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Abstract: In this study, the general structure of swarm robotics is examined. Algorithms inspired
by nature, which form the basis of swarm robotics, are introduced. Communication topologies in
robotic swarms, which are similar to the communication methods between living things moving in
nature, are included and how these can be used in swarm communication is emphasized. With the
developed algorithms, how the swarm can imitate nature and what tasks it can perform have been
explained. The various problems that will be encountered in terms of the design of the optimization
methods used during the control of the swarm and the solutions are simulated using the Webots
software. As a result, ideas on the solutions of these problems and suggestions are proposed.
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1. Introduction

Robot cooperation to perform tasks for a specific objective is widely studied, using
the concept of multi-robot. This unified work is achieved by autonomous structure and
good communication [1]. Robots must solve the encountered problems individually on
their own. The movements of the swarm robots therefore should be autonomous rather
than centrally managed.

Generally, swarm robots are smaller and less functional robots compared to other types
of robots. The function of the robot swarm is directly related to successful task performance
by the individual members of the swarm. Although the increase in the number of robots
and the reduction of their structural size give the impression that the success rate in their
tasks may decrease, in fact the power of collective work actually increases. The robots in
the swarm are designed to overcome problems more effectively than single robots dealing
with the same problems. For example, on a larger, more powerful robot, a system failure
could risk the mission on a large scale. However, in most cases, it is not important if one or
more robots are disabled in the robot swarm and the task can still be completed successfully.
Moreover, successful autonomous work may require a number of sensors. Structurally
simple swarm robots might be thought to have too few sensors, but a swarm of thousands
of individuals naturally has thousands of sensors.

The sensorial concept and sensor problems constitute an important research area in
swarm robotics. While algorithms are valid for the prediction of swarm movement at the
macroscopic level, the dynamics of the components of the swarm and their interactions
with their environment come to the fore at the microscopic level [2]. The robot environment
and interactions required by the algorithms are realized by transmitting the data from the
sensors. Therefore, sensors play a very important role in swarm robotics. Especially in
unknown environments, sensors are required for the ability of robots to perform safe and
efficient movements [3]. Sometimes sensors prevent collisions with other robots, some-
times they help in exploring the environment, and sometimes they perform tasks such
as providing information about the locations of the robots [4]. For example, Stirling et al.,
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in their study, did not find it appropriate to detect location information with the Global
Information System due to the high error rates in mobile systems with many robots [5].
However, they have shown that robots with different sensors, such as Relative Localization
Sensor, can provide faster and more accurate results in swarm applications [6]. Another
study proposes the control of swarm robotics in order to perform challenging tasks [7].
Here, exploratory mission simulation was carried out with proximity and color sensors in
the region thought to contain radiation. In another study, it is stated that the foundations
of swarm intelligence are formed by individuals thanks to sensors [8]. The study aimed to
create the necessary conditions for autonomous movement by collecting the information
from the sensors on the swarm robots in the field. An autonomous organism formation
is sought with the help of these sensors and therefore the information coming from indi-
viduals. Additionally, using more complex sensors offers real-life solutions. For example,
it is currently known that efficient solutions are provided with high resolution cameras
and high-speed communication networks in agricultural areas by using unmanned aerial
vehicles (UAVs). Lin Shi et al. presented a study on this subject [9].

Controlling many robots, sometimes thousands, is more difficult than controlling
a single robot. It is almost impossible to control these robot swarms one by one. For
this reason, it is a must for robots to be autonomous in swarm robotics and solve the
problem on their own. When the user sends the task to the swarm, the swarm must exhibit
the pre-defined behavior to perform the given task. In some cases, the user and/or the
central system may interfere with the swarm. However, this intervention does not involve
the control of a single robot, but the whole or a large part of the swarm. Here, giving
information to the whole swarm or enabling the swarm to do the same work together
requires very strong communication.

If the swarm robots are self-moving and the control has more decentralized architec-
ture, nature is the best source of inspiration to provide the working logic of these robots.
Many living species in nature move in groups and often come together to fulfill a task.
Swarm control is achieved again by the swarms controlling each other. It is not a correct
point of view to look at this phenomenon as central management or leadership. Providing
the best movement for the group is achieved by imitating the individual in the most suitable
position by all members of the group [10]. Is it possible to transfer this ability of living
things or nature to swarm robotics? There are many studies on this subject. Influenced by
nature, swarm robots will fulfill their duties jointly as is seen in nature. While performing
their duties, perhaps it would be more beneficial to act by collecting the behavior of several
different living species in a robot. In this sense, it is necessary to examine the living things
that move together in nature and the optimization methods adapted to this.

There are different studies on evolutionary optimization techniques of swarm robotics.
One research is about three-dimensional route planning using Beetle Swarm Optimization
studied by Yizhuo Mu et al. [11]. The three-dimensional space environments such as air
and underwater are not suitable for traditional route planning of robots because of their
nonstructured models. Therefore, swarm robot optimization methods are suitable due to
their intelligence that make easy to deal with the complex environmental structures. This
intelligence naturally deals with nonlinearity and produces stable solutions. In another
research, Jiajie Liu et al. studied multi-objective evolutionary optimization methods to
prioritize multiple tasks for Unmanned Aerial Vehicles (UAVs) [12]. Similarly for UAVs,
Akshya et al. studied area partitioning, considering static obstacles and altitude parameters
using Firefly and Particle Swarm Optimization (PSO) algorithms [13]. Another study is
about optimum route navigation and collision avoidance of wall follower robots using
six different evolutionary optimization methods as PSO, Multi-Verse Optimizer (MVO),
moth-flame optimization (MFO), cuckoo search (CS), grey wolf optimizer (GWO) and bat
algorithm. Here, several ultrasonic sensors mounted on the robot are utilized to detect
objects studied by Jalali et al. [3]. In another research, a novel dynamic cooperative co-
evolving PSO algorithm, derived from an evolutionary algorithm, was used and studied for
multi-robot formations by Lee et al. [14]. Another study is about an evolutionary optimiza-
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tion method for effective route planning of drone swarms developed by Majd et al. [15].
In another research, bio-inspired and evolutionary algorithms were used to control a self-
reconfigurable modular robot platform in swarm mode. The developed simulator assigns
robots of a swarm to form an organism-like behavior for locomotion tasks. Instead of
developing hardware robots, this approach saves time through developing an algorithm
using simulation environment. This study is conducted by Winkler et al. [16]. Another
study is about drone path planning using lion swarm hybrid differential evolutionary
algorithm made by Liu et al. Lastly, different from swarm robotic applications, a medical
imaging diagnostic system was studied for accelerating training speed and increasing
accuracy using genetic and PSO algorithms by Chen et al. [17]. As can be seen from the last
research example, these algorithms find wide application not only in swarm robotics but
also in many other fields.

