Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Chemical Analysis
2.3. Attribute Analysis
2.3.1. Environmental Factor Selection
2.3.2. Data Pre-Processing (Gaussian Anamorphosis)
2.3.3. Multivariate Factorial Kriging Analysis
3. Results
3.1. Soil Pollution Characteristics and Its Relations with Environmental Factors
3.2. LMC Fitting Results
3.3. Interrelationships and Drivers of Soil Heavy Metals at Multiple Scales
3.4. Cokriging Maps for Spatial Components
4. Discussion
4.1. General Patterns of Soil Heavy Metal Pollution
4.2. Multi-Scale Variation of Soil Pollution
4.3. Scale-Dependent Drivers of Spatial Variations in Soil Pollution
4.4. Implications for Soil Pollution Management at Multiple Scales
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Sun, G.; Wu, Z.; Zhong, H.; Wang, R.; Liu, X.; Guo, Z.; Cheng, J. Soil physiochemical properties and landscape patterns control trace metal contamination at the urban-rural interface in southern China. Environ. Pollut. 2019, 250, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, X.; Zhong, T. Pollution and health risk assessment of heavy metals in urban soil in China. Hum. Ecol. Risk Assess. 2016, 22, 424–434. [Google Scholar] [CrossRef]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.B.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.Y.; Fang, G.L.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Woszczyk, M.; Spychalski, W.; Boluspaeva, L. Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan-implications for the assessment of environmental quality. Environ. Monit. Assess. 2018, 190, 1–16. [Google Scholar] [CrossRef]
- Yuswir, N.S.; Praveena, S.M.; Aris, A.Z.; Ismail, S.N.S.; De Burbure, C.; Hashim, Z. Heavy Metal Contamination in Urban Surface Soil of Klang District (Malaysia). Soil Sediment Contam. 2015, 24, 865–881. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, K.; Li, Y.; Zhou, Y. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China. Environ. Sci. Pollut. Res. 2016, 23, 14957–14967. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Wu, Z.; Cheng, J. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ. Pollut. 2015, 206, 264–274. [Google Scholar] [CrossRef]
- Benamghar, A.; Jaime Gomez-Hernandez, J. Factorial kriging of a geochemical dataset for heavy-metal spatial-variability characterization. Environ. Earth Sci. 2014, 71, 3161–3170. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Guo, Y.; Wang, W.; Hao, S. Spatial variation of soil quality and pollution assessment of heavy metals in cultivated soils of Henan Province, China. Chem. Spec. Bioavail. 2014, 26, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.H.; Khanam, D.; Adyel, T.M.; Islam, M.S.; Ahsan, M.A.; Akbor, M.A. Assessment of Heavy Metal Contamination of Agricultural Soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of Seasonal Variation and Indices. Appl. Sci. 2012, 2, 584–601. [Google Scholar] [CrossRef] [Green Version]
- Weissmannova, D.H.; Pavlovsky, J.; Chovanec, P. Heavy metal Contaminations of Urban soils in Ostrava, Czech Republic: Assessment of Metal Pollution and using Principal Component Analysis. Int. J. Environ. Res. 2015, 9, 683–696. [Google Scholar]
- Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, F.; Wu, Z.; Cheng, J. Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression. Appl. Geogr. 2017, 82, 101–114. [Google Scholar] [CrossRef]
- Li, C.; Sanchez, G.M.; Wu, Z.; Cheng, J.; Zhang, S.; Wang, Q.; Li, F.; Sun, G.; Meentemeyer, R.K. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environ. Pollut. 2020, 260, 114075. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Shao, M.-A.; Wang, Y.-Q. Scale-dependent correlations between soil properties and environmental factors across the Loess Plateau of China. Soil Res. 2013, 51, 112–123. [Google Scholar] [CrossRef]
- Matheron, G. Pour une Analyse Krigeante de Données Régionalisées; Note N-732 du Centre de Géostatistique; Ecole des Mines de Paris: Fontainebleau, France, 1982. [Google Scholar]
