ﬁ Sensors

Article

DOC-IDS: A Deep Learning-Based Method for Feature
Extraction and Anomaly Detection in Network Traffic

Naoto Yoshimura, Hiroki Kuzuno *

check for
updates

Citation: Yoshimura, N.; Kuzuno, H.;
Shiraishi, Y.; Morii, M. DOC-IDS: A
Deep Learning-Based Method for
Feature Extraction and Anomaly
Detection in Network Traffic. Sensors
2022, 22, 4405. https:/ /doi.org/
10.3390/522124405

Academic Editors: Ethiopia Nigussie
and Habtamu Abie

Received: 16 May 2022
Accepted: 7 June 2022
Published: 10 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Yoshiaki Shiraishi ©° and Masakatu Morii

Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan;
yoshimura.naoto@gsuite.kobe-u.ac.jp (N.Y.); zenmei@port.kobe-u.ac.jp (Y.S.); mmorii@kobe-u.ac.jp (M.M.)
* Correspondence: kuzuno@eedept.kobe-u.ac.jp

Abstract: With the growing diversity of cyberattacks in recent years, anomaly-based intrusion
detection systems that can detect unknown attacks have attracted significant attention. Furthermore,
a wide range of studies on anomaly detection using machine learning and deep learning methods
have been conducted. However, many machine learning and deep learning-based methods require
significant effort to design the detection feature values, extract the feature values from network
packets, and acquire the labeled data used for model training. To solve the aforementioned problems,
this paper proposes a new model called DOC-IDS, which is an intrusion detection system based on
Perera’s deep one-class classification. The DOC-IDS, which comprises a pair of one-dimensional
convolutional neural networks and an autoencoder, uses three different loss functions for training.
Although, in general, only regular traffic from the computer network subject to detection is used for
anomaly detection training, the DOC-IDS also uses multi-class labeled traffic from open datasets for
feature extraction. Therefore, by streamlining the classification task on multi-class labeled traffic, we
can obtain a feature representation with highly enhanced data discrimination abilities. Simultaneously,
we perform variance minimization in the feature space, even on regular traffic, to further improve
the model’s ability to discriminate between normal and abnormal traffic. The DOC-IDS is a single
deep learning model that can automatically perform feature extraction and anomaly detection. This
paper also reports experiments for evaluating the anomaly detection performance of the DOC-IDS.
The results suggest that the DOC-IDS offers higher anomaly detection performance while reducing
the load resulting from the design and extraction of feature values.

Keywords: deep learning; feature extraction; anomaly detection; convolutional neural network;
autoencoder; intrusion detection

1. Introduction

The growth of the Internet in recent years has produced a wide variety of services
and improved the convenience of our daily lives. However, this has also resulted in
increased numbers of cyberattacks. Intrusion detection systems (IDSs) are one mechanism
for detecting such attacks. Such systems can be broadly divided into two categories
depending on the detection method used. The first, signature-based IDS, performs detection
based on rules that are defined in advance. The second is an anomaly-based IDS that detects
abnormal states as anomalies. However, a signature-based IDS cannot detect attacks for
which it has no rules, which imposes an extremely large burden on designers by requiring
new rules to be added in response to the ever more diverse range of new cyberattacks.
Consequently, anomaly-based IDSs that can detect unknown cyberattacks, particularly
methods that use machine learning (ML) and deep learning (DL), have attracted significant
attention and are now being widely researched [1-3].

Autoencoders, which are a core technology among the anomaly detection models that
use DL, generally have smaller intermediate layers than their same-sized input and output
layers. Because autoencoders are normally trained to reconstruct the input, the input

Sensors 2022, 22, 4405. https://doi.org/10.3390/522124405

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s22124405
https://doi.org/10.3390/s22124405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2686-2541
https://orcid.org/0000-0002-8970-9408
https://orcid.org/0000-0001-7942-5914
https://doi.org/10.3390/s22124405
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124405?type=check_update&version=1

Sensors 2022, 22, 4405

20f19

data are compressed into lower dimensionality by the intermediate layer. Hinton et al. [4]
described steps up to the intermediate layer as a non-linear generalization of principal
component analysis (PCA). When an autoencoder is trained to reconstruct the training
data, it experiences difficulty when encountering unfamiliar data that were not present
during training. In the security field, attempts have been made to detect such attacks as
anomalies by using autoencoders [5-8]. Furthermore, there are reports of attempts to use
convolutional neural networks (CNNs) for intrusion detection, which are used primarily
in the image recognition field [9-11]. Specifically, CNNs have been proposed as a method
for utilizing the relationships between data by learning the features that determine data
shapes, arranging and visualizing data in two dimensions, and transforming packet byte
arrays into integers.

However, many of these methods are difficult to implement for various reasons. For ex-
ample, it is necessary to make the feature values used in detection capable of discriminating
between normal and abnormal traffic based on network packets, requiring complicated
network packet processing during the extraction of the designed feature values. Further-
more, when a supervised learning method is used, labeled data must be obtained and/or
created. These difficulties can impose obstacles in the research and practical application of
anomaly-based IDSs. Accordingly, our study proposes an anomaly detection method that
can perform automatic feature extraction without requiring specially labeled data for each
use case.

The DOC-IDS proposed herein is a feature extraction and anomaly detection method
that uses a two-input DL model and employs a deep one-class classification (DOC) [12] fea-
ture extraction method for one-class classification, which is normally used in the computer
vision field, to extract features from network packets. The DOC-IDS consists of a pair of
identical one-dimensional (1D) CNNSs, one of which is connected to an autoencoder via the
intermediate layer. In operation, the DOC-IDS uses these 1D CNNss to extract features that
reveal the relationship between bytes in traffic data. During training, an existing labeled
multi-class dataset is input in addition to the single class normal traffic. Two loss types
are used to improve the discriminative ability among the data, whereas another loss type
is used for anomaly detection. The model trained in this manner acquires feature repre-
sentations with a highly enhanced ability to discriminate between normal and abnormal
traffic that did not appear in the training process and is also able to perform anomaly
detection. The results of the evaluation experiments using multiple datasets showed that
the DOC-IDS has a higher detection accuracy than existing methods, it is particularly
effective for detecting communication with command and control (C2) servers, and its
processing speed delivers sufficient performance for practical applications.

The contributions of this study can be summarized as follows:

* We apply a feature extraction method for one-class classification, which has high
anomaly detection performance in the computer vision field, to traffic data. We then
demonstrate a method of obtaining feature representations with a highly enhanced
ability to discriminate between normal and abnormal traffic. Furthermore, we reduce
the burden of designing and extracting feature values.

¢ We have simultaneously trained the CNN for feature extraction and the autoencoder
for anomaly detection by implementing those processes using a single DL model.

