Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors
Abstract
:1. Introduction
2. Formulation
- (1)
- Explicitly update , , in the half-integer time step;
- (2)
- Explicitly update , in the integer time step;
- (3)
- Implicitly update and along the directions of fine details;
- (4)
- Explicitly update auxiliary variables inside PML regions.
3. Numerical Results and Experiments
3.1. Micro-Strip Filter for Sensors System
3.2. Remote Sensing Problem with Theory Resolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savelyev, D.; Kazanskiy, N. Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors 2021, 21, 1973. [Google Scholar] [CrossRef] [PubMed]
- Akib, T.B.A.; Mou, S.F.; Rahman, M.M.; Rana, M.M.; Islam, M.R.; Mehedi, I.M.; Mahmud, M.A.P.; Kouzani, A.Z. Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus. Sensors 2021, 21, 3491. [Google Scholar] [CrossRef] [PubMed]
- Theparod, T.; Harnsoongnoen, S. Narrow-Band Light-Emitting Diodes (LEDs) Effects on Sunflower (Helianthus annuus) Sprouts with Remote Monitoring and Recording by Internet of Things Device. Sensors 2022, 22, 1503. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, N.; Lei, J.; Wang, F.; Li, C. Modeling GPR Wave Propagation in Complex Underground Structures Using Conformal ADI-FDTD Algorithm. Appl. Sci. 2022, 12, 5219. [Google Scholar] [CrossRef]
- Wu, P.; Xie, Y.; Jiang, H.; Natsuki, T. Complex Envelope Approximate CN-PML Algorithm with Improved Absorption. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1521–1525. [Google Scholar] [CrossRef]
- Wu, S.; Dong, Y.; Su, F.; Liu, L.; Chen, X. Complex Envelope Approximate Crank-Nicolson Method and Its Open Boundary Implementation for Bandpass Problem. IEEE Access 2021, 9, 45095–45103. [Google Scholar] [CrossRef]
- Wu, P.; Wang, X.; Xie, Y.; Jiang, H.; Natsuki, T. Bandpass Simulation of Anisotropic Magnetized Ferrite Material with Alternating Direction Implicit Scheme in Open Region. IEEE Trans. Magn. 2022, 58, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Tan, J.; Guo, Q.; Su, Z.; Long, Y. A Parallel CE-LOD-FDTD Model for Instrument Landing System Signal Disturbance Analyzing. IEEE Trans. Antennas Propag. 2019, 67, 2503–2512. [Google Scholar] [CrossRef]
- Singh, G.; Ravi, K.; Wang, Q.; Ho, S.-T. CE-ADI-FDTD method for active photonic device simulation with semiconductor/solid-state media. In Proceedings of the 2012 IEEE Asia-Pacific Conference on Antennas and Propagation, Singapore, 27–29 August 2012; pp. 11–12. [Google Scholar]
- Jung, K.; Teixeira, F.L. CE-ADI-FDTD analysis of photonic crystals with a degenerate band edge (DBE). In Proceedings of the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 9–15 June 2007; pp. 4449–4452. [Google Scholar]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd ed.; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Tan, E.L. From Time-Collocated to Leapfrog Fundamental Schemes for ADI and CDI FDTD Methods. Axioms 2022, 11, 23. [Google Scholar] [CrossRef]