The harmony in nature is the result of a very long process of experience and is perfect.
The tasks were settled among the swarm by time, and the adjustment to physical difficulties
was transferred to the swarm. However, swarm robotics is still in its beginning stages. For
this reason, problems in the selected algorithms, communication methods, and mechanical
structures might be still encountered. These problems are generally tackled by looking at
nature again or by using different mechanical methods.

Many application examples exist from the perspective of swarm robotics. For example,
in an above-mentioned study swarm task optimization of UAVs was developed for a
rescue environment. Here, evolutionary algorithms needed to overcome UAV swarm
communication limitations and difficulties of rescue areas to avoid extensive computational
loads [12]. Again, the sampled positions and trajectories of a swarm of five robots were
examined for multirobot system control by Lee et al. [14]. Another study by Majd et al.
was about drone swarms and collision prevention between drones and static or dynamic
obstacles with route optimization [15]. In another study, UAV swarming was used for
inventory counting using high precision RFID readers and their trajectory was planned by
the lion swarm algorithm [18].

In this study, we will focus on how swarm robots communicate with each other, how
we understand nature, how we move robots in robotic work areas using optimization
techniques, the tasks of robots, design problems during the test, and their solutions. In the
next section, general information will be given and in its sub-sections features of swarm
robotics and their classification from different perspectives will be presented. Then the
communication methods and topologies used in swarm robotics will be discussed. The
following sub-sections show how swarm robotics takes nature as an example and the
optimization methods will be explained and examples from real life in the literature will
be cited. In section three, the design problems and proposed solutions will be discussed.
Finally, the paper will conclude with the results of the proposed study.

2. Materials and Methods
2.1. Multi-Robot Systems

Multi-robots are a group of robots that emerged with the idea of multiple robots doing
the same mission together. In robot communities, the fact that individuals do the same work
does not always constitute the concept of a swarm. To call a group of robots a swarm there
should be some distinguishing features of the robots such as the number, task, similarity,
collaborative ability, and control technique. By looking at these distinctive features, it is
decided whether a robot community is a swarm or not. In Table 1, the differences between
the communities consisting of many robots are defined.

The parameters that differentiate these systems from each other are:

Number of Elements: Number of agents, individuals in the robot community.
Control Type: How the robot community’s movements are governed.

Element Type: The similarity of community members to each other.

Flexibility: Allowing community members to change behavior in response to environ-
mental conditions.
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e  Robustness: The ability of the system to continue its function in failure or unexpected
situations.

e  Scalability: The effect of the reduction of the number of community members on
the task.
Environment: The status of the defined environment where the group will work.
Usage areas: General usage area of the group [19].

Table 1. Distinctive features of Multi Robots Systems [19].

Features

Number of elements

Control type
Element type
Flexibility
Robustness
Scalability
Environment

Usage areas

mission success needed

Swarm Multi Multi Distributed/Parallel
Robotics Robots Agents Computing
Dozens—Thousands Dozens—Hundreds Dozens Dozens—Hundreds
Central /Diffuse Central /Diffuse Central Central
Same Same/Different Different Same/Different
High Low Middle Low
High Middle Middle Low
High Low Middle Low
Unknown Known Known Known
Where precise Multiple robot Source control and Calculations that

applications monitoring tasks require a lot of math

As concluded here, although the concept of a robot is defined as machines with
manipulators, in some cases, it is also possible to talk about virtual systems in multi-robot
architecture. These systems are usually very large computational tasks running parallel in
different processing units with the help of distributed tasks.

Our field of study here is swarm robotics, which is a relatively new subject. In this
sense, the expression “robot” in the texts from now on should be considered as individuals
or agents of swarm robotics.

2.2. Swarm Robotic

The concept of swarm robotics (SR) is a division of multi-robot systems. Although there
are very significant and varied studies in this field, the biggest feature that distinguishes
them from multi-robots is their autonomous structure. This feature is both the strongest
and the most important characteristic of swarm robotics.

Individuals in the swarm can adapt themselves to different tasks in a wide variety of
conditions, as can be deduced from the classification methods in Table 1. Working with
autonomous systems was described as collaborative by Luca Iocchi et al. [1]. This feature
is the most basic feature defined in the literature. In addition to this feature, as shown in
Figure 1, the ability of robots to define their work, the coordination, and management style
as a result of cooperation are the characteristic features of swarm robotics.

Another study of the swarm robotic definition was made by Erol Sahin. In this defini-
tion, besides the fact that collaboration is an indispensable option, robustness, flexibility,
and scalability criteria [20] among the features in Table 1 were defined for the first time.
These key features of swarm robotics can be explained as follows:

Robustness: One or more of the individuals in the swarm community may be dis-
abled for various reasons such as malfunctioning, running out of battery, or being stuck
on an obstacle. Robustness is the ability of the swarm to accomplish its task even in
difficult conditions.

Flexibility: It is the ability to adapt and continue to work in changing conditions such
as weather, environment, and task during the swarm mission. In flexible systems, changing
conditions should be defined in the software of the robots and the robot should have a plan
to continue to move using different parameters for different situations.

Scalability: The number of individuals in the swarm may be insufficient in some cases,
and in such cases, new individuals may be added to the swarm from the surrounding
swarms and additional swarm robot warehouses to complete the task. If the software and
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algorithms allow the number of individuals to be increased or decreased in a swarm, then
the swarm is considered scalable.

Knowledge Level

Cooperative Level Not Aware

Weakly Not

Strongly

Coordination Level Coordinated Coordinated Coordinated

L . .

: 5 ngly Weakly

Figure 1. Characteristics of swarm robots [1].

(R,

Distributed

Among the characteristics defined by Luca Iocchi et al., the control center in the swarm
has a distributed structure rather than being centralized. This means that the robot can
perform the given task on its own without taking orders from the central management.
In the circumstances of encountering and failing to overcome the obstacle, other swarm
robots in the neighborhood can interrupt their tasks to help the struggling robot. After
the problem is solved with the aid of the other robots, the swarm robot continues to its
main task. This feature is the known main characteristic of swarm robots, but it is not well
developed in multi-robots.