¢ We show through evaluation experiments that our DOC-IDS method can detect anoma-
lous traffic with high accuracy levels, particularly when handling communications
with C2 servers.

Sensors 2022, 22, 4405

30f19

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 introduces closely related research, and Section 4 presents the architecture,
training method, and anomaly detection method for the proposed DOC-IDS. Section 5 de-
scribes the datasets used in the experiments, and Sections 6 and 7 describe two experiments
conducted using the datasets. Finally, Section 8 summarizes the study.

2. Related Works

With the growing diversity of cyberattacks in recent years, there is the new burden of
creating rules for signature-based IDSs that cannot detect attacks for which they have not
learned the correct rules. Research is now focusing on anomaly-based IDSs that can detect
unknown attacks using ML and DL [1-3].

Numerous methods that use feature values extracted from flows provided by open
datasets have been proposed, such as NSL-KDD [13] and CIC-IDS2017 [14]. For example,
Zavrak et al. [7] trained an autoencoder, variational autoencoder (VAE), and one-class
support vector machine (SVM) using normal traffic flow data contained in the CIC-IDS2017
dataset to perform abnormal traffic detection. Separately, Khan et al. [15] proposed a hybrid
convolutional recurrent neural network intrusion detection system (HCRNNIDS) that
uses a convolutional recurrent neural network (CRNN) for the flow data contained in the
CSE-CIC-IDS2018 dataset. In the HCRNNIDS, feature value engineering is performed on
the flow data, and a classifier is trained using flow data labels. Hence, the HCRNNIDS can
extract spatial and temporal features using a convolutional layer combined with a recurrent
layer. Su et al. [16] proposed the BAT-MC detection model that combined bidirectional
long short-term memory with an NSL-KDD convolutional layer. In that study, the authors
converted the category variables among the NSL-KDD to a one-hot representation and
used the obtained numerical data converted to an image as an input. BAT-MC training was
performed by classifying the NSL-KDD labels.

Some existing studies using flows have focused on feature selection. For example,
Giil et al. [17] proposed a feature selection algorithm for the NSL-KDD that adopted an
attribute evaluator to evaluate each feature and a search method to find feature combina-
tions. The proposed algorithm achieved detection with less execution time, which was
almost the same as using all the features. In [18], Alani et al. performed preprocessing
such as the binarization of classes into malicious and benign, balancing of data, removal of
missing values, and encoding of categorical variables. For feature selection, they proposed
a method of classification that employed a random forest and repeated the process of
removing features with low contribution rates, starting with 48 features after preprocessing
and repeating until five features were selected. Gharaee et al. [19] proposed a feature
selection method using a genetic algorithm (GA), in which features obtained by GA were
used to train an SVM and classify communications until the maximum number of iterations
was reached or the termination criteria were met. They also proposed a fitness value for the
GA that multiplies the true positive rate (TPR), false positive rate (FPR), and the number of
features by their respective weights.

In methods that use the flow data contained in these datasets, the features are extracted
in advance so we can focus on the detection model design. Although there are also many
methods that perform feature value engineering to select only the most useful feature
values from those provided [20], there have been no studies showing that feature value
extraction processing needs to be implemented during actual operations and that labeling
is required for detecting attacks when using supervised learning.

Methods that do not use the flow data provided by open datasets have also been
proposed to extract features from network packets. For example, Mirsky et al. [5] proposed
the Kitsune anomaly detection framework that uses an ensemble of autoencoders. This
method also tallies the statistical quantities from the network packets using an incremental
method, and it performs feature value extraction based on the obtained statistical quantities.
Specifically, the feature values are allocated to the autoencoder ensemble, and anomaly
detection is performed by incorporating the reconstruction error for each autoencoder.

Sensors 2022, 22, 4405

40f19

Yu et al. [8] extracted features useful for anomaly detection using dilated convolutional
autoencoders (DCAEs). The authors accomplished this by extracting information from
the header information and network packet payloads and then training the DCAEs by
inputting the obtained information arranged in two dimensions. The output from the
intermediate layers of the DCAEs provides the feature representation of the traffic data,
and a communication classifier is obtained by connecting a fully connected layer to the
intermediate layer and then performing fine tuning using labeled data.

Among the methods for extracting features from network packets, some proposals
are related to significantly reducing packet processing. For example, the D-PACK method
proposed by Hwang et al. [6], which is similar to our proposed method, implements feature
extraction from raw packets and abnormal traffic detection using a combination of a CNN
and autoencoder. In the D-PACK training process, a set of normally labeled traffic is input,
and the CNN classification and autoencoder reconstruction errors are used.

However, even in methods that perform feature extraction from packets, feature
value designs, complicated packet processing, and labeled data for supervised learning
are required, all of which can be obstacles to the research and practical application of
anomaly-based IDSs. Accordingly, when these problems are addressed, the amount of
labor involved in the research and practical application of anomaly-based IDSs can be
reduced. Thus, programmers can focus on more important problems, such as anomaly
detection model design.

With these points, the present study proposes the DOC-IDS method as a feature extrac-
tion and anomaly detection method using a two-input DL model. Specifically, the DOC-IDS
employs the DOC [12] feature extraction method, commonly employed in the computer
vision field, to acquire feature values using a highly enhanced ability to discriminate be-
tween normal and abnormal traffic. Although a labeled multi-class dataset is required to
improve discriminative ability during DOC-IDS training, DOC-IDS uses existing data from
open datasets, which implies that it does not require labeling of the detected network traffic.
The primary advantage of this method is that it resolves the problems that have hindered
the research and practical application of anomaly-based IDSs in existing studies [5-11,15,16]
that are related to the burden of designing and extracting feature values and creating labels.
Furthermore, the DOC-IDS model can simultaneously train feature extraction and anomaly
detection networks using a single DL model.

3. Learning Deep Features for One-Class Classification

This section describes the one-class classification image feature extraction method
developed by Perera et al. [12] that is employed in our proposed method. Because data that
contain anomalies and novelties for use in methods aimed at detecting such characteristics
are difficult to obtain, the general approach is to use one-class classifications that perform
model training using normal data and then detect anomalous and novel characteristics as
outliers. However, in the computer vision field, Perera et al. proposed DOC as a method
for extracting useful features for one-class classification. In this method, which uses labeled
multi-class data for domains other than the one-class classification target, the authors
perform general anomaly and novelty detection training, during which they refer to images
that do not fit the given single class as belonging to an alien class. To accomplish this,
the DOC uses two different loss types to increase its ability to discriminate between alien
and pre-assigned single-class images. The DOC network trained using these loss functions
comprises a pair of identical CNNs (reference and secondary networks) that share weights,
and each CNN is divided into subnetwork g (which performs feature extraction) and
subnetwork h. (which performs classification). DOC is explained in more detail below.