- Moradi, M.; Nayyeri, V.; Ramahi, O.M. An Unconditionally Stable Single-Field Finite-Difference Time-Domain Method for the Solution of Maxwell Equations in Three Dimensions. IEEE Trans. Antennas Propag. 2020, 68, 3859–3868. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Y.; Liang, W.; Wang, M.; Fan, C.; Zheng, H.; Li, E. Improved Leapfrog LOD-FDTD Method with Controlling Parameters. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 269–272. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhuo, J.; Lu, X.; Yuan, M.; Zhou, J.; Liu, Q.H. A Hybrid CN-FDTD-SPICE Solver for Field-Circuit Analyses in Low-Frequency Wideband Problems. IEEE Trans. Compon. Packag. Manufact. Technol. 2020, 10, 1721–1728. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J. Three-Dimensional Semi-Implicit FDTD Scheme for Calculation of shielding Effectiveness of Enclosure with Thin Slots. IEEE Trans. Electromagn. Compat. 2007, 49, 354–360. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J. Numerical Simulation Using HIE-FDTD Method to Estimate Various Antennas with Fine Scale Structures. IEEE Trans. Antennas Propag. 2007, 55, 3603–3612. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J. Three-Dimensional Dispersive Hybrid Implicit-Explicit Finite-Difference Time-Domain Method for Simulations of Graphene. Comput. Phys. Commun. 2016, 207, 211–216. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, X.; Wang, L. Stability and Numerical Dispersion Analysis of a 3D Hybrid Implicit-Explicit FDTD Method. IEEE Trans. Antennas Propag. 2008, 56, 3346–3350. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, B.; Shi, L.; Gao, C.; Chen, B. A Novel 3-D HIE-FDTD Method with One-Step Leapfrog Scheme. IEEE Trans. Micro. Theory Techn. 2014, 62, 1275–1283. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L. Machine-Learning-Based PML for the FDTD Method. IEEE Antennas Wire. Propag. Lett. 2019, 18, 192–196. [Google Scholar] [CrossRef]
- Berenger, J.P. Perfectly Matched Layer (PML) for Computational Electromagnetics; Morgan & Claypool: San Rafael, CA, USA, 2007. [Google Scholar]
- Li, J.; Wu, P. Unconditionally Stable Higher Order CNAD-PML for Left-Handed Materials. IEEE Trans. Antennas Propag. 2019, 67, 7156–7161. [Google Scholar] [CrossRef]
- Wu, P.Y.; Jiang, H.L.; Xie, Y.J.; Niu, L.Q. Three-Dimensional Higher Order PML Based on Alternating Direction Implicit Algorithm. IEEE Antennas Wire. Propag. Lett. 2019, 18, 2592–2596. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, J.; Jiao, Z.; Bai, G.; Xi, X. A 3-D Stochastic FDTD Algorithm for Wave Propagation in Isotropic Cold Plasma Medium Based on Bilinear Transform. IEEE Trans. Plasma Sci. 2019, 47, 173–178. [Google Scholar] [CrossRef]
- Jiang, H.L.; Cui, T.J. Efficient PML Implementation for Approximate CN-FDTD Method. IEEE Antennas Wire. Propag. Lett. 2019, 18, 698–701. [Google Scholar] [CrossRef]
- Giannopoulos, A. Higher-Order Convolution PML (CPML) for FDTD Electromagnetic Modeling. IEEE Trans. Antennas Propag. 2020, 68, 6226–6231. [Google Scholar] [CrossRef]
- Chen, L.; Ozakin, M.B.; Bagci, H. A Low-Storage PML Implementation within a High-order Discontinuous Galerkin Time-Domain Method. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1065–1066. [Google Scholar]
- Liu, J.; He, S.; Cheng, W. Pinpoint and Efficient DZT-based FDTD Implementations Using Optimal 2nd-order PML Truncation. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 897–902. [Google Scholar]