2.2.1. Classification in Swarm Robots

In addjition to the above characteristics, the physical characteristics of the swarm also
reveal the structure of the system. Robot communities that do the same task cannot be
called a swarm. In some cases, even missing a member in the group makes the mission
fail. This type of robot community is often a multi-robot community. Another criterion for
robot communities to be considered as swarm robotics is that the robots are of the same
type, although not necessarily so. That is, the group should consist of the same robots as
much as it is possible. Even if the group has a variety of robots, the group should not be too
diverse for swarm robotics to work. In addition, different types of robots should not reduce
the success of the task and should not interfere with the operation of other robots. Three
different robot studies with hand-bot, foot-bot, and the drone can be given as an example
in the Swarmoid project [21]. The task is achieved thanks to the working together of three
different types of robots [20]. In swarm robotics, robots” work is classified by the differences
in their combinations. As the basis of swarm robotics is a technology inspired by nature,
the term taxonomy is used instead of the term classification, as in biology. Here, some
criteria are taken into consideration such as the tasks of the robots, the way they approach
the problems, their communication, the way they are positioned, and the structures of the
swarm. In this regard, the taxonomies proposed by Bayindir and Sahin, and Brambilla
et al. can be prioritized. When both taxonomies are examined, the taxonomy criteria can be
defined as follows:

Number of individuals of swarm or size of the swarm
Communication ability of the swarm, perception capacity if any, and allowable com-
munication distance

e  Communication network methods such as addressing layer levels and data bandwidth
established by the swarm

e  Processes of information processing
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e  \Variability of the positioning of robots
e  Robot variety [22]

Accordingly, Baymndir and $Sahin divide the swarm robots under the headings of
problems, behavior design, communication, modeling, and analytical studies in their
proposed taxonomy (Figure 2). In the taxonomy proposed by Brambilla et al., the swarm
robots are gathered under the headings of methods and collective behavior (Figure 3).

w] Pattern Formation Nonadaptive

— Aggregation Behavior Design Learning

g Chain Formation Evolution

o  Self Assembly

Problems - e
Coordinated Communication [
“oordinate,

Movement

mlnteraction via Sensing|

Interaction via
Communication

m Hole Avoidance

Sensor Based

Foraging

al Self Deployment Modelling
Macroscopic
. o o Cellular Automata
Analytical Studies

Figure 2. Taxonomy proposed by Baymndir and Sahin [23].
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Macroscopic
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Object Clustering
and Assembling
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Analysis
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. - B Achievement
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=1 Task Allocation
W Other Collective
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Figure 3. Taxonomy proposed by Brambilla et al. [24].
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2.2.2. Classification in Swarm Robots

The idea behind the structural algorithms of swarm robots is imitating living things
in nature. Similarly, their tasks can be considered identical with the behavior patterns of
living things in nature. Accordingly, the tasks of swarm robotics can be obtained from
the previously mentioned taxonomies in a way that mimics nature. Thus, the missions of
swarm robotics can be classified as:

Foraging

Collection

Template formation

Transport

The distribution of tasks

Coordinated movement

Self—manufacturing

Mapping—Discovery

To decide

With the optimization methods mentioned above, the tasks to be performed by the
swarm can be defined by being inspired by nature. These tasks appear in many areas of
daily life. In some cases, more than one of these tasks is processed by the system at the same
time. Naturally, having more than one task in swarm robotics depends on the power and
support of the decision-making mechanism. We may briefly touch on some of these tasks.

Foraging: It is a task based on finding the food that living things need in nature. It
can be simulated by living things finding food and storing it at one point. An example of
this is the collaboration of ants, birds, fish, and bees to find their food.

Collection: An example of this is the gathering of robots, like living things, at the
desired point and completing the task by reinforcing the insufficient swarm to fulfill the
task. The dispersal of the threatened swarm can also be thought of as a collection algorithm.

Template formation: This task is to ensure that individuals come together and form a
shape. The movement of birds and fish by forming a certain shape, without hitting each
other, is an example of this. This task can be simulated with the PSO method.

Transport: It is one of the collective behavior patterns frequently seen in some animal
species. This behavior here can be seen as a combination of foraging and foraging behavior.
An example of this is the transportation of an object by the swarm from one point to another,
which would be too heavy for a single individual to carry easily. Providing the necessary
workforce and transferring information within the group here forms the basis of this task.

Task Allocation: Performing different operations in complex tasks by dividing the
swarm into groups will increase both the speed of execution of the operations and the
success rate. While it is beneficial to divide the swarm into clusters, it is important whether
the number of individuals in the swarm is sufficient or not. In addition, if there is a
heterogeneous formation in the group, it is essential to check the suitability of different
individuals for the task.

Coordinated movement: It is expected that the swarm, which consists of different
structures, should cooperate, and complete the task in harmony. In a heterogeneous swarm,
it may be necessary for another individual to complete the task that one individual in
the team cannot do. Swarm robotics should be designed in a structure that will allow
such formations.

Self-manufacturing: The main starting point of this task is the continuity of the swarm.
Although the individuals in the swarm are numerous and dispensable, their losses can
reach critical levels over time. In such cases, it may be necessary to reintroduce problematic
robots to the swarm. This is an example of a self-manufacturing task. Apart from that, the
swarm can work to create more complex parts from existing standard simple parts. This
job is ultimately an assembly and repair job.

Mapping-Discovery: The task is to quickly identify an unknown region by scattering
the swarms of robots and mapping the environment. Today, the idea of sending robots



Sensors 2022, 22, 4437

8 of 24

instead of people to very dangerous areas is accepted. As the area grows and the robot’s
stay in the area gets shorter, it is more appropriate to have the swarm robotics do the job.

To decide: Distributed organizational structure is used in swarm robotics. At one
stage of the task, while the whole group returns to the main task, a group of swarms can
create additional tasks and move away from the main task. Or, if necessary, a part of the
group may leave the swarm to remove an obstacle. In this task description, there is the
decision-making process regarding all these tasks, such as coordinated movement, task
allocation, foraging and transport in the swarm.

2.3. Communication Methods

If a single robot is unable to do the task, multiple robots must do it collaboratively and
all robots in the swarm must work in harmony. This can be done through communication
between the robots. In some cases, the swarm evaluates the situation and decides more
individuals are required to complete the given task. To accomplish this, the swarm can
communicate within itself and increase personnel for this task. The scalability feature from
previously mentioned swarm robot characteristics is clearly needed for this [25]. Even if
the number of members in the swarm changes, the defined task should continue without a
new command being.