Sensors 2022, 22, 4405

50f19

3.1. Reference Network

The role of the reference network is to maintain the ability to discriminate between data.
Therefore, a labeled multi-class reference dataset is used as the input, rather than a single-
class image set that normally provides the one-class classification target. A descriptiveness
loss calculation (Ip) is performed to increase a network’s discriminative ability. Perera et al.
aimed to maximize the distance between image classes using cross-entropy loss, which is
expressed as Ip in Equation (1). Note that n is the mini-batch size, y; and k are, respectively,
the output and size of h,, and ¢; is the training dataset.

Ip=—

Q|-
™=
™=

Il
-

tijlog (yij)- 1

j=1

3.2. Secondary Network

The role of the secondary network is to compactly distribute the target data of the
one-class classification in the feature space. Therefore, a single-class dataset, which is
the one-class classification target, is used as the input, and the compactness loss (I¢) that
represents the distribution of the k. outputs is calculated as the loss. Perera defined Ic,
as expressed in Equation (2) and calculated /¢ for each mini-batch. Note that 012 represents
the h¢ output variance.

no?

lC:i

nk
1

1=

I
—

3.3. Training

When training starts, the CNN is initialized with the weights of the trained model,
after which the weights (except for the last four layers) are fixed. Furthermore, during train-
ing, the reference and target datasets are provided as inputs to the reference and secondary
networks, respectively. The overall model is trained using the combined loss of the two ob-
tained loss types (Ip and I¢) in Equation (3). Perera et al. set the coefficient A (representing
the importance of I¢) to 0.1.

loss = Ip + Alc. (3)

3.4. Feature Extraction

When the model training is completed, the output of g is obtained as a feature value
for one-class classification. This output is expected to represent the differences in data
between different classes owing to Ip, and the single-class data, which are the target of the
one-class classification, are expected to be compactly distributed by Ic.

3.5. Application for Anomaly Detection

Perera et al. [12] proposed a method that uses a one-class classifier trained with the
subnetwork g output, which is then trained against normal data, to use DOC for anomaly
detection. One-class classifiers include one-class SVMs [21], support vector data description
(SVDD) [22], and k-nearest neighbor classification. The results of their anomaly detection
experiments conducted on an image dataset revealed high anomaly detection accuracy
levels in a variety of cases. Our DOC-IDS applies the DOC method to network packets and
implements the processes from feature extraction to anomaly detection using a single DL
model that connect an autoencoder to a CNN.

Sensors 2022, 22, 4405

6 of 19

Reference Dataset

Target Dataset

4. DOC-IDS: Deep Learning Model for Feature Extraction and Anomaly Detection

This section describes the proposed DOC-IDS method, which implements automatic
feature extraction and anomaly detection from network packets using a single DL model.

4.1. Qverview

As explained previously, the DOC-IDS is a method that extracts features and detects
anomalies from network packets using a single DL model. To accomplish this, the DOC-
IDS first performs a flow sampling. Here, the flow is defined as communication divided
into five tuples, each consisting of the source/destination internet protocol (IP) address,
port number, and transport layer protocol number. Training is then performed using
the sampled values as the input. The DOC-IDS comprises 1D CNN and autoencoder
components for feature extraction and anomaly detection, respectively (Figure 1). The 1D
CNN was used for feature extraction because it can understand the relationships between
each byte in the traffic data. For training, a target dataset containing normal traffic from
the target computer network and a reference dataset containing labeled multi-class traffic
from an open dataset were used. At this time, three loss types are used for training, each of
which has the purpose of enhancing the network’s ability to discriminate between data,
minimizing the variance of normal traffic in feature space, and minimizing the autoencoder
reconstruction error. Anomaly detection is performed in the model using the autoencoder
reconstruction error.

—> Lloss

"""""" > Data Flow

Shared Weights

Reference Network

Feature
Representation

Encoder /' Decoder —

Secondary Network

Figure 1. Architecture of DOC-IDS. The reference and target datasets used as input are multi-class
and single-class datasets, respectively. The labels g and /¢ refer to the CNN subnetworks, which are
responsible for feature extraction and classification, respectively. The labels Ip, Ic, and IR refer to the
losses computed for each output.

4.2. Architecture

The DOC-IDS architecture comprises reference and secondary networks. The reference
network dataset, which is a labeled multi-class version, uses a domain different from the
detection target as the input. In contrast, the secondary network dataset uses one-class data
from the target computer network as the input. The reference and secondary networks
have identical CNNs that share weights, and these CNNs can be thought of as consisting of
subnetworks g and /.. In the secondary network, in addition to the CNN, an autoencoder
for anomaly detection is connected via subnetwork g. Table 1 lists the layers in each
component. Various DOC-IDS components are explained in detail below. In determining

Sensors 2022, 22, 4405

7 of 19

the parameters of the DOC-IDS, the output size was adjusted and tuned based on the
model proposed by Hwang et al. [6].

Table 1. Structural parameters of DOC-IDS.

Network Layer Type Filters/Neurons Stride Padding
g 1 1D-Conv + Batch Normalization 32 (kernel size = 6) 1 5
g 2 Maxpooling kernel size =2 2 -
g 3 1D-Conv + Batch Normalization 64 (kernel size = 6) 1 5
g 4 Maxpooling kernel size = 2 2 -
g 5 Dense + Batch Normalization 1024 - -
g/ Autoencoder 6 Dense + Batch Normalization 256 - -
he 7 Dense classes - -
(Used only during training) (the number of classes in reference dataset)
Autoencoder 7 Dense 128 - -
Autoencoder 8 Dense 64 - -
Autoencoder 9 Dense 128 - -
Autoencoder 10 Dense 256 - -

4.2.1. Reference Network

The reference network was trained to increase its ability to detect anomalies in a target
dataset. To accomplish this, a reference dataset, which is an existing labeled multi-class
dataset (such as an open dataset), was used as the input for calculating /p to discriminate
the differences between the various classes. This allows for a feature representation for dis-
criminating between traffic types to be obtained from the model g output that is trained for
the classification task. For the reference network loss, the cross-entropy loss in Equation (1)
is calculated from the &, output using the method described by Perera et al.