- Wackernagel, H. Geostatistical techniques for interpreting multivariate spatial information. In Quantitative Analysis of Mineral and Energy Resources; Chung, C.F., Fabbri, A.G., Sinding-Larsen, R.D., Eds.; Reidel Publishing Company: Dordrecht, The Nertherland, 1988; pp. 393–409. [Google Scholar]
- Goovaerts, P. Factorial kriging analysis-a useful tool for exploring the structure of multivariate spatial soil information. J. Soil Sci. 1992, 43, 597–619. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Guagliardi, I.; Tarvainen, T.; Jarva, J. A multivariate approach to study the geochemistry of urban topsoil in the city of Tampere, Finland. J. Geochem. Explor. 2017, 181, 191–204. [Google Scholar] [CrossRef]
- Du, C.; Liu, E.; Chen, N.; Wang, W.; Gui, Z.; He, X. Factorial kriging analysis and pollution evaluation of potentially toxic elements in soils in a phosphorus-rich area, South Central China. J. Geochem. Explor. 2017, 175, 138–147. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, J. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. J. Hazard. Mater. 2013, 261, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Nanos, N.; Grau, J.M.; Gil, L.; Lopez-Arias, M. Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 2008, 70, 1085–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Bureau of Statistics. China City Staitistical Yearbook; China Statistics Press: Beijing, China, 2017. (In Chinese)
- Sha, Q.E.; Lu, M.; Huang, Z.; Yuan, Z.; Jia, G.; Xiao, X.; Wu, Y.; Zhang, Z.; Li, C.; Zhong, Z.; et al. Anthropogenic atmospheric toxic metals emission inventory and its spatial characteristics in Guangdong province, China. Sci. Total Environ. 2019, 670, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.R.; Morvan, X.; Saby, N.P.A.; Cances, B.; Ponthieu, M.; Gommeaux, M.; Marin, B. Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a secondary lead smelter. Environ. Sci. Pollut. Res. 2016, 23, 15164–15174. [Google Scholar] [CrossRef] [PubMed]
- CNEMC-China Environmental Monitoring Center. The Background Values of Chinese Soils; Environmental Science Press of China: Beijing, China, 1990. (In Chinese)
- Chen, D.; Xie, Z.; Zhang, Y.; Luo, X.; Guo, Q.; Yang, J.; Liang, Y. Source Apportionment of Soil Heavy Metals in Guangzhou Based on the PCA/APCS Model and Geostatistics. Ecol. Environ. Sci. 2016, 25, 1014–1022. (In Chinese) [Google Scholar]
- Chen, H.Z.; Gong, C.S.; Li, W.L.; Li, X.K.; Peng, X.Y.; Zhan, Q.J. Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Guangzhou. J. Environ. Health 2010, 27, 700–703. [Google Scholar]
- Esmaeili, A.; Moore, F.; Keshavarzi, B.; Jaafarzadeh, N.; Kermani, M. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena 2014, 121, 88–98. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221, 82–90. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Mo, C.H.; Li, H.Q.; Lu, H.; Zeng, Q.Y.; Li, Y.W.; Wu, X.L. Heavy metal contamination of urban soils and dusts in Guangzhou, South China. Environ. Monit. Assess. 2013, 185, 1095–1106. [Google Scholar] [CrossRef]
- Nanos, N.; Rodriguez Martin, J.A. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Kasimov, N.S.; Vlasov, D.V. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils. Eurasian Soil Sci. 2015, 48, 476–492. [Google Scholar] [CrossRef]
- Liu, R.; Wang, M.; Chen, W.; Peng, C. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ. Pollut. 2016, 210, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, I.A.; Gabiana, C.C.; Dumo, J.R.E.; Salmo, S.G.; Guzman, M.; Valera, N.S.; Espiritu, E.Q. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environ. Monit. Assess. 2017, 189, 1–15. [Google Scholar] [CrossRef]
- Yang, G.Y.; Zhang, T.B.; Wan, H.F.; Luo, W.; Gao, Y.X. Spatial distribution and sources of heavy metal pollution of agricultural soils in the typical areas of Guangdong province, China. Soils 2007, 39, 387–392. (In Chinese) [Google Scholar]
