Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications
Abstract
:1. Introduction
2. Metamaterial Absorber Design
2.1. Unit Cell Design and Absorption Calculation
2.2. Evaluation of MMA and Metamaterial Property Analysis
2.3. Equivalent Circuit Model
3. Results and Discussions
3.1. TE and TM Mode Analysis
3.2. Polarization Insensitivity
3.3. E-Field and H-Field Distributions
3.4. Sensing Applications
3.5. Measurement
4. Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, M. Design and measurement of a narrow band metamaterial absorber in terahertz range. Opt. Mater. 2020, 100, 109712. [Google Scholar] [CrossRef]
- Shahzad, W.; Hu, W.; Ali, Q.; Raza, H.; Abbas, S.M.; Ligthart, L.P. A Low-Cost Metamaterial Sensor Based on DS-CSRR for Material Characterization Applications. Sensors 2022, 22, 2000. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Lee, Y.U.; Posner, C.; Zhao, J.; Zhang, J.; Liu, Z. Imaging of cell morphology changes via metamaterial-assisted photobleaching microscopy. Nano Lett. 2021, 21, 1716–1721. [Google Scholar] [CrossRef]
- Fang, W.; Zhou, F.-k.; Wang, Y.-j.; Chen, P. Broadband, wide-angle, polarization-independent and lightweight low-scattering coding metamaterial based on stereo meta-atoms. Results Phys. 2021, 20, 103687. [Google Scholar] [CrossRef]
- Yang, Y.; Bi, Y.; Peng, L.; Yang, B.; Ma, S.; Chan, H.-C.; Xiang, Y.; Zhang, S. Veselago lensing with Weyl metamaterials. Optica 2021, 8, 249–254. [Google Scholar] [CrossRef]
- Misran, N.; Yusop, S.H.; Islam, M.T.; Ismail, M.Y. Analysis of parameterization substrate thickness and permittivity for concentric split ring square reflectarray element. J. Kejuruter. J. Eng. 2012, 23, 11–16. [Google Scholar]
- Liu, J.; Chen, W.; Ma, W.-Z.; Chen, Y.-S.; Deng, X.-C.; Zhuang, P.-P.; Ye, Q. Biaxial hyperbolic metamaterial THz broadband absorber utilizing anisotropic two-dimensional materials. Results Phys. 2021, 22, 103818. [Google Scholar] [CrossRef]
- Luo, T.; Jing, X.; Gan, H.; He, Y.; Li, C.; Hong, Z. A three-dimensional polarization independent invisibility cloak by using multiband zero refraction metamaterials. Laser Phys. 2021, 31, 116204. [Google Scholar] [CrossRef]
- Hakim, T.A.M.L.; Sahar, N.M.; Misran, N.; Mansor, M.F. Elliptical Slot Metasurface High Gain Microstrip Line Antenna for Sub-6 GHz 5G Wireless Communication. In Proceedings of the 2021 7th International Conference on Space Science and Communication (IconSpace), Kuala Lumpur, Malaysia, 23–24 November 2021; pp. 156–160. [Google Scholar]
- Alam, T.; Almutairi, A.F.; Samsuzzaman, M.; Cho, M.; Islam, M.T. Metamaterial array based meander line planar antenna for cube satellite communication. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Alam, T.; Islam, M.T.; Cho, M. Near-zero metamaterial inspired UHF antenna for nanosatellite communication system. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hakim, M.L.; Alam, T.; Almutairi, A.F.; Mansor, M.F.; Islam, M.T. Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Sol, J.; Smith, D.R.; Del Hougne, P. Meta-programmable analog differentiator. Nat. Commun. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Mishra, R.K.; Gupta, R.D.; Datar, S. Metamaterial Microwave Absorber (MMA) for Electromagnetic Interference (EMI) Shielding in X-Band. Plasmonics 2021, 16, 2061–2071. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Imani, M.F.; Smith, D.R.; del Hougne, P. Perfect Absorption in a Disordered Medium with Programmable Meta-Atom Inclusions. Adv. Funct. Mater. 2020, 30, 2005310. [Google Scholar] [CrossRef]
- Asadchy, V.S.; Faniayeu, I.A.; Ra’Di, Y.; Khakhomov, S.; Semchenko, I.; Tretyakov, S. Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption. Phys. Rev. X 2015, 5, 031005. [Google Scholar] [CrossRef]
