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Abstract: This paper presents the results on developing an ensemble machine learning model to
combine commercial gas sensors for accurate concentration detection. Commercial gas sensors
have the low-cost advantage and become key components of IoT devices in atmospheric condition
monitoring. However, their native coarse resolution and poor selectivity limit their performance.
Thus, we adopted recurrent neural network (RNN) models to extract the time-series concentration
data characteristics and improve the detection accuracy. Firstly, four types of RNN models, LSTM and
GRU, Bi-LSTM, and Bi-GRU, were optimized to define the best-performance single weak models for
CO, O3, and NO2 gases, respectively. Next, ensemble models which integrate multiple single weak
models with a dynamic model were defined and trained. The testing results show that the ensemble
models perform better than the single weak models. Further, a retraining procedure was proposed
to make the ensemble model more flexible to adapt to environmental conditions. The significantly
improved determination coefficients show that the retraining helps the ensemble models maintain
long-term stable sensing performance in an atmospheric environment. The result can serve as an
essential reference for the applications of IoT devices with commercial gas sensors in environment
condition monitoring.

Keywords: AI; RNN; IoT; ensemble model; model retraining; CO gas detecting; O3 gas detecting;
NO2 gas detecting

1. Introduction

Effectively monitoring and controlling air quality has become an important issue of
concern to the public today. Air pollution significantly impacts human health, ranging
from mild chronic respiratory symptoms to acute respiratory infections, exacerbating
pre-existing heart and lung diseases [1,2]. Even if people only expose themself to mild
air pollution, it will shorten their lives [3]. Thus, people living in urban areas or nearby
industrial areas demand information on atmospheric air quality because they have a higher
risk of exposure to elevated air pollution [4].

To acquire the air quality information, government and environmental protection
agencies have started to set up fixed-site air quality monitoring stations in various regions.
These monitoring stations have accurate instruments to regularly monitor air quality in
the environment, analyze the concentration of pollutants, and provide information to the
public for reference [5,6]. However, building more fixed-site air quality monitoring stations
is difficult due to terrain limitations and the high cost of setting up and maintaining the
stations. The monitoring data provided by the stations are relatively sparse and therefore
cannot meet the increasing demand for air quality information. Therefore, various tech-
niques have been proposed to improve the spatial density of air quality information, such as
the detection of short-term air quality campaigns by the mobile laboratory [7], interpolation
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by mathematical models [8], and detection by various new low-cost sensors [9,10]. With
more air quality information, more services, such as forecasts and real-time alarms, can be
provided to the public. The low-cost sensors are popular with people today, because the
components are available and affordable in the market. People who care about air pollution
can obtain a direct onsite measurement themselves, and, furthermore, environmental pro-
tection agencies have also started to adopt low-cost sensors in areas without a monitoring
station to obtain supplementary air quality information [11].

Although low-cost sensors are economical and easy to set up, some performances
still stand to be improved, including their accuracy, cross-sensitivity, reproducibility, and
reliability [12]. To enhance the detection of sensors, many researchers have focused on
developing new sensing materials. Chemically modified SnO2 nanosurfaces using metals
or other metal oxides showed highly selective sensing materials for CO, NH3, H2S, and
NO2 gas molecules [13]. PbS quantum dots/TiO2 nanotube arrays possess a good response
towards NH3 gas at room temperature [14]. Furthermore, gas sensor arrays based on
MEMS gas sensor platforms, consisting of different nano-sized and metal oxide semicon-
ductor (MOS) particles, were developed to detect CO, NOx, and NH3; their gas-sensing
characteristics in the binary mixed-gas system were investigated [15]. The new sensing
materials can make gas sensing more accurate, but these low-cost sensors have not fully
met all the practical needs.

On the other hand, artificial intelligence (AI) technology has rapidly developed in
recent years and has been successfully applied in many fields. Thus, especially in terms of
machine learning, AI technology was also combined with gas sensors for more accurate
detection. An artificial neural network (ANN) model was used with a sensing array that
had four quartz crystal microbalance (QCM) devices to distinguish the type of organic
vapors [16]. An array that contained six ZnO-based sensors was combined with an ANN
model to recognize concentrations of H2, CH4, and CO gases [17]. A surface acoustic
wave (SAW) sensor coated with a functionalized polymer detected harmful vapors, and
an ANN pattern-recognition model was implemented to recognize vapor types [18]. The
research mentioned above show that combining a gas sensor array with an ANN model
can identify mixed gases’ compositions and concentrations in a well-controlled laboratory.
This result is consistent with the report that sensors’ performance was concluded to be
satisfactory under a range of specific conditions [11]. ANN models were further applied
with sensors in the field with consideration of temperature, humidity, wind speed, and
pressure. Field calibration of low-cost commercial sensors in detecting NO, CO, and CO2
gases was studied. The result showed that ANN is the most effective method among linear
regression, multiple linear regression, and ANN [19]. Another CO electrochemical sensor
was also calibrated with an ANN model by considering temperature and humidity [20].
Thus ANN has good results in in-field gas classification and concentration identification.

