with Focused Interdigitated Transducers. Surf. Coat. Technol. 2019, 367, 127–134. [Google Scholar] [CrossRef]
- Ahmed, H.; Park, J.; Destgeer, G.; Afzal, M.; Sung, H.J. Surface Acoustic Wave-Based Micromixing Enhancement Using a Single Interdigital Transducer. Appl. Phys. Lett. 2019, 114, 043702. [Google Scholar] [CrossRef]
- Shilton, R.; Tan, M.K.; Yeo, L.Y.; Friend, J.R. Particle Concentration and Mixing in Microdrops Driven by Focused Surface Acoustic Waves. J. Appl. Phys. 2008, 104, 014910. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.Q.; Luo, J.K.; Nguyen, N.-T.; Walton, A.J.; Flewitt, A.J.; Zu, X.-T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E. Advances in Piezoelectric Thin Films for Acoustic Biosensors, Acoustofluidics and Lab-on-Chip Applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, M.; Brunet, P.; Bou Matar, O.; Herth, E. Low Power Sessile Droplets Actuation via Modulated Surface Acoustic Waves. Appl. Phys. Lett. 2012, 100, 154102. [Google Scholar] [CrossRef] [Green Version]
- Connacher, W.; Zhang, N.; Huang, A.; Mei, J.; Zhang, S.; Gopesh, T.; Friend, J. Micro/Nano Acoustofluidics: Materials, Phenomena, Design, Devices, and Applications. Lab Chip 2018, 18, 1952–1996. [Google Scholar] [CrossRef] [PubMed]
- Ung, W.L.; Mutafopulos, K.; Spink, P.; Rambach, R.W.; Franke, T.; Weitz, D.A. Enhanced Surface Acoustic Wave Cell Sorting by 3D Microfluidic-Chip Design. Lab Chip 2017, 17, 4059–4069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, J.; Lim, C.S. Micromixing Using Swirling Induced by Three-Dimensional Dual Surface Acoustic Waves (3D-DSAW). Sens. Actuators B Chem. 2018, 255, 3434–3440. [Google Scholar] [CrossRef]
- Wixforth, A.; Strobl, C.; Gauer, C.; Toegl, A.; Scriba, J.; Guttenberg, Z. Acoustic Manipulation of Small Droplets. Anal. Bioanal. Chem. 2004, 379, 982–991. [Google Scholar] [CrossRef]
- Wixforth, A. Acoustically Driven Programmable Microfluidics for Biological and Chemical Applications. JALA J. Assoc. Lab. Autom. 2006, 11, 399–405. [Google Scholar] [CrossRef]
- Zang, Y.; Devendran, C.; Lupton, C.; De Marco, A.; Neild, A. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing. Lab Chip. 2019, 19, 262–271. [Google Scholar] [CrossRef]
- Park, K.; Park, J.; Jung, J.H.; Destgeer, G.; Ahmed, H.; Sung, H.J. In-Droplet Microparticle Separation Using Travelling Surface Acoustic Wave. Biomicrofluidics 2017, 11, 064112. [Google Scholar] [CrossRef]
- Shamloo, A.; Boodaghi, M. Design and Simulation of a Microfluidic Device for Acoustic Cell Separation. Ultrasonics 2018, 84, 234–243. [Google Scholar] [CrossRef]
- Wu, M.; Mao, Z.; Chen, K.; Bachman, H.; Chen, Y.; Rufo, J.; Ren, L.; Li, P.; Wang, L.; Huang, T.J. Acoustic Separation of Nanoparticles in Continuous Flow. Adv. Funct. Mater. 2017, 27, 1606039. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhou, W.; Lin, Z.; Cai, F.; Li, F.; Wu, J.; Meng, L.; Niu, L.; Zheng, H. Sorting of Tumour Cells in a Microfluidic Device by Multi-Stage Surface Acoustic Waves. Sens. Actuators B Chem. 2018, 258, 1174–1183. [Google Scholar] [CrossRef]
- Wang, T.; Ni, Q.; Crane, N.B.; Guldiken, R. Surface Acoustic Wave Based Pumping in a Microchannel. Microsyst. Technol. 2017, 23, 1335–1342. [Google Scholar] [CrossRef]
- Guttenberg, Z.; Müller, H.; Habermüller, H.; Geisbauer, A.; Pipper, J.; Felbel, J.; Kielpinski, M.; Scriba, J.; Wixforth, A. Planar Chip Device for PCR and Hybridization with Surface Acoustic Wave Pump. Lab Chip 2005, 5, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Biroun, M.H.; Tao, R.; Wang, Y.; Torun, H.; Xu, N.; Rahmati, M.; Li, Y.; Gibson, D.; Fu, C. Wide Range of Droplet Jetting Angles by Thin-Film Based Surface Acoustic Waves. J. Phys. D Appl. Phys. 2020, 53, 355402. [Google Scholar] [CrossRef]