4.2.2. Secondary Network

The secondary network CNN is identical to the one used in the reference network and
is connected to an autoencoder from subnetwork g. A target dataset containing single-class
data from the computer network (on which anomaly detection will be performed) was
used for training the secondary network. During training, two loss function types were
calculated to minimize both the output variance of . on the target dataset and autoencoder
reconstruction errors. The compactness loss (I¢) in Equation (2) proposed by Perera et al.
was used to minimize the variance. This loss is expected to result in a feature representation
with a highly enhanced ability to discriminate between normal and abnormal traffic. Note
that /- was calculated for each mini-batch used in the training process. The reconstruction
loss (Ir) for minimizing the autoencoder reconstruction error used the mean squared error
(MSE) of the output g; of subnetwork g, which is introduced as follows:

Ir = % Y) (i — 8ij)>- 4)

4.3. Sampling Network Flow

The method described by Hwang et al. [6] was used for the flow sampling. Their
study also proposed an anomaly detection method that uses only ! bytes from each of the
first n packets from the flow aggregated by five-tuple values, which are defined based on
the source IP address, destination IP address, source port number, destination port number,
and the transport layer protocol number. This method can not only significantly reduce the
amount of data to be processed but also enable earlier anomaly detection. Although the
authors recommended n = 2 and | = 80 in their paper, our research adopted n = 4 amd
I = 80 to consider the payload following the three-way handshake in transmission Control
Protocol (TCP) communications.

Sensors 2022, 22, 4405

8 of 19

During flow sampling, the packets that are represented by a byte array were con-
verted to integer values of 0-255 bytes at a time. Any portion in excess of length [was
discarded, and zero-padding was performed on packets that are shorter than length I.
Furthermore, to prevent the feature extraction and anomaly detection functions from fo-
cusing on the sender as discriminative information, an anonymization processing was
performed to change the IP and media access control (MAC) addresses in the training data
to random values.

4.4. Training

The loss in Equation (5), which is the combination of the three loss types Ip, Ic, and IR,
was used for training a model in DOC-IDS. The coefficients Ap, Ac, and Ag are positive
constants that represent the importance of each loss in the learning process. Our study used
Ap =1,Ac =0.1,and Ag = 10. Refer to Appendix A for details on the effect of changing
AR on the accuracy levels. Furthermore, the stochastic gradient descent (SGD) was used
as the optimization algorithm, the learning rate was set to 5 x 107>, and the weight decay
is set to 5 x 107°. The weights of subnetworks ¢ and /. of the reference and secondary
networks were always shared during training.

loss = Aplp + Aclc + ARlR. 5)

Figure 2 shows a visualization of the output of the subnetwork g, which is the input to
the autoencoder component and the input data to the DOC-IDS using Uniform Manifold
Approximation and Projection (UMAP) [23]. As shown in Figure 2, in the features extracted
by the DOC-IDS, normal communication is distributed in a relatively small area.

20
normal 20 + normal

abnormal abnormal

—IS 6 :’» lb 1‘5 Zb —‘5 E) 5 10 1‘5 26
(a) (b)
Figure 2. Visualization of data input to the DOC-IDS and feature representation by the DOC-IDS
using UMAP. The blue and orange dots indicate normal and abnormal traffic, respectively. The normal

traffic is circled by a red line. (a) Input to DOC-IDS (320 dimensions). (b) Output from subnetwork g
(256 dimensions).

4.5. Detection

When anomaly detection is performed, the reference network diverges from the trained
model (Figure 3). Anomaly detection is performed by using the MSE of the autoencoder
reconstruction error as the anomaly score. Figure 4 shows an example of the g output
reconstruction error of the DOC-IDS.

Sensors 2022, 22, 4405

90f19

Feature
" Representation

— reconstruction
loss

Target Dataset

Secondary Network

Figure 3. DOC-IDS test mode.

The threshold value, which is used to determine whether an anomaly exists, was
set using the training data reconstruction error (the distribution is represented in blue
in Figure 4). First, the mean value y and standard deviation ¢ were calculated from the
reconstruction error in the training data, after which these values were used to fit the
following normal distribution:

1 (x—p)?
T exp(—=—3—). (6)
When fitting to a normal distribution, the value range of MSE is [0, c0). However,
the probability density in the negative region of the approximately fitted normal distribu-
tion is small. Therefore, the impact of the approximation is considered negligible.
The 99% point on the lower side of the obtained normal distribution was then used as
the threshold value.

. train
60,000 [test (normal)
I test (abnormal)
| \ —— Probability density
50,000
40,000
30,000

20,000

10,000

8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 4. Reconstruction error distribution in DOC-IDS. The blue, yellow and red histograms show
the training data error, normal traffic error in the test data, and abnormal traffic error in the test data,
respectively. The blue line shows the probability density function for the training data error.

5. Datasets

This section describes the datasets used for the experiments in Sections 6 and 7.
As explained previously, two datasets were provided for the reference and target datasets
(Table 2). For the packet capture (pcap) files that record the traffic data captured from the
networks (i.e., raw packets) treated in this study, traffic-type identification must also be
performed because there are a very large number of packets. However, labeling individual
traffic is difficult, and the labeling accuracy depends on the data creator. Therefore, reference

Sensors 2022, 22, 4405

10 of 19

datasets selected for use were divided into separate pcap files for each class of traffic to
ensure the datasets have the highest accuracy level.

Table 2. Datasets.

Dataset Type Dataset
USTC-TFC2016

Reference Dataset ISCX-VPN-Tor
BOS 2018

Target Dataset CIC-IDS2017

5.1. Reference Dataset
5.1.1. USTC-TFC2016

The first reference dataset used was the USTC-TFC2016 dataset [11] constructed by
Wang et al., which contained 10 classes each for normal and malware traffic. The malware
traffic in USTC-TFC2016 was collected from a real network environment by the Czech
Technical University (CTU) [24] from 2011 to 2015, whereas a network simulation device of
Ixia Breaking Point System (IXIA BPS) [25] was used to collect normal traffic. Table 3 lists
the data used in training.

Table 3. USTC-TFC2016.

Class Number Class Number
BitTorrent 7517 Cridex 16,385
FTP 101,037 Geodo 40,945
Facetime 6000 Htbot 6339
Gmail 8629 Miuref 13,478
Normal MySQL 86,089 Malware Neris 33,791
Outlook 7524 Nsis-ay 6069
SMB 38,937 Shifu 9631
Skype 6321 Tinba 8503
Weibo 39,950 Virut 33,103
WorldOfWarcraft 7883 Zeus 10,970

5.1.2. ISCX-VPN-Tor

The ISCX-VPN-Tor dataset was constructed by combining two datasets. The first
was the ISCXVPN2016 dataset [26], which contains a virtual private network (VPN) and
non-VPN traffic. This dataset includes traffic from multiple applications such as Skype and
Facebook to handle multiple traffic types, such as voice over Internet protocol (VoIP) and
peer-to-peer (P2P). Wireshark [27] was used to capture packets, and OpenVPN [28] was
used to connect a VPN service to a VPN provider. Furthermore, a service provider was used
to generate a secured file transfer protocol and file transfer protocol over secure sockets
layer/transport layer security traffic, and FileZilla [29] was used to make the connections.