Recurrent neural network (RNN) is another deep learning method often used to solve
sequence problems due to its gated unit design [21,22]. RNN models contain different
types of model, Long Short-Term Memory (LSTM) [23], Gated Recurrent Unit (GRU) [24],
Bi-directional Long Short-Time Memory (Bi-LSTM) [25], and Bi-directional Gated Recurrent
Unit (Bi-GRU). Since time characteristics accompany gas-sensing data, RNNs are expected
to deal with time-dependent gas concentrations and other interfering factors. The LSTM
model was used to predict air pollution concentrations with MOS gas sensors in Amravati
and Bengaluru, India [26]. Different RNNs also estimated the gas concentrations con-
sidering temperature, flow rate, and negative pressure, and the LSTM model has higher
prediction accuracy [27]. In another measurement conducted using MOS gas sensor arrays,
considering temperature, relative humidity, and absolute humidity, the LSTM model had
higher accuracy than the ANN model in the concentration recognition of a gas mixture [28].
The results show that the RNN model can effectively analyze the gas concentration data
when it has interference factors; with a better model performance, improving the accuracy
of low-cost sensors is feasible.
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In fact, both the ANN and the RNN have made good progress in in-field gas sensing.
ANN first made feasibility in gas classification and concentration detection; RNN further
processed the sequence measured concentration data and interference factors to improve
accuracy. Moreover, it is noticeable that sensors may have inconsistent performance in dif-
ferent measurement scenarios. For example, performance can vary significantly in different
areas due to different environmental conditions [10,26,29]. In practical applications, the
long-term correlation between low-cost gas sensors and reference instruments is not stable,
mainly due to the change in field temperature and humidity [10]. Thus, the gas-sensing
calibration technology still has the problem of generalizability.

The ensemble model is a recent solution to the bottleneck of deep learning, which im-
proves the prediction performance of a single model by training multiple single models and
combining their prediction results [30,31]. Ensemble machine learning has been used widely
in various fields, such as face recognition, target tracking, and bioinformatics [32–35]. On
the other hand, the current research on gas sensing with machine learning are all based
on a single individual model, and thus an ensemble model has the potential to improve
gas-sensing performance.

Therefore, this paper aims to study the development of ensemble models to monitor
in-field gas concentrations with low-cost commercial gas sensors. The generalizability of
the trained model to be used with sensors in different environmental conditions was also
tested. First, we collected the concentrations of CO, O3, and NO2 gases and the atmospheric
conditions with homemade IoT devices for the following model training. The preprocessing
of data included outlier detection and normalization. Second, four types of RNN model,
LSTM, GRU, Bi-LSTM, and Bi-GRU, were introduced; a loss function and an evaluation
function were also defined for training and optimizing a single RNN model. In the third
part, the four types of optimized RNN single model were presented. Then, an ensemble
model containing static models, i.e., the optimized RNN single models and a dynamic
model, was composed and trained. For better generalizability of the model, a retraining
procedure for the ensemble model was processed to make the model more flexible to adapt
to various environmental conditions and improve the long-term sensing performance.
Finally, the discussion and conclusion were presented.

2. Data Preparation
2.1. IoT Device Designing and Data Collection

To detect gaseous pollutants in the environment, the authors developed a low-cost
wireless gas-sensing device in the study. Figure 1 shows the low-cost Internet of Things
(IoT) [36] device used in the research. It consists of four components: a gas sensor, a
NodeMCU WIFI chip, a Homemade PCB, and a Arduino Mega2560. The gas sensor is a
commercial component sold on the market, which detects the concentration of target gases,
including CO, O3, and NO2. The sensors also detect the temperature and humidity in the
atmosphere simultaneously. The Arduino Mega2560 stores the data detected by the sensors,
while the NodeMCU WIFI chips upload the data stored by the Arduino Mega2560 to the
cloud via the WIFI devices. The homemade PCB, designed by the author, integrates the
interface of various electronic components, which reduces the occupied space and increases
the stability of the component. The typical total cost of this device is 200 USD.

The low-cost IoT devices were then set up at a monitoring station established by the
Environmental Protection Administration (EPA), Taiwan. This monitoring station is located
in Guting Elementary School, Taipei city. Air quality measurements were taken using the
instruments in the station (HORIBA APMA360 for CO, ECOTECH ML9810 for O3, and
ECOTECH ML9841 for NO2) and then published on the EPA website. Our IoT devices
were placed in the instrument shelter of the Guting monitoring station to ensure that the
device’s environment was not disturbed by illumination fromthe sun, rain, and ground
radiation. Then, the IoT devices measured the ambient temperature, humidity, and gas
concentrations in the atmosphere continuously for three months. The data collected from
5 January to 23 March 2021, were used to develop machine learning models, including
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training, validation, and first testing; the data recorded from 23 March to 14 April were
used for more testing to examine the models’ long-term stability.
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Figure 1. Component assembly diagram of IoT device.

The IoT architecture divides into the perception, network, and application layers. As
shown in Figure 2, the hardware of the perception layer is a low-cost IoT device responsible
for detecting target gas concentrations and transmitting the detected concentration data
to the network layer. The hardware of the network layer is the 4G WIFI router, which is
responsible for receiving the information transmitted by the perception layer and uploading
the received data to Google Cloud through the device. The hardware of the application
layer is a personal computer. It obtains the information transmitted by the perception
layer from the Google cloud and performs data preprocessing on the acquired data. The
preprocessing process includes outlier cleaning, data normalization, and feature selection.
Thus, the preprocessed atmosphere data transmits to the trained AI model using the IoT
architecture for further gas concentration calculation.
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The commercial gas sensors used in the mentioned IoT device have different per-
formance characteristics. Table 1 shows their detecting ranges and resolutions, and the
cross-sensitivity information of each gas sensor is listed in Table 2. The manufacturer of
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these gas sensors is SPEC [37]. This study refers to each air pollutant’s annual average
concentration values in 2020, as shown in Table 3 [38]. The average annual concentration of
CO gas in 2020 was 0.35 ppm, indicating that the average annual concentration of CO gas
was greater than the resolution of the CO gas sensor (0.1 ppm in Table 1). Thus, the CO gas
sensor can effectively respond to the target gas in the environment at this concentration
level. The annual average concentration of O3 gas in 2020 was 30.9 ppb, indicating that the
annual average concentration of O3 gas was slightly higher than the resolution of the O3
gas sensor (20 ppb). The O3 gas sensor can also respond to the target at this concentration
level in the atmospheric environment. However, the concentration interpretation error
of O3 is higher, because the concentration resolution of the O3 gas sensor is slightly poor.
The annual average concentration of NO2 gas in 2020 was 11.16 ppb, indicating that the
annual average concentration of NO2 gas was less than the resolution of the NO2 gas sensor
(20 ppb), and its standard deviation is ±5.01 ppb, indicating that the concentration of NO2
gas is highly dispersive. Therefore, although the NO2 sensor may respond to the target gas
at this concentration level, the concentration interpretation error of the NO2 sensor is more
significant than that of the CO and O3 sensors due to the poor concentration resolution of
the NO2 sensor.