- Castro, J.O.; Ramesan, S.; Rezk, A.R.; Yeo, L.Y. Continuous Tuneable Droplet Ejection via Pulsed Surface Acoustic Wave Jetting. Soft Matter 2018, 14, 5721–5727. [Google Scholar] [CrossRef]
- Jangi, M.; Luo, J.T.; Tao, R.; Reboud, J.; Wilson, R.; Cooper, J.M.; Gibson, D.; Fu, Y.Q. Concentrated Vertical Jetting Mechanism for Isotropically Focused Zno/Si Surface Acoustic Waves. Int. J. Multiph. Flow 2019, 114, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Quan, A.-J.; Luo, J.-T.; Pang, H.F.; Guo, Y.J.; Wu, Q.; Ng, W.P.; Zu, X.-T.; Fu, Y.Q. Vertical Jetting Induced by Shear Horizontal Leaky Surface Acoustic Wave on 36° YX LiTaO3. Appl. Phys. Lett. 2017, 110, 173501. [Google Scholar] [CrossRef] [Green Version]
- Alhasan, L.; Qi, A.; Rezk, A.R.; Yeo, L.Y.; Chan, P.P.Y. Assessment of the potential of a high frequency acoustomicrofluidic nebulisation platform for inhaled stem cell therapy. Integr. Biol. 2016, 8, 11–20. [Google Scholar] [CrossRef]
- Ashtiani, D.; De Marco, A.; Neild, A. Tailoring Surface Acoustic Wave Atomisation for Cryo-Electron Microscopy Sample Preparation. Lab Chip 2019, 19, 1378–1385. [Google Scholar] [CrossRef]
- Astefanei, A.; van Bommel, M.; Corthals, G.L. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples. J. Am. Soc. Mass Spectrom. 2017, 28, 2108–2116. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C. Leveraging of MEMS Technologies for Optical Metamaterials Applications. Adv. Opt. Mater. 2020, 8, 1900653. [Google Scholar] [CrossRef]
- Torun, H.; Cagri Top, F.; Dundar, G.; Yalcinkaya, A.D. An Antenna-Coupled Split-Ring Resonator for Biosensing. J. Appl. Phys. 2014, 116, 124701. [Google Scholar] [CrossRef]
- Zahertar, S.; Yalcinkaya, A.D.; Torun, H. Rectangular Split-Ring Resonators with Single-Split and Two-Splits under Different Excitations at Microwave Frequencies. AIP Adv. 2015, 5, 117220. [Google Scholar] [CrossRef] [Green Version]
- Pusovnik, A.; Aplinc, J.; Ravnik, M. Optical Properties of Metamaterial Split Ring Nematic Colloids. Sci. Rep. 2019, 9, 7025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheludev, N.I.; Plum, E. Reconfigurable Nanomechanical Photonic Metamaterials. Nat. Nanotechnol. 2016, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydoruk, O.; Tatartschuk, E.; Shamonina, E.; Solymar, L. Analytical Formulation for the Resonant Frequency of Split Rings. J. Appl. Phys. 2009, 105, 014903. [Google Scholar] [CrossRef]
- Ekinci, G.; Yalcinkaya, A.D.; Dundar, G.; Torun, H. Split-Ring Resonator-Based Strain Sensor on Flexible Substrates for Glaucoma Detection. In Proceedings of the 27th Micromechanics and Microsystems Europe Workshop, Cork, Ireland, 28–30 August 2016; IOP Publishing: Bristol, UK, 2016; Volume 757, p. 012019. [Google Scholar]
- Camli, B.; Kusakci, E.; Lafci, B.; Salman, S.; Torun, H.; Yalcinkaya, A.D. Cost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 404–409. [Google Scholar] [CrossRef]
- Jaruwongrungsee, K.; Waiwijit, U.; Withayachumnankul, W.; Maturos, T.; Phokaratkul, D.; Tuantranont, A.; Wlodarski, W.; Martucci, A.; Wisitsoraat, A. Microfluidic-Based Split-Ring-Resonator Sensor for Real-Time and Label-Free Biosensing. Procedia Eng. 2015, 120, 163–166. [Google Scholar] [CrossRef]
- Zahertar, S.; Laurin, E.; Dodd, L.E.; Torun, H. Embroidered Rectangular Split-Ring Resonators for the Characterization of Dielectric Materials. IEEE Sens. J. 2020, 20, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Lim, S. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Ghosh, S.; Lim, S. Low-Cost and Lightweight 3D-Printed Split-Ring Resonator for Chemical Sensing Applications. Sensors 2018, 18, 3049. [Google Scholar] [CrossRef] [Green Version]