The second dataset is ISCXTor2016 [30]. This dataset contains Tor and non-Tor traffic,
with traffic from multiple applications for multiple traffic types captured by Wireshark in
the same manner as the ISCXVPN2016 dataset. The Whonix [31] operating system (OS),
which anonymizes traffic using Tor, was used to collect Tor traffic in the ISCXTor2016
dataset. Whonix is made up of two virtual machines called Gateway and Workstation,
within which the Workstation communicates with the Internet via the Gateway. In the
ISCXTor2016 dataset, the Gateway and Workstation traffic were captured as Tor and non-Tor
traffic, respectively. In our experiment, the pcap file contained in the dataset was allocated
to classes based on their traffic types for use as a reference dataset. Table 4 presents the
training data used in this study.

Sensors 2022, 22, 4405

11 of 19

Table 4. ISCX-VPN-Tor-2016.

Class Number
VoIP 206,502
Audio-Streaming 2788
Browsing 33,527
Chat 22,248
FTP 82,122
Email 6086
P2pP 42,133
Video-Streaming 12,714

5.2. Target Dataset
5.2.1. BOS 2018

The BOS 2018 dataset, which was extracted from the Anti Malware Engineering
Workshop (MWS) Dataset 2018 [32], was used as the first target dataset. The BOS 2018
dataset, which assumes intrusion activities into the internal network of an organization
and contains observation data recordings of targeted attacks, is widely used to evaluate
intrusion detection models. The communication content was obtained by recording traffic
after executing a malware specimen attached to a targeted attack email and then assigning a
progress indicator depending on the progress of intrusion activities. A honeypot was used
as the environment for observing the dynamic activities of the malware specimen, and the
client device on which the malware was executed was able to access the Internet either
via a proxy or an other method. BOS2018 is a dataset created by a Japanese organization
and was adopted for evaluating the anomaly detection performance of the DOC-IDS for
practical use in Japan.

In this experiment, a file containing Progress-2 traffic, which was produced before the
C2 server generated traffic, was used for training, and files containing Progress-7 and 8
traffic, which are C2 server communications, were used for testing. The C2 server traffic
was labeled as attack traffic. Table 5 lists the data used in this experiment.

Table 5. BOS 2018.

Type Train Data Test Data
Normal traffic 152,348 659,835
Attack traffic (Progress-7) - 12,051
Attack traffic (Progress-8) - 3,041

5.2.2. CIC-IDS2017

The CIC-IDS2017 dataset [14], which was used as the second target dataset, provided
pcap files that captured traffic on weekdays (Monday to Friday), and attack traffic was
included in all files, except for Monday. An experimental testbed composed of a victim-
network and an attack-network was constructed to collect this traffic. The victim-network
comprises a firewall, router, switch, and devices with various OSs. The B-profile system,
which generates traffic by profiling the properties of human traffic, hypertext transfer
protocol (HTTP), HTTP secure, FTP, secure shell (SSH), and email traffic for 25 users, was
proposed and used for the normal traffic generated by this victim-network. The attack-
network, which was kept separate from the victim-network, consisted of a router, switch,
and devices for executing the attacks. Traffic created by existing tools and attack codes were
executed to generate the attack traffic. The CIC-IDS2017 was selected because it covers a
wide variety of attacks. CIC-IDS2017 provides pcap files that are divided by day, making it
suitable for evaluating the detection speed in Section 7.

In this experiment, the Monday traffic file was used for training, and the detection
accuracy was verified using Tuesday—Friday files. Note that Heartbleed and Infiltration

Sensors 2022, 22, 4405

12 0of 19

were excluded from the attacks because there were insufficient data for labeling. Table 6
lists the data used in the experiment.

Table 6. CIC-IDS2017.

Type Attack Train Data Test Data
Benign - 249,044 150,618
Brute For FTP-Patator - 2457
¢ Force SSH-Patator - 2905
slowloris - 3518
Slowhttptest - 3610
DoS/DDoS Hulk - 9535
GoldenEye - 6592
Brute Force - 143
Web Attack XSS - 18
SQL Injection - 7
Bot - 1207
Port Scan - 154,571

6. Detection Performance

In this section, we evaluate the anomaly detection performance of the DOC-IDS.
The accuracy levels of the autoencoder and 1D convolutional autoencoder when given the
same input as the DOC-IDS were also investigated for comparison purposes.

6.1. Performance Index

The evaluation indicators used in the experiment are as follows:

The area under the curve (AUC) for the receiver operating characteristic (ROC) and
precision-recall (PR) curves were used for evaluation in this experiment. The ROC curve
takes the FPR as the horizontal axis and the TPR as the vertical axis, whereas the PR curve
takes recall as the horizontal axis and precision as the vertical axis. The anomaly detection
performance of the DOC-IDS was based on the threshold value indicated by the precision,
recall, and F-measure. Each indicator is given by the following equations, which are based
on Table 7:

TP

FP
FPR = o N ®)
TP
Precision = TP - Fp°)

F-measure — 2 - Precision - Recall (10)
" Precision + Recall

Table 7. Confusion Matrix.

Predicted

Positive Negative

Positive P FN
Negative FP N

Actual

Sensors 2022, 22, 4405

13 0of 19

6.2. Results

Figures 5 and 6 show the AUC for the ROC and PR curves for BOS 2018 and CIC-
IDS2017, whereas Tables 8 and 9 show the detection accuracy levels when the threshold
values are used. The figures show that the AUC accuracy for DOC-IDS is higher than that
for the other methods for both the ROC and PR curves in the BOS 2018 and CIC-IDS2017
datasets, thereby indicating that it is possible to discriminate between normal and abnormal
traffic. In particular, the AUC accuracy significantly exceeds that of the other methods
for the BOS 2018 dataset. However, for the CIC-IDS2017 dataset, even though the AUC
surpassed the other methods, it clearly had problems detecting some traffic types. Figure 7
shows the reconstruction error distribution for each traffic type. In this figure, there were
virtually no brute force or web attack detections in regions with large reconstruction errors
that do not contain normal traffic. This indicates that detecting brute force and web attacks
is difficult because the differences between reconstruction errors from normal traffic are
smaller, implying that it is not possible to set a threshold value to distinguish between them.