If there is a constant movement in the swarm, such as an increase or decrease in
the number of members, then it is not expected that the swarm will have a stable com-
munication structure. On the other hand, in the case where the number of personnel is
fixed, communication cannot be established in the same way from one point to another on
the same line because of the displacement of the robots in the swarm. Therefore, ad hoc
communication topologies with a temporary dynamic structure are preferred in swarm
robotics. In this sense, the activation or deactivation of the elements in the swarm does not
disrupt the communication [22]. The communication methods to be established between
robots are as follows:

Mobil Ad Hoc Network—MANET

Smart Phone Ad Hoc Network—SPAN

Wireless Sensor Network—WSN

Internet-based Mobile Ad Hoc Networks—iMANET
Vehicle Ad Hoc Network—VANET

As seen, network topologies used between robots are usually related to mobile net-
works. The reason for this is that the robots are not always at the same locations and the
robots may be disabled.

There are many hardware items and protocols to provide the communication methods
that enable these topologies. It is important to know in which places the robots will work,
when choosing the protocols and hardware structures based on these protocols. Since robots
encounter too many obstacles indoors, transferring and receiving the signals consume more
energy to pass the obstacles or due to the increase in communication distance. In such
cases, even if the network structure is ad hoc, the energy consumed is problematic, and the
signals may be interrupted. However, communication with less data is provided outdoors
at a good rate, as there will be no obstructions. Since communication takes place over short
distances in swarm robotics, this consumes less energy and enables precise communication.
These communication methods are:

Infrared communication (IR)
Bluetooth communication (BTE)
ZigBee

Wi-Fi Communication

LoRa Communication

These protocols and hardware structures together with the topologies enable the
robots to communicate. However, one more point needs to be mentioned here. The
studies generally describe the communication between individuals within the swarm or
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between the user and the swarm. However, there has been some discussion recently about
the existence of more than one swarm. Naturally, considering that swarm robotics will
become widespread over time, it is inevitable that there will be different swarms doing
different tasks in the same environment. Moreover, these swarms may be heterogeneous
swarms that do not have the same structure. In this case, it would be a great waste if the
swarms do not work with each other. In cases where communication is not enough, it
would be meaningless not to benefit from the individual of the other swarm found on the
neighborhood. In this context, recent designs in accordance with Figure 4 have been made
by adding algorithms in which different swarm groups can work together. With a study
on this subject, Ali et al. [26] created an idea in this direction and researched the idea that
communication would be as follows:

e  User-to-swarm communication
e Intra-swarm communication
° Inter-swarm communication

Swarm-1

& Y45
> @ . |

Inter-swarm + User to swarm

Intra-swarm

Figure 4. Communication models used in swarm robotics [26].

As a result of this study, it was seen that the most highlighted feature was that
communication continued in different swarms, and communication within the swarm was
completed by the other swarm. As it can be seen in Figure 5, 46% of the communication
load was realized in an inter-swarm way.

Communication Rates

m User-to-Swarm IntraSwarm m Interswarm

Figure 5. The influence of various methods of communication on the network [26].

Network communication is a very parametric concept as agreed by the field re-
searchers. As a result, the communication can be customized for effectiveness by adjusting
these parameters. This is very critical in most communication designs. In some cases, it is
not desired that the nodes belonging to other networks can participate in communication
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with the nodes forming the network; in contrast sometimes, as in the previous example, it
is desired that the communication is inter-network and global, with close communication
with the external environments. Providing these two different requirements is ensured by
communication parameters and can be achieved via hardware or software systems. The
parameters that must be defined during communication are mentioned below.

Communication range: Communication takes place between individuals of the swarm
and it is obvious that the distance of communication between them is important. While the
distance between two robots is a few units, increasing this distance to a few hundred units
creates unnecessary costs and redundant interference. Therefore, the distance between
the robots for effective communication defines the communication range. An excessively
large range increases the number of communication operations needlessly and also causes
individuals to be unable to communicate.

Communication area: Under normal conditions, the robot makes a circular communi-
cation in such a way that there is no empty angle around it, or we assume that it does so.
However, this circular structure may be disrupted due to reasons such as obstacles around
the robot and the characteristic features of the antenna used. In such a case, the robot
cannot exhibit the expected behavior as it will stop giving and receiving signals. Therefore,
it cannot send data to the next robot and may not receive data itself. The behavior of the
swarm may deteriorate, and the mission may be compromised.

Length of messages: During communication, the message does not consist of only the
data content. In addition to the data content, a payload is needed consisting of a header
formed by parts such as destination address, source address, message size, CRC control,
etc. These additive sections are to ensure that the message arrives correctly. Sometimes the
payload part may be as large as the data part. Therefore, the size of the header increases
the length of the message.

Message propagation time: In some cases, when the message is sent it may be re-
quested to actively roam in the swarm for a while to guarantee to reach all individuals.
Keeping the message duration time long will cause the message to be repeated in the
swarm; therefore, there should be a determined limit value to stop spreading the message
from individual to individual.

Interactions: The most important criterion of cooperation in swarm robotics is the com-
munication between them. Communication blockages, interruptions and interference with
other unrelated information makes the interaction between the robots difficult. In addition,
the task to be done may fail if individuals cannot get the correct data. Communication
should be designed to eliminate these problems [27].

2.4. Optimizing in Swarm Robots

It is not possible to control each of the robots in the swarm one by one due to a large
population of robots. Robots must move alone to complete the task they are taking. Thus,
robots must overcome the difficulties encountered on their own and solve the problems
that may arise on their own. The individual who overcomes these difficulties should adjust
its movement according to the swarm.

This kind of movement of the swarm takes place thanks to the algorithms to be written.
The starting point when defining these algorithms is nature. There are many creatures in
nature that behave similarly in this way. These creatures mostly move together to find food
and escape from their predators. During this movement, many creatures in the swarm reach
their destination in swarms, often without colliding with each other and very quickly. They
also respond just as rapidly to a change in target. Researchers have defined nature-inspired
meta-heuristic optimization methods based on this harmony in the behavior of animals in
nature. These optimization methods are designed to describe the control of individuals in
the swarm by simulating nature and are very diverse [28]. Some of them are:

e  Particle Swarm Optimization (PSO)
e Ant Colony Optimization (ACO)
e  Artificial Bee Colony Optimization (ABC)
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Fish School Search Optimization

Cuckoo Search Optimization

Firefly Algorithm

Bat Algorithm

Flower Pollination Algorithm

Gray Wolf Optimization

Elephant Swarming Optimization

Crow Search Optimization

Raven Roasting Optimization Algorithm

Most of these optimization methods are used in swarm robotics studies. Here, we will
focus on the most effective algorithms in swarm robotics.