- Mei, H.; Yang, W.; Yang, D.; Yao, L.; Yao, Y.; Chen, C.; Cheng, L. Metamaterial absorbers towards broadband, polarization insensitivity and tunability. Opt. Laser Technol. 2022, 147, 107627. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.; Zhang, J.; Sai, S.; Yuan, H.; Qu, S. The RCS reduction of microstrip antenna design based on multi-band metamaterial absorber. In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Edries, M.; Mohamed, H.A.; Hekal, S.S.; El-morsy, M.A.; Mansour, H.A. A Tri-band Metamaterial Absorber for Radar Cross Section Reduction. Int. J. Microw. Opt. Technol. 2021, 16, 184–191. [Google Scholar]
- Gunduz, O.; Sabah, C. Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comput. Electron. 2016, 15, 228–238. [Google Scholar] [CrossRef]
- Singh, R.K.; Gupta, A. A wrenched-square shaped polarization independent and wide angle stable ultra-thin metamaterial absorber for s-band, x-band and ku-band applications. AEU Int. J. Electron. Commun. 2021, 132, 153648. [Google Scholar] [CrossRef]
- Zhou, B.C.; Wang, D.H.; Ma, J.J.; Li, B.Y.; Zhao, Y.J.; Li, K.X. An ultrathin and broadband radar absorber using metamaterials. Waves Random Complex Media 2021, 31, 911–920. [Google Scholar] [CrossRef]
- Ri, C.-S.; Yun, H.-J.; Im, S.-J.; Han, Y.-H. Bandwidth analysis of microwave metamaterial absorber with a resistive frequency selective surface by using an equivalent circuit model. AEU Int. J. Electron. Commun. 2022, 148, 154160. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Soliman, M.S.; Sahar, N.M.; Baharuddin, M.H.; Almalki, S.H.; Islam, M.T. Polarization insensitive symmetrical structured double negative (DNG) metamaterial absorber for Ku-band sensing applications. Sci. Rep. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, S.; Zhao, J.; Liu, Z.; Dai, H. Design and analysis of a polarization-independent and incident angle insensitive triple-band metamaterial absorber. Phys. E Low Dimens. Syst. Nanostructures 2022, 138, 115131. [Google Scholar] [CrossRef]
- Shukoor, M.A.; Kumar, V.; Dey, S. Compact polarisation insensitive wide angular stable triple band absorber for RF energy harvesting, RCS reduction, and sensor applications. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22763. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Sabah, C. Microwave metamaterial absorber for sensing applications. Opto-Electron. Rev. 2017, 25, 318–325. [Google Scholar] [CrossRef]
- Dincer, F.; Karaaslan, M.; Colak, S.; Tetik, E.; Akgol, O.; Altıntas, O.; Sabah, C. Multi-band polarization independent cylindrical metamaterial absorber and sensor application. Mod. Phys. Lett. B 2016, 30, 1650095. [Google Scholar] [CrossRef]
- Hoque, A.; Tariqul Islam, M.; Almutairi, A.F.; Alam, T.; Jit Singh, M.; Amin, N. A polarization independent quasi-TEM metamaterial absorber for X and Ku band sensing applications. Sensors 2018, 18, 4209. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xia, H.; Xie, W.; Guo, Z.; Li, H.; Xie, D. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, J.-Y.; Xie, J. High sensitivity refractive index sensor based on metamaterial absorber. Prog. Electromagn. Res. M 2018, 71, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, J.; Cao, J.; Mao, B. Microwave metamaterial absorber for non-destructive sensing applications of grain. Sensors 2018, 18, 1912. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Lim, S. Review of recent metamaterial microfluidic sensors. Sensors 2018, 18, 232. [Google Scholar] [CrossRef] [Green Version]
- Prakash, D.; Gupta, N. Applications of metamaterial sensors: A review. Int. J. Microw. Wirel. Technol. 2022, 14, 19–33. [Google Scholar] [CrossRef]
- Ayhan, S.; Scherr, S.; Pahl, P.; Wälde, S.; Pauli, M.; Zwick, T. Radar-based high-accuracy angle measurement sensor operating in the K-band. IEEE Sens. J. 2014, 15, 937–945. [Google Scholar] [CrossRef]
- Li, Z.; Haigh, A.; Soutis, C.; Gibson, A.; Sloan, R. Microwaves sensor for wind turbine blade inspection. Appl. Compos. Mater. 2017, 24, 495–512. [Google Scholar] [CrossRef]