ROC curve
10 A
0.8 1
i
&
K]
2 06 1
z
=8
S 04 -
; — DOC-1DS (USTC-TFC-2016){AUC = 0.996)
B DOC-IDS (ISCENPN-Tor){AUC = 0.995)
021 ~—— Autoencoder(AUC = 0.994)
_=" = 1D Convolutional Autcencoder[AUC = 0.818)
no4+ Random ROC curve [arsa = 0.500)
0.0 0.2 0.4 0.6 0.8 10
FPR: False positive rate
(a)
PR curve
l-l:l 1 b__——_
0.8 1
/,,_-—’—'-'—'—-\.‘\\
c 0614 — DOC-IDS (USTC-TFC-2016)(AUC = 0.889)
-E DOC-IDS (ISCEXNVPH-Tor){AUC = 0.842)
'g — Autoencoder(AUC = 0.622)
& 0.4 — 1D Convolutional Autoencoder{AUC = 0.226)
1
0.2 1
0.0 A
0.0 0.2 04 06 0.8 10
Recall

(b)
Figure 5. BOS 2018 anomaly detection results for each method. (a) ROC curve. (b) PR curve.

Sensors 2022, 22, 4405

14 of 19

TPR: True positive rate

Precision

ROC curve
10 1 — -
.-r’-"
0.5 - -
= DOC-ID5 (USTC-TFC-2016)(AUC = 0.898)
06 1 DOC-IDS (ISCX-VPN-Tor){AUC = 0.892)
= Autcencoder[AUC = 0.812)
04 1 = 10 Convolutional Auteencoder(AUC = 0.211)
) —=-~ Random ROC curve (area = 0.500)
0.2 1
0.0 1
T T T T T T
0.0 02 04 L] 14
FPR: False positive rate
(a
PR curve
10 1
0.8 -
0.6
0.4 1
= DOC-ID5 (USTC-TFC-2016)(AUC = 0.852)
0.2 1 DOC-IDS (ISCAVPNTor) (AUC = 0.863)
— Autcencoder[AUC = 0.715)
0o — 1D Convolutional AutoencoderAUC = 0.401)
T T T T T T
0.0 0.2 0.4 0.6 08 10
Recall
(b)

Figure 6. CIC-IDS2017 anomaly detection results for each method. (a) ROC curve. (b) PR curve.

Sensors 2022, 22, 4405

15 0f 19

Mean Squared Error

e
o
N

0.10
0.08

‘Lol

0.04

Mean Squared Error

|

0.02 1

T
Benign

T T T T T T T T T T T
Brute Force DoS/DDoS Web Attack Bot PortScan Benign Brute Force DoS/DDoS Web Attack Bot PortScan

(a) (b)

Figure 7. Reconstruction error distribution by attack type. (a) Using USTC-TFC-2016 as the reference
dataset during training. (b) Using CIC-IDS2017 as the reference dataset during training.

Table 8. Detection accuracy on BOS 2018 when using a threshold value.

Reference Dataset

USTC-TFC2016 ISCX-VPN-Tor
Precision 0.773 0.654
Recall 0.939 0.966
F-measure 0.848 0.780

Table 9. Detection accuracy on CIC-IDS2017 when using a threshold value.

Reference Dataset

USTC-TFC2016 ISCX-VPN-Tor
Precision 0.911 0.909
Recall 0.756 0.730
F-measure 0.826 0.810

6.3. Discussion

The results of the anomaly detection performance experiment showed that DOC-IDS
detected abnormal traffic with higher accuracy than the comparison methods. Furthermore,
these results show particularly high accuracy for the BOS 2018 dataset, and the DOC-IDS
appears to have high performance for detecting communications with C2 servers. The su-
perior DOC-IDS feature extraction mechanism contributed to this result. Although the
brute force and web attacks included in CIC-IDS2017 were difficult to detect, web at-
tacks could potentially be handled through the combined use of a DOC-IDS and a web
application firewall.

A comparison of the characteristics of the DOC-IDS and other methods [5,6,8,15,16]
is presented in Table 10. The study being compared is a recent study that used DL and
is closely related to this study. The DOC-IDS is, by far, the least burdensome to deploy
compared with other methods. In terms of detectable attack types, while attacks are
detected in [8,15,16] by classification, the DOC-IDS has relatively few restrictions because
it is based on an anomaly detection method, although some attack types (e.g., brute force
and web attacks) are difficult to detect.

Regarding the detection of brute force and web attacks, one method to further improve
the anomaly detection performance of the DOC-IDS in the future might be to increase
the discriminative ability of the feature representation. Hence, self-supervised learning
(SSL), which is a method for performing training without using pre-labeled data, can be
used to improve DOC-IDS training. This method, which uses labels created mechanically
from unlabeled data, has already achieved success in the computer vision field [33], where

Sensors 2022, 22, 4405

16 of 19

accuracy levels close to supervised learning have been recorded in ImageNet [34] classifica-
tion tasks [35]. It is also possible that large amounts of data that do not have labels in the
reference dataset, which is currently limited to labeled data, may be useful in the future.
Furthermore, a feature representation with an even higher discrimination ability may be
obtained by using SSL to improve DOC-IDS training.

Table 10. Comparison of the characteristics of the anomaly detection approach.

Feature

HCRNNIDS BAT-MC Yuetal. Kitsune D-PACK

[15] [16] [8] (5] [6] DOC-IDS

Packet based

Feature selection is unnecessary v

Feature design is unnecessary
Label is unnecessary

Simultaneous feature extraction and detection

Versatility to attack types

v

v v

AN NN
AN NN
NN NENENEN

7. Time Efficiency

Then, the processing performance of the DOC-IDS was evaluated using the CIC-
IDS2017 dataset. Table 11 lists the performance of the hardware and software used in
the experiments.

Table 11. Hardware and software used for processing performance experiments.

oS Ubuntu 20.04.3 LTS
Intel(R) Core™ i7-10700 CPU @ 2.90 GHz
CPU
(16 cores)
Memory 32 GB
Language Python 3.8.10
Framework Keras 2.8.0 (Backend: TensorFlow 2.8.0)

In this experiment, the model trained using the Monday traffic file, which does
not contain attack traffic, was used to evaluate the time required for anomaly detection.
The time measurement was performed for each file contained in CIC-IDS2017, and the time
taken for the entire execution, the times taken for both flow sampling, and detection times
were investigated.

In terms of implementation, the scapy [36] sniffer method was used to parse the
packets. Furthermore, TCP and user datagram protocol (UDP) traffic was processed in
parallel to the flow sampling, and the DOC-IDS anomaly detection (divided into five
parallel processes) was performed.

7.1. Results

Table 12 shows the time taken for the entire execution, whereas Table 13 shows the
time taken for detection in the experiments. The experimental results showed that the
DOC-IDS processing performance is approximately 5152 packets per second (pps). Table 13
also shows that the majority of the processing time resulted from packet parsing, which
depended on the performance of the Scapy library. For flow sampling, the average was
approximately 21,964 pps for TCP and 14,435 pps for the UDP. These flow samplings
indicated that processing at a maximum of approximately 36,399 pps is possible. Further-
more, because the five above-mentioned detection processes were executed in parallel,
the processing could eventually reach 1917 flows per second, and that speed might even be
further improved by increasing the degree of parallelism.