Particle Swarm Optimization (PSO): This optimization is a collective action algo-
rithm inspired by the behavior of animals that move collectively, such as swarms of fish
and birds, to find food and avoid predators. It was first described by James Kennedy and
Russell Eberhart in 1995 [29].

The behavior of a swarm that collects for foraging is studied in Particle Swarm Opti-
mization. This behavior of the swarm is formed as a vectorial combination of the behavior
of the individuals arising from the experience and the states of the individuals initially. To
achieve the target in the most efficient manner, the swarm determines its and the swarm’s
best values and attempts to position the swarm according to that point based on the
swarm’s current best value.

The mathematical model of the vectors in the graph of Figure 6 is as proposed by
James Kennedy and Russell Eberhart in 1995.

vi(t+1) = wo;(t)4c1 * r1 % (pbest; — x; (1)) + cp * 1y * (gbest; — x; (t)), (1)
xi(t+1) = x;(t) +o;(t +1) 2)
pbest,(t)

Figure 6. Behavior of the individual in Particle Swarm Optimization.

Ant Colony Optimization (ACO): Ant Colony Optimization is a path-finding algo-
rithm for ant colonies first proposed by Dorigo et al. [30]. In their work, they called their
system the ant system. They named the model suitable for this system as the Ant algorithm.
The ant, when foraging, leaves an odor called a pheromone at the points it passes while
on the move. At first, the smell is fresh. Every passing ant leaves a pheromone on this
spot. Thus, since the amount of pheromone will be higher on the shortest path, the choice
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will be on this path. Which path the ant will choose when it comes to the intersection is
determined by the randomness value. This random situation creates an opportunity to find
better ways. There may be free-moving ants outside of this path, but since the pheromone
they will leave will be less and will disappear over time, ants naturally prefer the shortest,
that is, the most-used path [31].

Toy < (1= p) Ty + 221 AT,’fy, (3)

A'rfc‘y = {Q{)Lk other case if the ant uses the xy curve in k rounds 4)

Artificial Bee Colony Optimization (ABC): Bee Colony Optimization is an optimiza-
tion algorithm based on feeding. In this optimization, it is one of the characteristics of
swarm intelligence that bees can distribute tasks without central management and organize
themselves [32]. To find nectar, bees take long routes that can be in different directions. In
this optimization, the first step is for the bees to come to the hive to share the information
and direct the other bees to the nectar [33]. The other step in this optimization relates to the
weakening of the source, and the bees’ switching to different nectar searches. In this case,
the worker bees that come for nectar join the scout bee swarm to find a new nectar area.
The scenario is processed step by step to explain the working of the algorithm [34].

The bee will find the food source around the hive. The algorithm starts by generating
random points between (0,1) within this area:

Xij, i=1,...,N,j=1... M, where N is the number of food sources and M is the
number of parameters to be optimized. x,,;, is the lower limit of the j parameters.

Xij = x}"m + rand(0,1) (x}”“ks - x?“i”) (5)

One of the constraints in this algorithm is that each resource has one attendant bee.
This leads to the assumption that the number of food sources is equal to the number of
employed bees. The worker bee wanders around the sources, and if the source they find is
better than the previous one, the other source is forgotten and the new source is memorized.
Here ¢ is again a randomly generated integer. v; is the source in the x; neighborhood. x;
is the neighboring solution. As the difference between x;; and x;; decreases, the optimal
solution is approached.

vij = Xij + @jj (xij - xkj) (6)

In case the v;; value produced in this process exceeds the lower and upper limits
previously specified, Equation (7) is shifted to the lower or upper limit values of the
j parameter.

min B min
Xj vij < X )
U= Vjj x}”’" < Uij Sx;na s 7)

maks L. maks
Xj vij > X;

The cost value of this resource is f(v;). Here, the v; value produced within the limits
is substituted in Equation (8) and the fitness value of this solution is calculated. The bee
chooses between v; and x;. If the newly found value gives a better result, the old information
is deleted and a new one is taken instead. error; is reset. If the new resource is not better,
the error; is increased by 1, and the bee continues to search for the resource.

yee = JV/(AF i) fiz0
fltness{l+abs(f,-) £ <0 (8)

. —
fi, is the cost value of the v; resource.
After completing their research, the bees return to the hive and convey their knowledge
to the onlooker bees by dancing. Criteria such as nectar rate and distance of onlooker bees
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are represented by the fitness value. Probability values can be calculated with Equation (9)
based on the fitness value that the onlooker bees will use while making the selection process.

P — fitness; ©)

1 N .
ijl fitness;

In the selection process according to the roulette wheel, if the ¢ value produced in the
range of [0, 1] for each resource is greater than a randomly generated value, the onlooker
bees use Equation (6) to produce a new resource in this resource region and apply the
selection process between v; and x;, so the better one is selected. If the x; solution has not
improved, the solution is preserved and the error; is increased by 1; if it is advanced, the
error; reset is performed. This step is repeated until all onlooker bees have dispersed to the
food source areas.

As the onlooker and attendant bees go to the source, the incoming nectar information
is checked. If this value falls below the threshold amount, the resource is considered to be
exhausted. In this case, the employed bees turn into scout bees. After this moment, they
start searching for new solutions using Equation (5) [35].

Firefly Algorithm: Fireflies approach each other by a brightness criterion, regardless
of gender. Since the distant firefly will be less bright, its attraction will be less. In addition,
the less bright firefly will move towards the bright ones in the environment. If there are no
fireflies around, the firefly will move randomly. The basis of the optimization method is
based on this movement mechanism of the firefly. It is modeled and formulated by Xin-She
Yang [36].

Bat Optimization: It is an optimization method inspired by the bat’s echolocation
behavior. Bats create a kind of radar signal by using sounds at frequencies inaudible to the
human ear to locate their prey and determine their direction. Thanks to the echo of this
signal, they can communicate with each other and perform their survival activities. They
can achieve their goals with values such as the frequency of the signal they send and the
return time. It is modeled and formulated by Xin-She Yang [37].