- Xu, R.; Xu, X.; Yang, B.-R.; Gui, X.; Qin, Z.; Lin, Y.-S. Actively logical modulation of MEMS-based terahertz metamaterial. Photonics Res. 2021, 9, 1409–1415. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen, M.M.; Almalki, S.H.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Shoji, T.; Mototsuji, A.; Balčytis, A.; Linklater, D.; Juodkazis, S.; Tsuboi, Y. Optical tweezing and binding at high irradiation powers on black-Si. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, Y.; Gu, P.; Feng, S.; Zhu, Y.; Tang, C.; Guo, Y.; Liu, Z.; Gao, F. Strong magnetic plasmon resonance in a simple metasurface for high-quality sensing. J. Lightwave Technol. 2021, 39, 4525–4528. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.-P.; Shih, Y.-H.; Chen, Y.-S.; Lin, X.-Y.; Liu, J.-H.; Huang, C.-Y. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.S. Design and analysis of a compact ultrathin polarization-and incident angle-independent triple band metamaterial absorber. Microw. Opt. Technol. Lett. 2020, 62, 1920–1929. [Google Scholar] [CrossRef]
- Deng, G.; Lv, K.; Sun, H.; Yang, J.; Yin, Z.; Li, Y.; Chi, B.; Li, X. An ultrathin, triple-band metamaterial absorber with wide-incident-angle stability for conformal applications at X and Ku frequency band. Nanoscale Res. Lett. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Zhao, G.; Bi, S.; Cui, Y. Study on the characteristics of a V-shaped metamaterial absorber and its application. AIP Adv. 2019, 9, 075016. [Google Scholar] [CrossRef] [Green Version]
- Xin, W.; Binzhen, Z.; Wanjun, W.; Junlin, W.; Junping, D. Design, fabrication, and characterization of a flexible dual-band metamaterial absorber. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Al-badri, K.S.L.; Abdulkarim, Y.I.; Alkurt, F.Ö.; Karaaslan, M. Simulated and experimental verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 450 diagonal slot structure. J. Electromagn. Waves Appl. 2021, 35, 1541–1552. [Google Scholar] [CrossRef]
- CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 21 December 2021).
- Kiani, S.; Rezaei, P.; Karami, M.; Sadeghzadeh, R.A. Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. IET Wirel. Sens. Syst. 2019, 9, 1–5. [Google Scholar] [CrossRef]
- Shang, S.; Yang, S.; Tao, L.; Yang, L.; Cao, H. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber. AIP Adv. 2016, 6, 075203. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Ling, K.; Kim, K.; Lim, S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Opt. Express 2015, 23, 5898–5906. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mehra, R. Printed Monopole Slot Antenna Inspired by Metamaterial Unit Cell for Wireless Applications. In Optical and Wireless Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 413–424. [Google Scholar]
- PathWave Advance Design System (ADS). Available online: https://www.keysight.com/sg/en/lib/resources/software-releases/pathwave-ads-2019.html (accessed on 21 December 2021).
- Thomas, T.; Boopalan, G.; Subramaniam, C. Wide-Angle, Polarization Insensitive, Ultrathin Tuneable Metamaterial Absorber for C-Band Application. In Futuristic Communication and Network Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 805–814. [Google Scholar]
- Nguyen, T.T.; Lim, S. Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.Q.H.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.; Bach, L.G. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. AIP Adv. 2020, 10, 035326. [Google Scholar] [CrossRef]
- Ali, H.O.; Al-Hindawi, A.M.; Abdulkarim, Y.I.; Karaaslan, M. New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for Radar applications. Opt. Commun. 2022, 503, 127457. [Google Scholar]
- Bait-Suwailam, M.M. Electromagnetic Field Interaction with Metamaterials; IntechOpen Limited: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.H.; Chen, W.; Cheng, Z.; Lu, G.-W.; Wang, J. Ultra-compact spot size converter based on digital metamaterials. Opt. Commun. 2022, 508, 127865. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Zhang, Y.; Zhai, Y.; Chu, X. Mid-Infrared Dual-Band Absorber Based on Nested Metamaterial Structure. J. Appl. Spectrosc. 2022, 88, 1324–1330. [Google Scholar] [CrossRef]