- Haolin, J.; Yongjun, X.; Peiyu, W.; Jianfeng, Z.; Liqiang, N. Unsplit-field higher-order nearly PML for arbitrary media in EM simulation. J. Syst. Eng. Electron. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Wang, M.; Zheng, H.; Li, E. Efficient Implementation of the CPML in 3-D Hybrid Implicit-Explicit FDTD Method. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar]
- Liu, Y.; Shi, L.; Chen, H.; Wang, J.; Lei, Q.; Duan, Y.; Zhang, Q.; Fu, S. One-Step Leapfrog LOD-FDTD Method with CPML for Periodic Structures. IEEE Antennas Wire. Propagat. Lett. 2019, 18, 9–13. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Sun, X.; Liu, Y. Implementation of CFS-PML for HIE-FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 381–384. [Google Scholar]
- Van Londersele, A.; De Zutter, D.; Ginste, D.V. A Collocated 3-D HIE-FDTD Scheme with PML. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 609–611. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, Y. Nearly PML for a Novel Four-Steps Weakly Conditionally Stable HIE-FDTD Method. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar]
- Wang, J.; Wang, J.; Zhou, B.; Wu, Q.; Gao, C.; Guo, F. HIE-FDTD Method with PML for 2-D Periodic Structures at Oblique Incidence. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 984–987. [Google Scholar] [CrossRef]
- Lei, Q.; Wang, J.; Shi, L. Modified HIE-FDTD Algorithm for 2-D Periodic Structures with Fine Mesh in Either Direction. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1455–1459. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, A.; Chen, J. Perfectly matched layer for hybrid implicit and explicit-FDTD method. In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Wu, P.; Yu, H.; Xie, Y.; Jiang, H.; Natsuki, T. Efficient Enhanced Hybrid Implicit-Explicit Procedure to Gyrotropic Plasma in Open Regions with Fine Geometry Details Along Single Direction. IEEE Access 2021, 9, 77079–77089. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Niu, P.; Feng, N. Novel implementation of the CFS-PML and its validation for dispersive media. In Proceedings of the 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, Beijing, China, 22–25 May 2011; pp. 422–425. [Google Scholar]
- Wu, P.; Xie, Y.; Jiang, H.; Natsuki, T. Modeling of Bandpass GPR Problem by HIE Procedure With Enhanced Absorption. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Li, Y.; Yu, G.; Ni, J. Parallel implementation and application of the higher-order FDTD with convolution PML. In Proceedings of the 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Beijing, China, 27–29 July 2016; pp. 1–2. [Google Scholar]
- Mohsin, A.S.M.; Salim, M.B. Probing the Plasmon Coupling, Quantum Yield, and Effects of Tip Geometry of Gold Nanoparticle Using Analytical Models and FDTD Simulation. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Akbar, S.; Agarwal, N.; Gupta, S. Elliptical hybrid cladding borosilicate photonic crystal fiber design for minimum chromatic dispersion. In Proceedings of the 2014 Eleventh International Conference on Wireless and Optical Communications Networks (WOCN), Vijayawada, India, 11–13 September 2014; pp. 1–4. [Google Scholar]
PML Algorithm | Addition/Subtraction | Multiplication/Division | Total Operators | ||