Table 1. Performance characteristics of each sensor [37].

Target Gas CO O3 NO2

Module DGS-CO 968-034 DGS-O3 968-042 DGS-NO2 968-043

Range 0 to 1000 ppm 0 to 5 ppm 0 to 5 ppm

Resolution 0.1 ppm 20 ppb 20 ppb

Table 2. Cross sensitivity of each sensor [37].

Applied Gas
Typical Response

CO Sensor O3 Sensor NO2 Sensor

CO 1:1 - -

O3 1:<0.2 1:1 1:<0.1

NO2 - 1:1 1:1

Table 3. Average annual concentrations of CO, O3 and NO2 in Taiwan in 2020 [38].

Type of Gas Average Annual
Gas Concentrations Standard Deviation

CO 0.35 ppm ±0.15 ppm

O3 30.9 ppb ±3.95 ppb

NO2 11.16 ppb ±5.01 ppb

2.2. Outlier Detection for Feature Selection

In the study, a local outlier factor (LOF) algorithm [39] filtered outlier data appearing
in the data collection procedure. The problem of an insufficient cache occurred, given the
long-term monitoring of the low-cost IoT devices in the environment. Therefore, the IoT
devices were designed to reset regularly every 5 min. In the resetting process, conflicts
between the Arduino Mega2560 embedded device, the NodeMCU WIFI chip, and the
gas sensor occasionally appeared, resulting in mixed outliers in data uploading, which is
defined as data loss. Data loss caused the features of gas concentration, temperature, and
humidity to change rapidly in a short period of time and disturbed the data preparation.
Therefore, we used a LOF algorithm to filter outliers generated by the data loss. The idea
of the LOF algorithm is to quantify the density of each sample point and compare the
density of the quantized sample point with the density of its neighboring points. Whether
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a sample point is an outlier depends on the degree of difference between the local density
of the sample point itself and that of its neighboring reference points. If the local density is
significantly different from its reference neighbor, the sample point is regarded as an outlier
and vice versa. Applying this method to outliers can prevent drastic data changes due to
data loss and effectively improve the quality of training data.

For example, the features collected by the O3 gas sensors are shown in Figure 3.
Figure 3 contains the raw values (orange line) and corresponding physical quantities (blue
line) of the concentration, temperature, and humidity. The raw values are the digital signals
of the ADC converter (in nano amperes nA). According to the conversion formula given by
the dealer, the raw values convert into the corresponding physical quantities. The physical
quantity is the ppb value of O3 gas concentration, temperature (◦C), and relative humidity
(RH). The converted physical quantity is stored as an integer variable, which loses the data
after the decimal point. Therefore, in feature selection, only the raw value of the gas sensor
is retained, and the physical quantity obtained by the converted formula of the gas sensor
is discarded.
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and (c) humidity of the O3 gas sensor on February 1 2021 (17:00–18:00).

2.3. Data Preprocessing—Normalization and Division

The datasets collected from the environment required processing before developing
machine learning models. The variation ranges of the data collected by gas sensors are
different, and thus normalization was adopted to avoid the unbalance effect of the essential
features. Data were normalized using the MinMaxScaler equation, and the formula is
expressed as:

Xnorm. =
X− Xmax

Xmax − Xmin
∈ [0, 1] (1)

where Xmax is the maximum value of the data, Xmin is the maximum value, and X is the
original value. After the normalization, the Xnorm. is scaled to the range [0, 1], and the trend
properties remain.

The data collected from the environment is time-dependent with a sequence property.
The commonly used random data shuffling is unsuitable for developing our machine
learning models, because data leakage occurs if the sequential data is normalized after
random shuffling. The shuffled normalized data for model training may contain the
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information of the testing dataset, such as the upper and lower limits, which can lead to
over-optimistic training results for the offline model training.

This study divided the data into three parts: the training and validation datasets in
the training phase and the testing set in the testing phases. As an example, Figure 4 shows
these three parts for the CO gas concentration. The blue, orange, and green lines represent
the training, validation, and testing data. These sets do not overlap each other in time series
to avoid the problem of data leakages in the model development. The training dataset is
for the model training, it is validation data to be used for the hyperparameters’ adjustment
by minimizing the validation error, and the testing set is to test the actual performance of
the target gas model. All datasets in this paper were treated using this method to develop a
high-performance model.
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3. Basics of Machine Learning

In machine learning, hyperparameters are parameters used to control the learning
process. Proper hyperparameters can make the model converge to a better local minimum.
Hyperparameters include the model hyperparameter, i.e., the model type, and the algorithm
hyperparameters, including the layers, the number of neurons, and the learning rate. Since
the data in this study belongs to time-series data, considering the property of the data, the
Recurrent Neural Network (RNN) [21] is selected. RNN can be used to analyze time-series
data and extract information between data through the gate unit inside the model so that
the RNN has a breakthrough in processing time-series data.