Cuckoo algorithm: (Incubation Parasitism) It is an algorithm originated from the
migration and breeding strategy of the cuckoo. The cuckoo waits for the owner of the nest
to leave and leaves its young in a foreign bird’s nest. The cuckoo, who comes to the nest
after the owner has left, may throw previous eggs from in the nest and places its own egg
in the nest. Placement is important because if the nest owners detect fake eggs when they
return to their nests, they will throw the egg out of the nest. If the eggs provide credibility,
the real nest owner will adopt the eggs. The cuckoo’s eggs usually hatch earlier than the
nest owner’s eggs. Early hatching cuckoos throw other eggs from the nest, so that the nest
owner takes care of them only. If the opposite occurs, and they come out later the cuckoo
cubs, which are greedier and more aggressive in terms of nutrition, starve the nest owners’
offspring, preventing them from sheltering in the nest. Even if the owners of the nest are
aware of the situation, they cannot harm the cubs because they adopt the cuckoos with
their parental instinct. In this way, the adult cuckoo enters the migration period early and
leaves the care of its young to another bird. This model was developed in 2009 by Xin-She
Yang and Suash Deb [38].

2.5. Optimizing in Swarm Robots: Real Life Examples

Because of its inspiration from biological life, swarm robot optimization produces work
that can be applied in real life. Several examplar studies will be mentioned to emphasize
the importance of swarm optimization methods. In one study by Li et al., a new approach
combines Wireless Sensor Networks (WSN) and Multi Mobile Robots (MMR) topics and
discusses cooperation between them to obtain swarm intelligence [39]. In that swarm
intelligence application, three mobile robots and seven WSN nodes are used for simplicity.
The robots nearby are detected by the static WSN nodes, and a virtual entity assigned. The
attributes, stored in WSN nodes, of the created entity are shared with the nearby robots
because of the limited communication range. This approach eases the remote control of
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robots and their formations in the swarm without making any change of the hardware and
software of the robots. Another study is about dynamic cooperation of multirobot systems
maintaining a pre-defined swarm formation in a trajectory following by Lee et al. [14]. The
movements of three CRX 10 mobile robot platforms are observed with externally positioned
cameras in an indoor area. Robot formations are controlled by using camera data and
individual robots solve their local optimization problems on their own. Experimentally
tracking a circular trajectory in triangular and line formation of the swarm is achieved by
using a dynamic cooperatively co-evolving PSO algorithm. In another application, drones
carrying RFID readers check inventory of raw materials and finished products dynamically
in a factory environment studied by Liu et al. [18]. Considering that drones as aerial
robots have their flight time limitations, their effective trajectory routing with optimization
is critical. Here the proposed method successfully used drone swarms for accurate and
fast inventory checking. Another application is about autonomous aquatic surface robots
controlled by self-organized evolutionary techniques, developed by Costa et al. [40]. The
robots here are manufactured by CNC milling and 3D printing and have an open-source
software available to be developed by other researchers. Robots are equipped with multiple
sensors such as GPS navigation, digital compass, and temperature sensors. Robots move in
swarm mode and their task is organized using evolutionary optimization algorithms.

3. Results
3.1. Design Problems in a Swarm Robotics

Moving a single robot is usually easier than moving multiple robots. In this study,
research has been done on the problems that can be experienced when it is needed to
move the swarm together, and optimization suggestions are presented according to these
problems [10].

3.1.1. Problems Caused by Optimization Design

The area occupied by individuals in space: Calculations made in optimization design
usually do not calculate the volume of the individual and see it as a point. However, as seen
in Figure 7, an individual has a mass and a volume that occupies space. In the optimization
design of robots, this detail must be added to the equation. However, the robots may not
be of the same type. As a result, different covering areas will be created for each robot.
Generally, it may be desirable for the robots to avoid contact and maintain a certain distance
from other robots depending on the task.

Target

Figure 7. Approach of robots to target point.

For the solution of this design problem, the physical conditions of the robots should
be considered when calculating the coordinates of the individual, both in the equation and
in the algorithm calculations. Overlapping conflicts that may occur should be eliminated
by software arrangements. For the case of different types of robots, this value should be
calculated separately for each different group. In the case where contact between robots
is not desired, taking the bat optimization as an example and using the echo system, the



Sensors 2022, 22, 4437

15 of 24

proximity distance to the other robot should be limited by sensors such as infrared and
ultrasonic (Algorithm 1).

Algorithm 1 Solution: The area occupied by individuals in space

if (robot radius + tolerance) < distance to target then
Keep moving

else
Stop motion

end if

Conflict of Coordinates: If robots are controlled from a single place in the algorithm,
there is a possibility that two robots can be in the same coordinate at the same time. This is
a problem as can be seen in Figure 8. The fact that the robots are headed towards the same
target point reveals the possibility that there will be contact with each other, and serious
collisions may occur. This is possible in experimental simulation environments, but in the
physical world, this is not possible. Robots that want to physically go to the same point
can also make undesirable movements such as climbing on top of each other, apart from
bumping into each other with structural compatibility.

Target

Figure 8. Defining the same coordinate to different robots.

In the case of central control in algorithm equations, overlapping in coordinates can
be eliminated by software control of coordinates, and sending overlapping coordinates
to individuals can be prevented. This software elimination may cause an increase in the
number of iterations, but delay time sourced by sending incorrect coordinates to the robots
will be reduced. As another method of preventing coordinate conflicts, distance control is
provided by the echo method. Even if incorrect coordinates occur, priority is given to the
sensor data in the algorithm of the robots, so that the problems of incorrect codes will be
prevented (Algorithms 2 and 3).

Algorithm 2 Solution 1: Conflict of Coordinates

for each Robot do
for each other robots do
if robot coordinates are not equal to other robots coordinates then
Accept the coordinate
else
Choose different coordinate
end if
end for other robots
end for robots
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Algorithm 3 Solution 2: Conflict of Coordinates

1:  if Desired range > Measured range then
2 Keep moving

3: else

4 Stop motion

5. endif

When the target is given to the robots, all the robots will naturally move towards this
point. But that does not make any sense, because there is only one point, as in Figure 9. All
robots cannot reach this point. Therefore, there will be continuous movement in the robots.
The continuous movement that occurs will cause both the processor and the communication
to be busy during the task. Battery problems will occur because of continuous motion
energy, processor, and communication tasks.

Target

Figure 9. Inability of the individuals in the swarm to reach the target.