- Zhang, C.S.; Wang, L.J. Multi-element geochemistry of sediments from the Pearl River system, China. Appl. Geochem. 2001, 16, 1251–1259. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Peng, C.; Ouyang, Z.; Wang, M.; Chen, W.; Li, X.; Crittenden, J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environ. Pollut. 2013, 178, 426–432. [Google Scholar] [CrossRef]
- Figueiredo, B.R.; De Campos, A.B.; Da Silva, R.; Hoffman, N.C. Mercury sink in Amazon rainforest: Soil geochemical data from the Tapajos National Forest, Brazil. Environ. Earth Sci. 2018, 77, 1–7. [Google Scholar] [CrossRef]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef]
- Stille, P.; Pourcelot, L.; Granet, M.; Pierret, M.C.; Gueguen, F.; Perrone, T.; Morvan, G.; Chabaux, F. Deposition and migration of atmospheric Pb in soils from a forested silicate catchment today and in the past (Strengbach case): Evidence from Pb-210 activities and Pb isotope ratios. Chem. Geol. 2011, 289, 140–153. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Kasimov, N.S.; Vlasov, D.V. Impact of Geochemical Barriers on the Accumulation of Heavy Metals in Urban Soils. Dokl. Earth Sci. 2014, 458, 1149–1153. [Google Scholar] [CrossRef]
- Milenkovic, B.; Stajic, J.M.; Gulan, L.J.; Zeremski, T.; Nikezic, D. Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environ. Sci. Pollut. Res. 2015, 22, 16732–16741. [Google Scholar] [CrossRef]
- Frid, A.S.; Borisochkina, T.I. Mobility of Heavy Metals in Strongly Polluted Soils near the Severonikel Plant (Murmansk Oblast, Russia). Eurasian Soil Sci. 2020, 53, 1322–1331. [Google Scholar] [CrossRef]
- Fu, Q.L.; Weng, N.Y.; Fujii, M.; Zhou, D.M. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. Chemosphere 2018, 194, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.P.; Machmuller, M.B.; Wang, Z.Q.; Li, X.D.; He, W.X.; Cotrufo, M.F.; Shen, W.J. Temperature enhances the affinity of soil alkaline phosphatase to Cd. Chemosphere 2018, 196, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.W.; Jenerette, G.D.; Bain, D.J. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils. Environ. Pollut. 2015, 197, 1–12. [Google Scholar] [CrossRef]
- Ravankhah, N.; Mirzaei, R.; Masoum, S. Spatial Eco-Risk Assessment of Heavy Metals in the Surface Soils of Industrial City of Aran-o-Bidgol, Iran. Bull. Environ. Contam. Toxicol. 2016, 96, 516–523. [Google Scholar] [CrossRef]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631, 942–950. [Google Scholar] [CrossRef]
- Gil, C.; Boluda, R.; Martin, J.A.R.; Guzman, M.; del Moral, F.; Ramos-Miras, J. Assessing soil contamination and temporal trends of heavy metal contents in greenhouses on semiarid land. Land Degrad. Dev. 2018, 29, 3344–3354. [Google Scholar] [CrossRef]
- Nedelescu, M.; Baconi, D.; Neagoe, A.; Lordache, V.; Stan, M.; Constantinescu, P.; Ciobanu, A.M.; Vardavas, A.I.; Vinceti, M.; Tsatsakis, A.M. Environmental metal contamination and health impact assessment in two industrial regions of Romania. Sci. Total Environ. 2017, 580, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Guedron, S.; Grangeon, S.; Jouravel, G.; Charlet, L.; Sarret, G. Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): Contribution of canopy uptake. Sci. Total Environ. 2013, 445, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Jiang, X.; Jiang, H.; Sha, Q.; Li, X.; Jia, G.; Cheng, J.; Zheng, J. Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China. Sensors 2022, 22, 4496. https://doi.org/10.3390/s22124496
Li C, Jiang X, Jiang H, Sha Q, Li X, Jia G, Cheng J, Zheng J. Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China. Sensors. 2022; 22(12):4496. https://doi.org/10.3390/s22124496
Chicago/Turabian StyleLi, Cheng, Xinyu Jiang, Heng Jiang, Qinge Sha, Xiangdong Li, Guanglin Jia, Jiong Cheng, and Junyu Zheng. 2022. "Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China" Sensors 22, no. 12: 4496. https://doi.org/10.3390/s22124496
APA StyleLi, C., Jiang, X., Jiang, H., Sha, Q., Li, X., Jia, G., Cheng, J., & Zheng, J. (2022). Environmental Controls to Soil Heavy Metal Pollution Vary at Multiple Scales in a Highly Urbanizing Region in Southern China. Sensors, 22(12), 4496. https://doi.org/10.3390/s22124496