3.1. Recurrent Neural Network

The four types of RNNs used in the subsequent experiments are introduced in this
section. The first RNN is the Long Short-Term Memory (LSTM) network. The LSTM
comprises multiple memory cells, and each memory cell has three gate units: the forget gate,
input gate, and output gate. LSTM controls the amount of hidden state information through
the gated unit and improves the phenomenon that Simple-RNN is prone to, i.e., gradient
explosion or gradient vanishment, when dealing with long time-series problems. Figure 5
shows a schematic diagram of the LSTM structure composed of three memory cell units,
and the parameters are defined in the following equations.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

it = σ (Wi·[ht−1, xt] + bi) (3)
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ot = σ (Wo·[ht−1, xt] + bo) (4)

c̃t = tanh (Wc·[ht−1, xt] + bc) (5)

ct = ft·ct−1 + it·c̃t (6)

ht = ot·tanh(ct). (7)
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The forget gate is represented by ft, the input gate is it, and the output gate is ot. The
index t presents the time step. Thus, xt and ht are the input and hidden states at the current
moment. c̃t represents the updating value of cell state, and ct is the cell state at the current
time. The forget gate, input gate, and output gate are activated by the sigmoid function
and the updating value of the cell state by the hyperbolic tangent function. W f , Wi, Wo, Wc
are the weight matrix of the forget gate, input gate, output gate, and cell state, respectively,
while b f , bi, bo, bc are the bias matrix. The forget gate ft controls the proportion of ct−1,
the cell state at the last time step, to be forgotten in the current cell state ct; the input gate
it determines how much of the current updating value c̃t is needed; the output gate ot
determines the proportion of the cell state ct to be used as an output and to obtain the
hidden state ht of the memory cell at the current moment. For more information on LSTM,
refer to Hochreiter and Schmidhuber [23].

The second type of RNN is the Gated Recurrent Unit (GRU) network, a simplified
version of LSTM. Each GRU memory cell has two gate units: the update gate and the
reset gate. Compared with LSTM, GRU has fewer parameters, reducing the time spent in
model training and the cost of hardware calculation. Figure 6 shows a schematic diagram
of the GRU structure composed of three memory cell units, and Equations (8)–(11) define
the operators.

rt = σ(Wr·[ht−1, xt] + br) (8)

zt = σ (Wz·[ht−1, xt] + bz) (9)

h̃t = tanh(Wh·[rt·ht−1, xt] + bh) (10)

ht = (1− zt)·ht−1 + zt·h̃t (11)

In the above formula, rt represents the reset gate, zt the update gate, h̃t the updating
value of the hidden state, and xt and ht are the input and hidden state at the current time,
respectively. The reset gate and the input gate are activated by the sigmoid function and
the updating value of the hidden state by the hyperbolic tangent function. Wr, Wz, Wh
are the weight matrix of the reset gate rt, update gate zt, and the updating value of the
hidden state h̃t, and br, bz, bh are the bias matrix of rt, zt, and h̃t, respectively. The update
gate controls the ratio of the hidden state ht−1 at the last time step (t− 1) and the updating
value of the hidden state h̃t at the current time; the reset gate rt resets the information of
the hidden state ht−1. More information on GRU is in reference [24].
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The third and fourth types of RNNs are the Bi-directional Long Short-Time Memory
(Bi-LSTM) and Bi-directional Gated Recurrent Unit (Bi-GRU) networks, and their schematic
diagrams are in Figures 7 and 8.
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Compared with LSTM and GRU, Bi-LSTM and Bi-GRU improve time flow. In the
forward-transmission RNN, a new backward RNN is built, and the time flow of the two
is precisely opposite. Therefore, for Bi-RNNS, there are two RNNs with opposite time
flows, namely the forward layer and the backward layer; the information of memory cells



Sensors 2022, 22, 4393 10 of 22

corresponding to the same time is provided by the output value of both the forward and
backward RNNs. Therefore, compared with the general form of RNN, Bi-RNN can consider
the information of the whole time series and make full use of the context of the time series.
For more information on Bi-RNN, refer to Schuster and Paliwal [25].

3.2. Construction of Model

In this study, the machine learning models used to detect gas concentration include
three parts: the input layer, the hidden layer, and the output layer, as shown in Figure 9. The
input layer preprocesses raw data using the LOF algorithm and the MinMaxScaler method.
The hidden layer comprises the recurrent neural layer (the blue box in Figure 9) and the
fully connected layer (the orange circles, referred to as the FC layer). The Bi-LSTM memory
cells (hereafter referred to as the BiL layer) are shown in the recurrent neural layer as an
example. The number of layers and neurons varies according to the type of gas model; the
dense layer number is set as two. The weight of the hidden layer of the model is optimized
by the Adam optimizer [40] with a mean square error (MSE) loss function so that the loss
function converges to a better local minimum. The output layer receives the information
from the previously hidden layer and calculates the detected gas concentration through
a linear activation function. In our study, the three-layer models are flexible enough to
develop high-performance machine learning models.
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The concentration-detecting models use a loss function and an evaluation function.
The MSE loss function in the hidden layer is defined as:

MSE =
1
n ∑n

i=1

(
ypredict(i) − ytrue(i)

)2
, (12)

where ypredict(i) is the model gas concentration output value, ytrue(i) is the actual value, and
n is the total sample number. The variance of each sample is obtained by subtracting the
model output value and the corresponding actual value by square. Then, the MSE of the
model can be obtained by summing up the variance values of all samples and averaging
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them. The evaluation function in this study is Mean Absolute Percentage Error (MAPE),
defined as:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣ypredict(i) − ytrue(i)

ytrue(i)

∣∣∣∣∣. (13)

After subtracting the model output value and the corresponding actual value of each
sample, then dividing the corresponding true value and taking the absolute value, the
MAPE of each sample is obtained. MAPE defines a dimensionless error, and thus it is
suitable to use to measure the differences between the model output and the actual values,
even under different numerical magnitudes.

4. Development of Ensemble Models

Ensemble models consisting of different RNNs were developed to detect target gas
concentrations in this study. Traditionally, developers use the validation dataset and take
the evaluated index to obtain the best machine learning model. The steps include: 1. a
series of hyperparameter tests by the training data; 2. evaluating the performance by the
validation data; and 3. selecting the model hyperparameter which shows the best evaluation
in the last step. The optimal model selected by the above procedures can achieve the best
performance in the validation set, but some disadvantages exist. First, the procedure is time-
and labor-consuming, but only one, the optimal hyperparameter configuration, is selected.
The other models that result from the hyperparameter optimization are abandoned. Next,
the features of the validation dataset can not guarantee consistency with those of the future
new data. The model with the best performance of the validation-run set may not have the
best performance while applied to the new data in the future. Thus, improvement by using
an ensemble model was proposed to enable the modification of the model and learn the
generalizability of future data.

Developing ensemble models includes optimizing hyperparameters, comparing mem-
ory cells, and ensembling and retraining the best model. The machine learning programs
were based on Python3.8, Tensorflow-gpu 2.4.0, and execution on graphics cards of NVIDIA
Titan XP and NVIDIA RTX 3080. Details are in the following subsections.

4.1. Optimization of Hyperparameters

In machine learning, hyperparameters include the model hyperparameters and the
algorithm hyperparameters. Model hyperparameters, such as the number of layers, neu-
rons, and input features, affect the model’s best performance. Algorithm hyperparameters
include the selection of the optimizer, learning rate, batch size, etc., which significantly
affect the convergence and training time of the model. A series of hyperparameter opti-
mizations was processed in the study. We first optimized the model hyperparameter to
determine the basic architecture of each gas model. Then, the algorithm hyperparameters
were optimized so that each gas model could shorten the training time and converge to a
better local minimum.

The model hyperparameters of a single weak model for detecting a specific gas were
determined firstly. Configurations of the model for a single-gas detection (CO, O3, and
NO2) are shown in Table 4. We compare the influence of the number of BiL layers on the
performance of each gas model, which is one to three layers, respectively. Each layer has a
specific number of neurons, which is a power of 2, as shown in the brackets. Finally, the
number of BiL layers of the CO model was set to two, and the number of BiL layers of the
O3 model and the NO2 model was set to three.
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Table 4. Performance differences of target gas models with different model structures.

Target Gas Model Structure Input Feature MAPE (Validation)

CO BiL(32)–BiL(16)–NN
CO + O3 16.31%

Only CO 17.35%

O3 BiL(64)–BiL(32)–BiL(32)–NN
O3 + NO2 36.98%

Only O3 41.67%

NO2 BiL(64)–BiL(32)–BiL(32)–NN
O3 + NO2 86.27%

Only NO2 68.05%

Next, we compared the performance of the model validation set with the number of
input features to determine the number of input features for each gas model. The input
feature contains the raw values from the gas sensors (gas concentration, humidity, and
temperature). The MAPE of the CO gas model is 16.31% when it is trained with the dual
gas features of CO and O3 and 17.35% when trained with the single-gas feature of CO. The
performance of the dual-gas features is improved by 1.04%. The MAPE of the O3 gas model
was 36.98% after training with O3 and NO2 dual gas features and 41.67% after training with
O3 single gas features. The performance using the dual-gas feature is 4.7% higher than that
of the single-gas feature; the reason is that the O3 gas sensor is disturbed by NO2 gas (as
mentioned in Section 2.1). Therefore, adding the O3 gas feature can significantly improve
the performance of the validation set of the O3 gas model. The MAPE of the NO2 gas model
was 86.27% after training with O3 and NO2 dual gas features and 68.05% after training
with NO2 single gas features. The performance of the single-gas feature is 18.22% higher
than that of the dual-gas feature; the reason is that the NO2 gas sensor is less disturbed
by O3 gas similarly. Therefore, adding the O3 gas feature will reduce the validation set
performance of the NO2 gas model. Through the above experiments, we determined the
model hyperparameters of the gas model, including the basement architecture and input
features. Next, the algorithm hyperparameter for each gas model will be optimized.

The algorithm hyperparameters, e.g., the batch size and the dropout layer coefficient,
are optimized to reduce the model’s training time and improve the model’s convergence.
The batch size is the number of samples used for training once. A larger batch size can
shorten the training time of the model, but the variance between batches is slight when
calculating the gradient of each batch in reverse. Therefore, the gradient obtained from
each batch varies little, and the lack of gradient randomness tends to fall into a poor local
minimum. Smaller batches require a longer calculation time for each iteration, which
prolongs the training time of the model and increases the time cost of model tuning.
However, compared with the large batch, the small batch has the advantage of gradient
randomness, resulting in it converging better to the local minimum. In summary, choosing
an appropriate batch size is necessary to balance the training time and convergence of
the model.