- Vivek, A.; Shambavi, K.; Alex, Z.C. A Review: Metamaterial Sensors for Material Characterization. Sens. Rev. 2019, 39, 417–432. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Rahimi, M.; Daneshmand, M.; Thundat, T. Microwave Ring Resonator-Based Non-Contact Interface Sensor for Oil Sands Applications. Sens. Actuators B Chem. 2016, 224, 632–639. [Google Scholar] [CrossRef]
- Kairm, H.; Delfin, D.; Shuvo, M.A.I.; Chavez, L.A.; Garcia, C.R.; Barton, J.H.; Gaytan, S.M.; Cadena, M.A.; Rumpf, R.C.; Wicker, R.B. Concept and Model of a Metamaterial-Based Passive Wireless Temperature Sensor for Harsh Environment Applications. IEEE Sens. J. 2014, 15, 1445–1452. [Google Scholar] [CrossRef]
- Zahertar, S.; Wang, Y.; Tao, R.; Xie, J.; Fu, Y.Q.; Torun, H. A Fully Integrated Biosensing Platform Combining Acoustofluidics and Electromagnetic Metamaterials. J. Phys. D Appl. Phys. 2019, 52, 485004. [Google Scholar] [CrossRef]
- Tao, R.; Zahertar, S.; Torun, H.; Liu, Y.R.; Wang, M.; Lu, Y.; Luo, J.T.; Vernon, J.; Binns, R.; He, Y. Flexible and Integrated Sensing Platform of Acoustic Waves and Metamaterials Based on Polyimide-Coated Woven Carbon Fibers. ACS Sens. 2020, 5, 2563–2569. [Google Scholar] [CrossRef]
- Zahertar, S.; Wu, J.; Chatzipirpiridis, G.; Ergeneman, O.; Canyelles-Pericas, P.; Tao, R.; Fu, Y.Q.; Torun, H. A Flexible PVDF-Based Platform Combining Acoustofluidics and Electromagnetic Metamaterials. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 16–19 August 2020; IEEE: Toulouse, France, 2020; pp. 1–4. [Google Scholar]
- Zahertar, S.; Wu, J.; Chen, X.-Z.; Pane, S.; Ergeneman, O.; Fu, Y.-Q.; Torun, H. An Integrated Flexible Platform of Electromagnetic Metamaterials and Acoustofluidics on Kapton. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 20–23 June 2021; IEEE: Toulouse, France, 2021; pp. 1–4. [Google Scholar]
- Zahertar, S.; Torun, H.; Tao, R.; Canyelles-Pericas, P.; Luo, J.; Wu, Q.; Fu, Y.-Q. An Integrated Platform for Metamaterial-Based Sensing and Surface Acoustic Wave-Based Acoustofluidics Utilising Circular Interdigital Transducers. Sens. Diagn. 2022, 1, 270–279. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Mikhaylov, R.; Fu, Y.; Wu, F.; Wang, H.; Yuan, X.; Xie, Z.; Liang, D.; Wu, Z.; Yang, X. Flexible Printed Circuit Board as Novel Electrodes for Acoustofluidic Devices. IEEE Trans. Electron Devices 2020, 68, 393–398. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Li, D.; Yang, X.; Xie, J.; Fu, Y. Bending Behaviors of Flexible Acoustic Wave Devices under Non-Uniform Elasto-Plastic Deformation. Appl. Phys. Lett. 2021, 118, 121601. [Google Scholar] [CrossRef]
- Smallwood, I. Handbook of Organic Solvent Properties; Butterworth-Heinemann: Oxford, UK, 2012; ISBN 0-08-052378-1. [Google Scholar]
Material | Relative Permittivity | Resonant Frequency (Mean ± Standard Deviation) (GHz) |
---|---|---|
Deionised Water | 80 | 1.692306 ± 0.000134164 |
Methanol | 32.6 | 1.6928862 ± 0.000279697 |
Acetone | 20.6 | 1.6944072 ± 0.000606935 |
Isopropanol | 18.3 | 1.69969 ± 0.000151658 |
Air (device with empty holder) | 1 | 1.702851 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahertar, S.; Torun, H.; Sun, C.; Markwell, C.; Dong, Y.; Yang, X.; Fu, Y. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies. Sensors 2022, 22, 4344. https://doi.org/10.3390/s22124344
Zahertar S, Torun H, Sun C, Markwell C, Dong Y, Yang X, Fu Y. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies. Sensors. 2022; 22(12):4344. https://doi.org/10.3390/s22124344
Chicago/Turabian StyleZahertar, Shahrzad, Hamdi Torun, Chao Sun, Christopher Markwell, Yinhua Dong, Xin Yang, and Yongqing Fu. 2022. "Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies" Sensors 22, no. 12: 4344. https://doi.org/10.3390/s22124344
APA StyleZahertar, S., Torun, H., Sun, C., Markwell, C., Dong, Y., Yang, X., & Fu, Y. (2022). Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies. Sensors, 22(12), 4344. https://doi.org/10.3390/s22124344