The solution to this can be solved by distance control and the approach of robots
to the target point. The movement of the robot approaching the target point can be
stopped by examining its approach to the previous robot and stopping the motion at the
required approach point. Stopping can be done with the equalization system or by creating
communication calculations (Algorithm 4).

Algorithm 4 Solution: When the target is given to the robots

1:  if (robot radius + tolerance) < distance to target and desired range > measured range then
2 Keep moving

3: else

4 Stop motion

5: endif

Obstacles in the working area: At the working point, as can be seen in Figure 10,
there may be obstacles that may prevent reaching the target on the target path of the swarm.
Obstacles may not allow or limit the passage of the swarm at one point. In addition, there
may be routes where these obstacles are absent or less. The swarm may do many iterations
to enter and exit a path closed by obstacles. As a result of these attempts, their energies
may reach points where they cannot fulfill the task.

The software that will send the swarm to the target may then use more than one
optimization effort. By using Bee Colony Optimization, the path to the target can be
determined by sending scout robots that can find the shortest path. With the detection
of the target, the scout robot, which gives communication information to the swarm, can
direct the swarm to this path. If there is more than one robot crossing the obstacle, the
shortest path can be calculated, and the swarm can pass through this path. Using Ant
Colony Optimization, the swarm is divided into several groups. The shortest path from
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the robot groups to the target from several different paths can be shared by the swarm,
and the swarm can be directed to this path over time. In the meantime, individuals whose
batteries are below a certain level, in case the distance between the swarm and the target
is large, provide the relay point that will provide communication instead of reaching the
target point, as in the cuckoo algorithm, thus providing the maximum benefit to obtain
from before their batteries are completely exhausted. If the swarm reaches the target and
there are no robots left behind, these robots can perform their movements to the extent of
their battery charge. In cases where their batteries are not enough, they can share their
locations and ensure that they are left at the charging stations at the end of the task or get
support from other robots when necessary (Algorithm 5).

RN
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Figure 10. Obstacles in the work area.

Algorithm 5 Solution: Obstacles in the working area

1: for each robot do

2 if robot arrived at the target then
3: add robot arrival time to list
4. end if

5: path = shortest path in the list

6: robot = the robot with the shortest path
7: end for

Determination of the gathering point of the swarm: While living creatures in nature
move in swarms, their behavior patterns are determined by finding food and avoiding
predators. These movements determine their goals. In the robotic swarm, it is necessary to
define the target. While the swarm whose initial movement is given by the user is moving
towards the target, a change of the target’s position should also change the movement
in the swarm. As in Figure 11, the swarm must determine the working area without the
knowledge of the user, find its target autonomously, and head towards the target.
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Figure 11. Determining the working area, determining the target.
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In nature, the food point is never defined. The swarm is focused on food rather than
coordinates. Similarly, it is not clear where the hunter will come from. Therefore, instead of
the location of the target, the characteristics of the target should be defined, and the target
should be monitored continuously. Here, faulty spots can be distinguished from targets by
using object recognition systems or distinctive signals or labels on the target.

3.1.2. Problems Caused by Communication

Communication between robots is very important in swarm robotics. Moving the
robots together, reaching the target, and completing the task is a process undertaken to-
gether by the swarm. During these processes, cooperation can only be realized through
communication. As a result of the disappearance, interruption, or deterioration of commu-
nication within the swarm, the swarm cannot move properly.

Exceeding the communication distance: Communication between robots takes place
in the form of receiving and then relaying these data. Communication between points
is in an ad hoc manner. If the physical distance between the moving robots exceeds
the transmission distance, as in Figure 12, the communication link is broken. In case of
disconnection, more than one of the robots may be disabled.

O

0 o

Communication distance 2 Robot out of communication range

Figure 12. Robot out of communication range of the swarm.

For individuals to communicate with each other, the communication signal must
reach to a certain distance. The communication distance of some robots must be designed
as greater than all other robots in the swarm to prevent any robot from being disabled
because of the physical distance between the robots. This design increases the coverage area
and may prevent disconnections. Therefore, some robots in the swarm may have higher
transmission power and receiver sensitivity to increase the communication distance. The
presence of such robots, though few in number, can increase the communication distance
and ensure uninterrupted communication throughout the whole swarm (Algorithm 6).

Algorithm 6 Solution: Exceeding the communication distance

if incoming message data available > 0 then
incoming message is used

main message is used

1
2
3:  else
4.
5: end if

Communication distance is too high: If the communication distance is increased too
much, the transmission circuits are busy for a longer time and the battery is consumed
faster due to the increase in the transmission distance. In addition, the probability of
interference of signals increases. As a result, this can disrupt their tasks and make their
battery run out faster.

Short communication distances of the swarm robots cause the communication chain
to break while keeping it long causes echoes, as in Figure 13. The solution is to form the
communication in a multi-hop manner. For this, as in the previous problem, a communica-
tion channel can be used for the long distances and a separate communication channel for
the short distances (Algorithm 7).
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Algorithm 7 Solution: Communication distance is too high

1:  if incoming message data available > 0 then
2 incoming message is used

3: else

4: main message is used

5. endif

6: if the message is new then

7 use the message

8: else

9: don’t use the message

10: end if

Figure 13. Keeping communication ranges long.

Change in the target point: The same problem experienced in optimization designs
can also be experienced in communication points. As seen in Figure 14, the target may be
mobile around the swarm, or there may be more than one. Directing the whole swarm to
the right destination is a decision that must be taken within the swarm. This is the key
characteristic of swarm robotics. This decision should be transferred to the whole swarm at
the same time.
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Figure 14. Communication status of swarms with different missions in the same area.

Target

This event needs to be conveyed very quickly. Otherwise, some individuals in the
swarm may move towards opposite points from the swarm.

The simplest way for the swarm to take a decision very quickly and to transfer it to
the whole swarm in the fastest way will be the continuation of the solutions given in the
previous problems. Information will be shared quickly by individuals as a result of the
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transmission of information to all individuals by broadcasting through different channels
of communication in the swarm and not reprocessing the message after acknowledgement.
Individuals or nodes that receive the information quickly transfer it to the closest individual.
In this way, the entire swarm can be directed to the target at the same time.
Communication confusion between swarms in tasks consisting of different swarms:
As known from swarm robotics studies, there may be swarms with different tasks in the
same environment (Figure 15). Basically, the different communication parameters of these
swarms will prevent communication with each other. However, as we have seen from
previous studies, this may not be disadvantageous as expected. Therefore, communication
between the swarms may be a beneficial situation in terms of task completion. However, if
two swarms use the same communication channel, it will cause communication confusion.