Sensors 2022, 22, 4405 17 of 19
Table 12. Execution Time.
Day
Tuesday Wednesday Thursday Friday
file size [GB] 10.29 12.50 7.73 8.23
packets 11,551,954 13,788,878 9,322,025 9,997,874
sampling (TCP) [s] 482.87 581.73 393.77 422.77
sampling (UDP) [s] 52.43 51.81 49.27 50.44
detect (Process 1) [s] 109.17 117.96 116.84 125.98
detect (Process 2) [s] 108.63 117.80 116.75 126.10
detect (Process 3) [s] 109.02 117.46 116.74 126.18
detect (Process 4) [s] 108.75 117.47 116.98 126.01
detect (Process 5) [s] 108.84 117.36 117.05 125.78
total [s] 2253.62 2654.35 1798.46 1959.21
Table 13. Time Efficiency.
Day
Tuesday Wednesday Thursday Friday Average
overall [pps] 5125.95 5194.82 5183.34 5103.01 5151.78
sampling (TCP) [pps] 22,180.53 22,249.52 21,683.11 21,741.72 21,963.72
sampling (UDP) [pps] 14,477.24 14,705.39 14,227.92 14,330.46 14,435.25
detect (Process 1) [flows per second] 385.37 383.94 386.95 376.84 -
detect (Process 2) [flows per second] 385.37 383.89 386.70 376.79 -
detect (Process 3) [flows per second] 385.94 384.73 386.60 376.65 -
detect (Process 4) [flows per second] 386.73 384.97 386.47 377.02 -
detect (Process 5) [flows per second] 385.93 384.83 386.28 376.68 -
total of five processes [flows per second] 1929.34 1922.36 1933.00 1884.08 1917.195

7.2. Discussion

From the experimental results, we can observe that if we regard the flow sampling
processing performance as the bottleneck, the DOC-IDS should be able to process traffic at
several tens of megabits per second (Mbps) in an experimental environment, indicating that
it can process medium-sized networks. Methods for further speed increases could include
using a high-speed parser, using higher-performance hardware, and implementation using
a high-performance language, such as C++.

8. Conclusions

This paper proposed the DOC-IDS method to reduce the obstacles to the imple-
mentation of anomaly-based IDS, which is a method that has been attracting significant
attention in recent years. Our method alleviates the difficulties of designing feature values,
the complexity of processing in feature value extraction, and the labor required to create
labeled data in supervised learning. In our experiments, the DOC-IDS was able to perform
processing from feature extraction to anomaly detection without requiring labeling by
inputting pre-labeled traffic from an open dataset and the traffic from the target network
into the model.

Our experimental results showed that the anomaly detection performance of the DOC-
IDS exhibited a maximum AUC for the ROC and PR curves of 0.996 and 0.889, respectively,
which surpasses the comparison methods. Furthermore, the processing performance
levels are sufficient for practical use. In addition, the DOC-IDS addresses the obstacles
in conventional anomaly-based IDS methods using ML and DL by eliminating the need
to create specially labeled data or process network packets. Thus, this paper provides
interesting implications for future research and practical applications.

Sensors 2022, 22, 4405 18 of 19

Author Contributions: Conceptualization, N.Y. and M.M.; methodology, N.Y., HK. and Y.S.; soft-
ware, N.Y,; validation, N.Y., HK. and Y.S; formal analysis, N.Y. and HK.; investigation, N.Y., HK.,
Y.S. and M.M,; resources, Y.S.; data curation, N.Y. and H.K.; writing—original draft preparation,
N.Y. and H.K,; writing—review and editing, N.Y., HK., Y.S. and M.M; visualization, N.Y. and HK.;
supervision, HK., Y.S. and M.M.; project administration, M.M.; funding acquisition, M.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by JSPS KAKENHI Grant Numbers JP20K11810 and a
contract of “Research and development on IoT malware removal/make it non-functional technolo-
gies for effective use of the radio spectrum” among “Research and Development for Expansion of
Radio Wave Resources (JPJ000254)”. which was supported by the Ministry of Internal Affairs and
Communications, Japan.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude to Shozo Takahashi, President
of Core Micro Systems, Inc.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix shows the effect on accuracy for the case in which A, which corre-
sponds to the autoencoder reconstruction error, is changed among the weights for each
loss. The values of Ap and A¢ were fixed at 1 and 0.1, respectively, as in Perera et al.

Table A1. AUC of ROC Curve.

AR 1 5 10 20 50

BOS 2018 (USTC-TFC2016) 0.992 0.996 0.996 0.997 0.989
BOS 2018 (ISCX-VPN-Tor) 0.959 0.990 0.995 0.986 0.995
CIC-IDS2017 (USTC-TFC2016) 0.866 0.892 0.896 0.904 0.901
CIC-IDS2017 (ISCX-VPN-Tor) 0.706 0.903 0.892 0.837 0.879

Table A2. AUC of PR Curve.

AR 1 5 10 20 50

BOS 2018 (USTC-TFC2016) 0.830 0.884 0.889 0.911 0.759
BOS 2018 (ISCX-VPN-Tor) 0.448 0.775 0.842 0.752 0.829
CIC-IDS2017 (USTC-TFC2016) 0.824 0.827 0.852 0.854 0.857
CIC-IDS2017 (ISCX-VPN-Tor) 0.665 0.875 0.863 0.791 0.848

References

1. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407 2019.

2. Ahmed, M.; Mahmood, A.N.; Hu,].K. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19-31.
[CrossRef]

3. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust.
Comput. 2019, 22, 949-961. [CrossRef]

4. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504-507.
[CrossRef] [PubMed]

5. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network intrusion detection. In
Proceedings of the 25th Annual Network and Distributed System Security Symposium (NDSS 2018), San Diego, CA, USA, 18-21
February 2018. [CrossRef]

6. Hwang, R H,; Peng, M.C.; Huang, C.W,; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic
anomaly. IEEE Access 2020, 8, 30387-30399. [CrossRef]

7. Zavrak, S.; Iskefiyeli, M. Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE
Access 2020, 8, 108346-108358. [CrossRef]

http://doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1007/s10586-017-1117-8
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.14722/ndss.2018.23204
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1109/ACCESS.2020.3001350

Sensors 2022, 22, 4405 19 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Yu, Y;; Long, J.; Cai, Z.P. Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw.
2017, 2017, 4184196. [CrossRef]

Vinayakumar, R.; Soman, K.P,; Poornachandran, P. Applying convolutional neural network for network intrusion detection. In
Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI 2017),
Udupi, India, 13-16 September 2017; pp. 1222-1228.