---|---|---|---|---|---|
Implicit | Explicit | Implicit | Explicit | ||
FDTD-PML | 0 | 60 | 0 | 42 | 102 |
FDTD-HPML | 0 | 90 | 0 | 78 | 168 |
HIE-PML | 40 | 54 | 36 | 28 | 158 |
LHIE-CPML | 36 | 54 | 32 | 28 | 150 |
CE-HIE-HPML | 66 | 72 | 54 | 36 | 228 |
CE-LHIE-HPML | 54 | 72 | 36 | 36 | 198 |
Proposed | 48 | 66 | 40 | 36 | 190 |
Point in Figure 2a,b | Specific Coordinate Location (x, y, z) | Point in Figure 2a,b | Specific Coordinate Location (x, y, z) |
---|---|---|---|
1 | (−9.7, −0.175, 0.005) | 2 | (−5.3, −0.175, 0.005) |
3 | (−3.4, 0.48, 0.005) | 4 | (−3.46, 0.59, 0.005) |
5 | (−4.4, 0.175, 0.005) | 6 | (−9.7, 0.175, 0.005) |
7 | (−4.7, −0.25, 0.005) | 8 | (−4.64, −0.25, 0.005) |
9 | (−3.3, 0.22, 0.005) | 10 | (−3.27, 0.18, 0.005) |
11 | (−1.9, 0.77, 0.005) | 12 | (−2.0, 0.93, 0.005) |
13 | (−3.1, −0.3, 0.005) | 14 | (−3, −0.45, 0.005) |
15 | (−1.64, 0.11, 0.005) | 16 | (−1.64, 0.11, 0.005) |
17 | (−3.1, 0.69, 0.005) | 18 | (−0.4, 0.88, 0.005) |
19 | (−3.07, −0.29, 0.005) | 20 | (−3, −0.45, 0.005) |
PML Algorithm | CFLN | Steps | Memory (GB) | Memory Increment (%) | Time (min) | Time Reduction (%) |
---|---|---|---|---|---|---|
FDTD-PML | 1 | 65,536 | 0.5 | - | 21.9 | - |
FDTD-HPML | 1 | 65,536 | 0.9 | 80 | 38.4 | −75.3 |
HIE-PML | 1 | 65,536 | 0.9 | 80 | 41.7 | −90.4 |
LHIE-CPML | 1 | 65,536 | 0.8 | 60 | 38.3 | −42.8 |
CE-HIE-HPML | 1 | 7282 | 1.4 | 180 | 24.0 | −9.5 |
CE-LHIE-HPML | 1 | 7282 | 1.3 | 160 | 22.1 | −9.0 |
CE-LHIE-CPML | 1 | 7282 | 1.1 | 120 | 18.9 | 13.7 |
HIE-PML | 8 | 8192 | 0.9 | 80 | 12.6 | 42.5 |
LHIE-CPML | 8 | 8192 | 0.8 | 60 | 10.3 | 53.0 |
CE-HIE-HPML | 8 | 911 | 1.4 | 180 | 4.6 | 79.0 |
CE-LHIE-HPML | 8 | 911 | 1.3 | 160 | 3.5 | 84.0 |
CE-LHIE-CPML | 8 | 911 | 1.1 | 120 | 2.9 | 86.8 |
PML Algorithm | CFLN | Steps | Memory (GB) | Memory Increment (%) | Time (min) | Time Reduction (%) |
---|---|---|---|---|---|---|
FDTD-PML | 1 | 65,536 | 0.4 | - | 4.6 | - |
FDTD-HPML | 1 | 65,536 | 0.8 | −100 | 10.2 | −152.4 |
HIE-PML | 1 | 65,536 | 0.8 | −100 | 13.7 | −197.8 |
LHIE-CPML | 1 | 65,536 | 0.7 | −75 | 10.9 | −137.0 |
CE-HIE-HPML | 1 | 7282 | 1.1 | −175 | 4.9 | −6.5 |
CE-LHIE-HPML | 1 | 7282 | 1.0 | −150 | 4.7 | −2.2 |
CE-LHIE-CPML | 1 | 7282 | 0.8 | −100 | 4.4 | 4.3 |
HIE-PML | 8 | 8192 | 0.8 | −100 | 2.7 | 45.7 |
LHIE-CPML | 8 | 8192 | 0.7 | −75 | 2.3 | 50.0 |
CE-HIE-HPML | 8 | 911 | 1.1 | −175 | 0.7 | 84.8 |
CE-LHIE-HPML | 8 | 911 | 1.0 | −150 | 0.6 | 87.0 |
CE-LHIE-CPML | 8 | 911 | 0.8 | −100 | 0.4 | 91.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xie, Y.; Jiang, H.; Wu, P. Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors. Sensors 2022, 22, 4445. https://doi.org/10.3390/s22124445
Wang Y, Xie Y, Jiang H, Wu P. Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors. Sensors. 2022; 22(12):4445. https://doi.org/10.3390/s22124445
Chicago/Turabian StyleWang, Yangjing, Yongjun Xie, Haolin Jiang, and Peiyu Wu. 2022. "Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors" Sensors 22, no. 12: 4445. https://doi.org/10.3390/s22124445
APA StyleWang, Y., Xie, Y., Jiang, H., & Wu, P. (2022). Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors. Sensors, 22(12), 4445. https://doi.org/10.3390/s22124445