Figure 15. Different goals in the workspace.

To overcome this problem, groups working in different channels can communicate
using common channels when necessary. In this way, when necessary, the interrupt message
to be sent to the robots focusing on their own work is provided to communicate with the
other swarm in the same area, and the swarms can help each other to increase the success of
the task. Thus, this action can create a larger swarm. Normally, in the smaller community,
the group using low-overhead communication will move faster as it will use a smaller
communication volume to process given transactions. As a result, communicating with
the other swarm in the same area provides the necessary communication and increases the
success of the mission with the help of other swarms. If the communication channels are
different, the swarms will not affect each other.

3.1.3. Swarm Robotics Study Using PSO

The system to be mentioned here was designed using the Webots [41] simulator, with
2 different robot swarms and 10 robots in each swarm, with a total of 20 robots, as seen in
Figure 16. Each swarm will communicate internally in one channel, and when necessary,
the next upper channel will be used to take the two swarms to a single point [42]. The
robots to be used in the swarm in the simulation software are Elisa-3 robots created by
GCtronic [43]. These robots are equipped with GPS Compass sensors on them [44].

A swarm was controlled by the PSO method, which would answer most of the
problems identified in this study. Basically, here the intention is to bring the swarm
closer to a point based on the PSO algorithm. However, while the control is calculated at
one point based on PSO, this contradicts the distributed architecture of swarm robotics.
Hence, the PSO algorithm is run separately on all individuals in the swarm instead of a
single point, and the pbest value is calculated by using a mathematical equation. The pbest
values for individuals will be different due to the different positions of each individual and
the random rq and r, values in Equation (1). These calculated coordinates are transferred
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to all individuals in the swarm. Individuals in the swarm determine the gbest value
for the swarm by processing the calculated pbest data for each incoming individual. In
the mathematical function, the gbest value among the coordinates of all robots will be
considered the same by all individuals in the swarm. Consequently, there is one optimized
value for the whole swarm in reaching the target.

Figure 16. Elisa-3 robot swarm in Webots simulator.

In Section 3.1.3, the modeling of the PSO is provided with control software in a
distributed architecture suitable for the characteristics of swarm robots, where individuals
will be compatible with the group but independent within the group [1]. In the optimization,
a study has also been made to include the problems mentioned in Sections 3.1.1 and 3.1.2.
Thus, coordinate conflicts, unnecessary behaviors in the control of the swarm, interruption
of communication or signal echoes are eliminated, and solutions are applied in swarm
robotics that move using PSO algorithm. In Algorithm 8, this algorithm structure is given
in the pseudocode. Although there are simulations convenient for many scenarios in
the application, there are still situations where real-life conditions cannot be met. For
example, the attenuation of the signal strength due to the battery conditions of the robots
and obstacles are not included in the equation. It is appropriate for the development of the
project to consider this in future studies.

As seen in Algorithm 8, for this application the pseudocode of the software is given to
solve the problems arising from the optimization design mentioned in the study. Accord-
ingly, the collisions of robots with each other and overlapping coordinates are prevented
using this algorithm. In addition, the swarms communicated independently through dif-
ferent channels for the solution of communication-related problems. For achieving this,
the communication links are designed to allow interoperability when necessary. Thus, the
robot, whose communication is interrupted from the swarm, is enabled to act as a part of
the other swarm. In this way, the robot, which could not communicate in the field, is also
prevented from being disabled.



Sensors 2022, 22, 4437

22 of 24

Algorithm 8 General Solutions

1: Initialization:

2:  for each of the dimension do

3: Set random initial values for particle (position and velocity)
4: end for

5:  while (radius of robot + tolerance) < distance from target point do
6: for each of the particle—1 do

7 if there is communication then

8: receive particles information in swarm (position, velocity and particle)
9: Else

10: increase the communication range

11: receive basic swarm data (position, velocity and particle)
12: end if

13: if the message is new then

14: use Message

15: end if

16:  end for

17:  collect information of all robots (position, velocity)

18:  for each of the particles and dimension do

19: for each personnel evaluate the fitness: f(position)

20: if personnel best > global best then

21: global best = personnel best

22: end if

23: update information of all robots (position, velocity)

24: end for

25 end for

26:  send robot information position, velocity

27:  if approach distance > distance sensor value then

28: keep moving

29:  else

30: stop motion

31:  endif

32: end while

4. Discussion and Conclusions

In this research, the nature-inspired optimization methods used for swarm controls
and the communication methods within and between the swarms are emphasized. Thus,
the problems encountered in swarm robotic behaviors can be overcome using these above-
mentioned problem-solving methods found among living creatures in nature.

In this study, the optimization and communication design problems that can be experi-
enced during the realization of the movements of swarm robotics are stated. Using several
different algorithms instead of using only one for swarm control yields a better solution to
the problems emerging in swarm robotic design. Some methods were suggested suitable
for swarm robotics architecture using different approaches to some classical optimization
methods such as PSO.

It is concluded that the use of heterogeneous communities which are also based
on swarm robotics can clearly increase the swarm’s success. In nature, there are many
examples of this phenomenon. The presence of individuals with different duties in the
same environment in bee and ant colonies is a good case. In addition, the swarm can be
formed from individuals who have different tasks with the same purpose, in order to have
a robust structure, better control, and fast communication.

Although the homogenous employment of individuals is essential and a designed
coordinator is less often suggested in the distributed control architecture used in swarm
robotics, some individuals designed with different purpose from the same swarm can be
selected to act as coordinators to improve this common situation. When necessary, this
individual’s duty can be exchanged with that of another individual. This approach will
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help to eliminate the requirement of creating individuals with different architectures and
remove the need to search for the replacement of an individual that may be disabled for
some reason in a group. The swarm designed in thimanner will be a great team that makes
decisions on its own, provides high cooperation within itself, has strong coordination,
does not have problems in adding or subtracting individuals, and adapts quickly to task
changes. When required, the idea of dividing the swarm into parts and combining them
for a single task will speed up the inter-communication and will also be more effective
in accomplishing the task by sending or recruiting a team from within the swarm to the
other swarm.

In future works, it is planned to interpret and optimize the simulation data with deep
learning and optimization algorithms. Afterwards, it is planned to create a swarm robot
application in a virtual environment to perform the pre-defined tasks. The results and
experience obtained from this will be transferred to the designs in the real environment.
Smart agriculture applications are good candidate for the next stage of this study.
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