Figure 10 shows the experimental results of the effects of the batch size in developing
the gas models. Although the batch size of 64 achieved the best convergence, it took twice
the computation time as long as the batch size of 256, and the performance difference
between the two was only 1.68%. Finally, the batch size of 256 was selected as the best
batch size configuration for the CO gas model. The decision of O3 gas and NO2 gas models
also considered the time cost, and the final batch sizes were 128 and 256, respectively.

After this, the dropout layer coefficients of each gas model were determined. The
dropout layer is a method used to improve model overfitting by shielding a certain per-
centage of neurons in each epoch, so that model training does not rely too much on specific
neurons for training and prevents model overfitting [41]. By adjusting the coefficient of
the dropout layer appropriately, the overfitting phenomenon of each target gas model on
the training set can be effectively alleviated, and the performance of the verification set
of each target gas model can be effectively improved. Figure 11 shows that, when the
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dropout coefficient is 0.15, the CO gas and the O3 gas models have the best validation set
performance, with 10.25% and 34.07% MAPE, respectively. The NO2 gas model has the
best validation performance when the dropout coefficient is 0.075, with 48.35% MAPE.
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By optimizing the model hyperparameters and algorithm hyperparameters, the single
weak model of each gas was trained. Subsequently, multiple single weak models were
created for the ensembles by replacing the memory cell units of different types to improve
the poor generalization of the single weak model on the new data.

4.2. Comparison of Memory Cells

The memory cell used in the model is a vital model hyperparameter to be discussed.
The recurrent neural layer uses the Bi-LSTM memory cell unit in the last section. More
types of different memory cell units, including Bi-GRU, LSTM, and GRU, are compared
based on their performance in the validation set testing. Figure 12 shows the experimental
training results of different memory cells in each gas model. The results show that Bi-LSTM
is the best cell for the CO gas model, with a MAPE of 10.25%. The other MAPE values
are 12.08% for Bi-GRU memory cells, 13.75% (LSTM), and 18.8% (GRU). The performance
of the O3 gas model is best (29.78% MAPE) when GRU is used, and the MAPE values
are 34.07%, 41.08%, and 36.22% for the Bi-LSTM, Bi-GRU, and LSTM cells, respectively.
In the NO2 gas model, Bi-LSTM shows the best performance in the validation set, and
the MAPE is 48.35%. The MAPE values obtained by other memory cell training models
are 143.25% (Bi-GRU), 87.37% (LSTM), and 55.24% (GRU), respectively. The results show
that the gas models trained by different memory cells have various performances in the
validation set. Basically, the commercial sensor’s native resolution limits the performance.
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The NO2 sensor has the lowest ratio of the average annual concentration to resolution, and
thus the MAPE of the NO2 sensor model is always higher than the models of the other
two gases. Compared with the CO gas model and the O3 gas model, the NO2 gas models
have the most considerable performance variation while different memory cells are used.
Subsequently, by integrating each gas model trained by four different memory cells, an
ensemble model can be retrained to be the best model for gas concentration detecting.
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4.3. Ensemble Models to Obtain the Best Model

Ensemble models are proposed in this study to reuse all the single weak models
trained in the last steps. Figure 13 shows schematic diagrams of the ensemble models for
CO gas; models for detecting O3 and NO2 gas are constructed in the same way. The orange
dashed line in Figure 13 indicates the four types of recurrent neural models trained in
Section 4.2. These recurrent neural models are integrated, and their parameters inherited
from the last step are frozen in the ensemble model; thus, it is named a static model. The
green dashed line in Figure 13 highlights a fully connected neural network responsible for
receiving output values and training data from the static model and then determining their
parameters through backpropagation. Since the weight coefficients (wi and wo in Figure 13)
will change in the further retraining procedure, this NN is named the dynamic model. The
dynamic model learns the deviation relation of different RNN models through retraining,
summarizes the target gas concentration calculated by the static model, and outputs the
final summarized target gas concentration value.

The performance values of the ensemble model and every single weak model for three
target gases are shown in Figure 14. Considering the CO gas models, in the training phase,
the validation set testing of the ensemble model is not optimal, with a MAPE of 13.56%.
The single models using Bi-LSTM and Bi-GRU memory cells have better MAPE values of
10.25% and 12.08%. However, in the testing phase, where the new data (i.e., testing dataset)
were used, the 15.23% MAPE of the ensemble model is the best one in all models. The
results show that all the CO single weak models have significantly lower performance
values in the testing set than in the validation set. The Bi-LSTM single model, which has
the best performance in the validation set, is not globally optimal for the test set, indicating
that the single weak model has poor applicability to the new data. The ensemble model
maintains a certain model performance on the new data and effectively improves the
model’s generalizability to the new data.
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A similar result was obtained from the experiments using O3 gas models. The ensem-
ble model’s validation performance (34.74% MAPE) for O3 gas is not the best one compared
to the other four single weak models, while the performances of the single-memory-cell
model using GRU and Bi-LSTM were MAPEs of 29.78% and 34.07%, respectively. However,
in the testing phase, all models examined new data (i.e., test dataset) for testing, and the
integrated model had the best MAPE (37.14%) again. The O3 gas ensemble model is more
applicable and keeps the model’s generalizability to new data.