- Islam, M.T.; Hoque, A.; Almutairi, A.F.; Amin, N. Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application. Sensors 2019, 19, 169. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value (mm) |
---|---|
l | 10 |
a1 | 4 |
a2 | 7.07 |
a3 | 4.95 |
b1 | 2.0 |
b2 | 1.23 |
g1 | 0.35 |
g2 | 0.35 |
w | 0.35 |
Evaluation | Peak Absorption Frequency | Permittivity (Real) | Permeability (Real) | Refrective Index | Peak Absorption |
---|---|---|---|---|---|
Design 1 | 12.25 | 3.62 | −46.64 | −0.25 | 14% |
Design 2 | 12.30 | 2.54 | −56.32 | −2.57 | 37.84% |
Design 3 | 13.01 17.46 | −1.29 −4.44 | −4.64 −2.37 | −3.76 −4.71 | 96.37% 98.64% |
Design 4 | 12.62 17.42 19.85 | −0.39 −0.07 0.85 | 5.07 8.54 −2.44 | 1.88 3.82 −0.68 | 97.97% 98.23% 97.90% |
Final Design | 12.62 14.12 17.53 19.91 | −4.51 2.88 −2.67 −2.54 | −4.05 −0.93 −7.77 −6.18 | −4.63 1.43 −4.63 −4.09 | 97% 99.51% 99% 99.5% |
Frequency (GHz) | Permittivity (Real) | Permeability (Real) | Refractive Index (Real) | Absorption % | |||
---|---|---|---|---|---|---|---|
TM | TE | TM | TE | TM | TE | ||
12.62 | −0.11 | −4.51 | 5.68 | −4.05 | 2.14 | −4.63 | 97% |
14.12 | −3.81 | 2.88 | −3.76 | −0.93 | −3.81 | 1.43 | 99.51% |
17.53 | −0.13 | −2.67 | −2.22 | −7.77 | −1.04 | −4.63 | 99% |
19.91 | −0.85 | −2.54 | −1.59 | −6.18 | −0.29 | −4.09 | 99.5% |
Ref. | MPA | Size | Substrate | Frequency Band | Resonant Frequency | Absorption % | Polarization Insensitivity | Application | ||
---|---|---|---|---|---|---|---|---|---|---|
Simulated | Measured | Simulated | Measured | |||||||
[13] | CSRR | 10 × 10 × 1.6 | FR-4 | K | 21.6 24.04 | 21.55 N/A | 99.9% 99.9% | 99.68% N/A | Yes | Absorber and sensor |
[14] | Metaprogrammable analog differentiation | -- | -- | C | 5.05-5.4 | 5.05-5.4 | ≈100% | ≈100% | N/A | Absorber and analog differentiator |
[24] | Wrenched square shape | 10.4 × 10.4 × 1 | FR-4 | S, X, Ku | 3.2 5.32 11.15 16.73 | 3.43 5.18 11.1 16.69 | 95.75% 95.93% 97.69% 95.64% | 94.56% 96.41% 97.98% 96.67% | Yes | Absorber |
[45] | SSRR | 10 × 10 × 1 | FR-4 | S, X, Ku | 3.4, 9.6, 13 | ≈3.3 9.6 ≈12.9 | 99.6, 99.1, 99.1 | 99.5% ≈95% 99% | Yes | Absorber |
[46] | Eight identical 7-shapes | 8 × 8 × 0.4 | polyimide | X, Ku | 8.5, 13.5, 17 | 8.7 14.1 17.6 | 99.9% 99.5% 99.9% | 96% 97% 94% | Absorber | |
[47] | V-shaped | 8 × 8 × 1.6 | FR-4 | Ku, K | 15.52, 27.24 | 15.6 N/A | 98.38% 90.7% | ≈96% N/A | No | Absorber |
[48] | T-shaped | 8.5 × 8.5 × 0.2403 | polyimide | Ku, K | 16.77 30.92 | 16.85 30.79 | 98.7% 99.3% | 98.6% 96.2% | No | Absorber |
[49] | Diagonal slot patch | 16 × 16 × 1.6 | FR-4 | Ku | 12.45 14.18 | 12.31 13.97 | 99.73% 99.87% | 99% 99% | No | Absorber |
[27] | Fourfold resonator | 9 × 9 × 1.6 | FR-4 | Ku | 13.62 16.30 | 13.6 16.5 | 99.99% 99.99% | 99.9% 99% | Yes | Absorber and sensor |
Proposed | SSRR | 10 × 10 × 1.6 | FR-4 | Ku, K | 12.62 14.12, 17.53, 19.91 | 12.4 14.11 17.56 20.1 | 97% 99.51% 99% 99.5% | 98.4% 97.6% 93% 96.6 | Yes | Absorber and sensor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakim, M.L.; Alam, T.; Islam, M.T.; Baharuddin, M.H.; Alzamil, A.; Islam, M.S. Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications. Sensors 2022, 22, 4489. https://doi.org/10.3390/s22124489
Hakim ML, Alam T, Islam MT, Baharuddin MH, Alzamil A, Islam MS. Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications. Sensors. 2022; 22(12):4489. https://doi.org/10.3390/s22124489
Chicago/Turabian StyleHakim, Mohammad Lutful, Touhidul Alam, Mohammad Tariqul Islam, Mohd Hafiz Baharuddin, Ahmed Alzamil, and Md. Shabiul Islam. 2022. "Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications" Sensors 22, no. 12: 4489. https://doi.org/10.3390/s22124489
APA StyleHakim, M. L., Alam, T., Islam, M. T., Baharuddin, M. H., Alzamil, A., & Islam, M. S. (2022). Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications. Sensors, 22(12), 4489. https://doi.org/10.3390/s22124489