Yu, L; Dong, J.T.; Chen, L.H,; Li, M.Y; Xu, B.E; Li, Z; Qiao, L.; Liu, L.J.; Zhao, B.; Zhang, C. PBCNN: Packet bytes-based
convolutional neural network for network intrusion detection. Comput. Netw. 2021, 194, 108117 . [CrossRef]

Wang, W.; Zhu, M.; Zeng, X.W.; Ye, X.Z.; Sheng, Y.Q. Malware traffic classification using convolutional neural network for
representation learning. In Proceedings of the 2017 31st International Conference on Information Networking (ICOIN 2017),
Da Nang, Vetnam, 11-13 January 2017; pp. 712-717.

Perera, P; Patel, V.M. Learning deep features for one-class classification. IEEE Trans. Image Process. 2019, 28, 5450-5463. [CrossRef]
[PubMed]

Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE symposium on computational intelligence for security and defense applications (CISDA 2009), Ottawa, ON, Canada, 8-10
July 2009; pp. 1-6.

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy 2018 (ICISSP
2018), Funchal, Madeira, Portugal, 22-24 January 2018; pp. 108-116. [CrossRef]

Khan, M.A. HCRNNIDS: Hybrid convolutional recurrent neural network-based network intrusion detection system. Processes
2021, 9, 834. [CrossRef]

Su, T.T.; Sun, H.Z,; Zhu,].Q.; Wang, S.; Li, Y.B. BAT: Learning methods on network intrusion detection using NSL-KDD Dataset.
IEEE Access 2020, 8, 29575-29585. [CrossRef]

Giil, A; Adaly, E. Feature selection algorithm for IDS. In Proceedings of the 2017 International Conference on Computer Science
and Engineering (UBMK), Antalya, Turkey, 5-7 October 2017; pp. 816-820. [CrossRef]

Alani, M.M. Implementation-oriented feature selection in UNSW-NB15 Intrusion Detection Dataset. Intell. Syst. Des. Appl. 2021,
418, 548-558. [CrossRef]

Gharaee, H; Hosseinvand, H. A new feature selection ids based on genetic algorithm and SVM. In Proceedings of the 2016 8th
International Symposium on Telecommunications (IST), Tehran, Iran, 27-28 September 2016; pp. 139-144.

Kocher, G.; Kumar, G. Machine learning and deep learning methods for intrusion detection systems: Recent developments and
challenges. Soft Comput. 2021, 25, 9731-9763. [CrossRef]

Scholkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.
Neural Comput. 2001, 13, 1443-1471. [CrossRef] [PubMed]

Tax, D.M.; Duin, R.P. Support vector data description. Mach. Learn. 2004, 54, 45-66. [CrossRef]

Mclnnes, L.; Healy, J.; Saul, N.; Grofsberger, L. UMAP: Uniform manifold approximation and projection. J. Open Source Softw.
2018, 3, 861. [CrossRef]

Stratosphere. Stratosphere Laboratory Datasets. Available online: https:/ /www.stratosphereips.org/datasets-overview (accessed
on 25 February 2022).

KEYSIGHT. Network Visibility and Network Test Products. Available online: https://www.keysight.com/jp/ja/cmp /2020
/network-visibility-network-test.html (accessed on 25 February 2022).

Draper-Gil, G.; Lashkari, A H.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of encrypted and VPN traffic using time-related
features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy 2016 (ICISSP 2016),
Rome, Italy, 19-21 February 2016; pp. 407-414. [CrossRef]

Wireshark Go Deep. Available online: https://www.wireshark.org (accessed on 25 February 2022).

OpenVPN. Business VPN | Next-Gen VPN | OpenVPN. Available online: https://openvpn.net/ (accessed on 25 February 2022).
FileZilla. FileZilla—The Free FTP Solution. Available online: https:/ /filezilla-project.org/ (accessed on 25 February 2022).
Lashkari, A.H.; Gil, G.D.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Tor traffic using time based features. In Proceedings
of the 3rd International Conference on Information Systems Security and Privacy 2017 (ICISSP 2017), Porto, Portugal, 19-21
February 2017; pp. 253-262. [CrossRef]

Whonix. Whonix™—Software That Can Anonymize Everything You Do Online. Available online: https://www.whonix.org/
(accessed on 25 February 2022).

Takata, Y.; Terada, M.; Matsuki, T.; Kasama, T.; Araki, S.; Hatada, M. Datasets for Anti-Malware Research~MWS Datasets 2018~.
In IPS] SIG Technical Reports 2018; Information Processing Society of Japan: Sapporo, Japan, 2018; pp. 1-8.

Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on contrastive self-supervised learning. Technologies
2021, 9, 2. [CrossRef]

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.H.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet
large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211-252. [CrossRef]

Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P; Joulin, A. Unsupervised learning of visual features by contrasting cluster
assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912-9924.

Biondi, P. The Scapy Community. Scapy. Available online: https://scapy.net/ (accessed on 25 February 2022).

http://dx.doi.org/10.1155/2017/4184196
http://dx.doi.org/10.1016/j.comnet.2021.108117
http://dx.doi.org/10.1109/TIP.2019.2917862
http://www.ncbi.nlm.nih.gov/pubmed/31144635
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.3390/pr9050834
http://dx.doi.org/10.1109/ACCESS.2020.2972627
http://dx.doi.org/10.1109/UBMK.2017.8093538.
http://dx.doi.org/10.1007/978-3-030-96308-8_51
http://dx.doi.org/10.1007/s00500-021-05893-0
http://dx.doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.21105/joss.00861
https://www.stratosphereips.org/datasets-overview
https://www.keysight.com/jp/ja/cmp/2020/network-visibility-network-test.html
https://www.keysight.com/jp/ja/cmp/2020/network-visibility-network-test.html
http://dx.doi.org/10.5220/0005740704070414
https://www.wireshark.org
https://openvpn.net/
https://filezilla-project.org/
http://dx.doi.org/10.5220/0006105602530262
https://www.whonix.org/
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1007/s11263-015-0816-y
https://scapy.net/

	Introduction
	Related Works
	Learning Deep Features for One-Class Classification
	Reference Network
	Secondary Network
	Training
	Feature Extraction
	Application for Anomaly Detection

	DOC-IDS: Deep Learning Model for Feature Extraction and Anomaly Detection
	Overview
	Architecture
	Reference Network
	Secondary Network

	Sampling Network Flow
	Training
	Detection

	Datasets
	Reference Dataset
	USTC-TFC2016
	ISCX-VPN-Tor

	Target Dataset
	BOS 2018
	CIC-IDS2017

	Detection Performance
	Performance Index
	Results
	Discussion

	Time Efficiency
	Results
	Discussion

	Conclusions
	Appendix A
	References