In the tests of the NO2 gas models, the ensemble model has the best performance
in both the validation and testing sets, and the MAPE values were 43.67% and 67.37%,
respectively. The performance of the NO2 ensemble model decreases less than that of
the single weak model in the test set compared with that of the single weak model in the
validation set, indicating that the NO2 ensemble model is better than that of the single
weak model in the application of new data. However, there is still room for improvement
compared with the CO gas and O3 gas ensemble models.

It can be summarized that the static model part of the ensemble models contains the
fundamental properties of the gas sensors found by the optimized single weak models.
Further, the dynamic model part is a combination of the calibrated models and thus can
achieve better performance by tuning weight coefficients. According to these experimental
results of different gas ensemble models, the model deviation of a single-memory-cell
model was effectively offset by integrating more types of recurrent neural models. Thus,
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ensemble models can have a better generalizability for handling individual differences in
the commercial sensors of the same module; therefore, the ensemble model was chosen as
the best model for gas concentration detection.

4.4. Ensemble Model Retraining

In the previous section, the ensemble model had the best performance for each gas,
but further tests observed a decayed performance while more new data were input. The
reason is that the data used to train the ensemble RNN models were collected from January
5 to March 23, containing only a partial property in a whole year. Thus when the new data
collected from March 23 to April 14 was input into the model, the performance became
unstable, because the atmospheric conditions changed across different seasons. Therefore,
we propose a periodical retraining procedure. The periodic retraining procedure regularly
updates the dynamic model’s weights to conform to the deviation of the characteristic
distribution of the new dataset collected in the atmospheric environment in each period. It
extends the life cycle of the integrated gas models.

The flow chart of an optimal gas model is set out in Figure 15. Data engineering is
the first step in dealing with a new dataset, including preprocessing, outlier cleaning, and
normalization, as mentioned in Section 2. The second step, model engineering, contains
a recursive work—model online, performance monitoring, and model retraining. We
obtained the best ensemble model through a training series, as shown in Sections 4.1–4.3.
Then, the model was activated to calculate gas concentrations; this model was named
model online. Under regular monitoring, the model’s performance declined with time;
therefore, the program counts on the amount of data that the model has calculated and
decides whether to retrain the dynamic model. While the amount of data calculated
by the model reached two hundred, model retraining was triggered in the study. The
testing dataset became a new training dataset in the retraining procedure. The upper
and lower limits of the scaling scale of the new training dataset were consistent with the
original training dataset to ensure the consistency of the new and old datasets. We used
the new training dataset to train the dynamic model again and then updated the weight
coefficients (as shown in Section 4.3). By periodically updating the dynamic model’s weight
coefficients, the gas model’s performance at each stage is stabilized and extends the gas
model’s life cycle.
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gas model through the last period’s data and dynamically corrected the concentration in-
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The ensemble model for CO gas was used to demonstrate the performance of the
retrained model. Figure 16 shows the actual CO concentration values provided by the
EPA, and the lines in different colors present the definition of the dataset. The initial single
weak models were trained by the training dataset (the blue line, which contains 1500 pieces
of data), and the ensemble model for CO was defined. Then the weights of the dynamic
model are defined by updating the weights of the original model according to the newly
added data in each period (i.e., the orange, green, red, purple, and brown lines). The
amount of data for each period is 200, and the initial learning rate of the model is 0.1 times
that of the original static model. The retraining method of the O3 and NO2 gas models
is the same as that of the CO gas model: use the previous period’s data as new training
data, and retrain the model through the new data of the previous period to improve the
generalization ability of the retrained model in the next period.
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Figure 17 shows the actual CO concentration, the original model’s output values, and
the retrained model’s outputs. The weight coefficients in the original ensemble model
are unchanged after being defined in the training phase. Figure 17a shows the significant
differences between the output concentrations and the actual values. The performance
was estimated using the residual sum of squares of the linear regression model, i.e., the
R2 value. In the fourth interval, the R2 value of the original CO gas model is negative,
hinting at the failure of the linear regression model, and the model’s overall performance
is not stable enough to handle changes in new data. The results of the O3 and NO2 gas
models are similar, and the results are summarized in Table 5. The retrained model updated
the gas model through the last period’s data and dynamically corrected the concentration
interpretation of the static model in each period. Thus Figure 17b shows a smaller difference
in each period. The retrained model has an average R2 of 0.73 over the four intervals. As
shown in Table 5, the long-term average R2 of the four intervals of the retrained O3 and
NO2 gas ensemble model are 0.51 and 0.37, respectively, which are better than the results
of the original ensemble models.
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EPA’s database.
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Table 5. Comparison of performance between original model and retrained model.

Testing Dataset
R2

Original Retrained

CO O3 NO2 CO O3 NO2

2nd 0.77 −0.22 −0.22 0.78 0.54 0.36

3rd 0.69 −0.40 −4.00 0.72 0.47 0.37

4th −0.08 0.59 0.13 0.65 0.58 0.34

5th 0.35 0.27 −0.04 0.75 0.46 0.40

Average R2 0.43 0.06 −1.03 0.73 0.51 0.37

Compared with the original model without retraining, the sensor performance of the
retrained model is much more stable in the different periods. The retraining procedure
can update the parameters of the dynamic model in the ensemble model, meaning that
the machine learning model with regular retraining is a potential solution to calibrate
sensors deployed in different environments (area or season). Thus, the model’s life cycle is
effectively prolonged.

Furthermore, the contribution of each static model to the final output value of the
ensemble model was estimated. The degree of the gradient contribution was used, which
was obtained by differentiating the output of the dynamic model with respect to that of the
static model as follows:

gradient contribution =
∂Dynamic modeloutput

∂Static modeloutput
(14)

The gradient contribution of every data point in each interval was calculated, summed,
and averaged, and the results are shown in Figure 18. In the original gas models, the
gradient contribution of each static model to the dynamic model is unchanged in all
periods. The original gas model interprets gas concentration on the new data with the same
gradient contribution in each period; the model cannot be dynamically adjusted with time,
resulting in poor model performance and generalizability on the new dataset. Compared
with the original gas model, the retrained gas model uses the new data of the previous
period to update the weight coefficients of the dynamic model. Thus, the retrained gas
model adjusts the gradient contribution of the static model and corrects the static model
output in each period; the improved concentration estimations were observed in Figure 17
and Table 5. The retraining procedure provides the ensemble models better generalizability
on new data.
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4.5. Feasibility of Onsite Gas Sensing

This study discussed the feasibility of using IoT gas sensors in a natural atmospheric
environment. According to the Kernel Density Estimation (KDE) [42] of humidity and
temperature, as shown in Figure 19, our sensors were in a rapid-change humidity and tem-
perature environment instead of a constant temperature/humidity chamber in a laboratory.
Under these varying conditions, our ensemble model can still maintain a relatively stable
performance. The ensemble machine learning model can apply IoT sensors to achieve
accurate air pollution detection.

Sensors 2022, 21, x FOR PEER REVIEW 18 of 21 
 

 

the gradient contribution of each static model to the dynamic model is unchanged in all 
periods. The original gas model interprets gas concentration on the new data with the 
same gradient contribution in each period; the model cannot be dynamically adjusted 
with time, resulting in poor model performance and generalizability on the new dataset. 
Compared with the original gas model, the retrained gas model uses the new data of the 
previous period to update the weight coefficients of the dynamic model. Thus, the re-
trained gas model adjusts the gradient contribution of the static model and corrects the 
static model output in each period; the improved concentration estimations were ob-
served in Figure 17 and Table 5. The retraining procedure provides the ensemble models 
better generalizability on new data. 

 
Figure 18. The gradient contributions of the static models in the original ensemble model for (a) CO, 
(b) O3, and (c) NO2 gases and in the retrained ensemble models for (d) CO, (e) O3, and (f) NO2 gases. 

4.5. Feasibility of Onsite Gas Sensing 
This study discussed the feasibility of using IoT gas sensors in a natural atmospheric 

environment. According to the Kernel Density Estimation (KDE) [42] of humidity and 
temperature, as shown in Figure 19, our sensors were in a rapid-change humidity and 
temperature environment instead of a constant temperature/humidity chamber in a labor-
atory. Under these varying conditions, our ensemble model can still maintain a relatively 
stable performance. The ensemble machine learning model can apply IoT sensors to 
achieve accurate air pollution detection. 

 
Figure 19. Distribution of (a) humidity and (b) temperature in each period. 

A comparison of the sensing performance and equipment cost of the gas sensing 
equipment of other manufacturers is shown in Table 6 (reference source: AQ-SPEC [43]). 
The R2 performance of our low-cost IoT device with AI assistance in all target gases is 

Figure 19. Distribution of (a) humidity and (b) temperature in each period.

A comparison of the sensing performance and equipment cost of the gas sensing
equipment of other manufacturers is shown in Table 6 (reference source: AQ-SPEC [43]).
The R2 performance of our low-cost IoT device with AI assistance in all target gases
is slightly lower than that of other gas-sensing devices, but the gap is not significant.
Considering the cost of a large number of deployed gas detection equipment, the low-
cost IoT device in this study is far less expensive than other brands of gas detection
equipment. Based on cost performance advantages, more low-cost IoT devices such as the
one developed in this study can be deployed to improve the spatial density information of
CO, O3, and NO2 gases.

Table 6. Comparison of the sensing performance and equipment cost of the gas sensing equipment
of other manufacturers.

Sensor Image Model Name Cost (USD)
Field R2
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5. Conclusions

This paper studied ensemble models of RNN for onsite gas concentration detection
using low-cost commercial sensors. IoT sensing devices for CO, O3, and NO2 were designed,
fabricated, and then deployed in the field to monitor atmospheric air conditions. The time-
sequence data of concentration, temperature, and humidity were collected for three months.
Single weak RNN models for the three target gases were developed first, and then the
ensemble models combining four types of RNN models were defined and studied. Results
showed that the ensemble models improved the sensing performance for all gases. The
results show that integrating four types of RNN models can significantly improve the
performance in the testing set, showing a better result than any single RNN model. The
static model part of the ensemble models contains the fundamental properties of the gas
sensors, and the dynamic model part is a combination to achieve better performance.
Thus, the ensemble model has a better generalizability for the commercial sensors for gas
concentration detection.

Furthermore, a retraining procedure was designed as the optimal model to maintain
stable model performance and prolong the life cycle. The performance of the original model
without retraining is volatile in different periods, while the retraining model can solve this
problem well. The periodic retraining procedure can update the parameters of the dynamic
model in the ensemble model, meaning that the trained machine learning models can be
easily applied while the sensors are deployed in a different environment (area, season).
The results showed that the long-term average determination coefficient (R2) of the CO gas
model reaches 0.73, it reached 0.51 for the O3 gas model and 0.37 for the NO2 gas model.
The performance is still limited by the native sensitivity and the target selectivity. However,
with the help of our ensemble models, these sensors have a specific correlation with the
actual concentration announced by the EPA. The results promise accurate air pollution
detection feasibility using commercial gas sensors in natural changing temperatures and
humidity environments.
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