A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement †
Abstract
:1. Introduction
2. Theoretical Principle of the SMS Sensor Submitted to Strain
3. Simulation Analysis and Experimental Setup
4. Results and Discussion
4.1. Without Supports
4.2. With Support
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amaro, R.L.; Drexler, E.S.; Slifka, A.J. Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen. Int. J. Fatigue 2014, 62, 249–257. [Google Scholar] [CrossRef]
- Wasim, M.; Djukic, M.B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. 2022, 100, 104467. [Google Scholar] [CrossRef]
- Yanga, Y.; Hongb, C.; Abrob, Z.A.; Wanga, L.; Yifan, Z. A new Fiber Bragg Grating sensor based circumferential strain sensorfabricated using 3D printing method. Sens. Actuators A Phys. 2019, 295, 663–670. [Google Scholar] [CrossRef]
- Ren, L.; Jia, Z.G.; Li, H.N.; Song, G. Design and experimental study on FBG hoop-strain sensor in pipeline monitoring. Opt. Fiber Technol. 2014, 20, 15–23. [Google Scholar] [CrossRef]
- Cohen, M.; Goldhamer, D.A.; Fereres, E.; Girona, J.; Mata, M. Assessment of peach tree responses to irrigation water ficits by continuous monitoring of trunk diameter changes. J. Hortic. Sci. Biotechnol. 2001, 76, 55–60. [Google Scholar] [CrossRef]
- Martín-Palomo, M.; Corell, M.; Girón, I.; Andreu, L.; Trigo, E.; López-Moreno, Y.; Torrecillas, A.; Centeno, A.; Pérez-López, D.; Moriana, A. Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons. Agric. Water Manag. 2019, 218, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–6. [Google Scholar] [CrossRef]
- Corella, M.; Martín-Palomoa, M.; Girónb, I.; Andreua, L.; Galindoa, A.; Centenod, A.; Pérez-Lópezd, D.; Morianaa, A. Stem water potential-based regulated deficit irrigation scheduling for olive table trees. Agric. Water Manag. 2020, 242, 106418. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E. Irrigation scheduling of almond trees with trunk diameter sensors. Irrig. Sci. 2004, 23, 11–19. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, H.; Fan, X.; Zhou, M.; Liu, F.; Liu, C.; Wei, Z.; Wang, F.; Tan, C. Optical fiber temperature sensor based on a Mach–Zehnder interferometer with single-mode-thin-core-single-mode fiber structure. Rev. Sci. Instruments 2020, 91, 15006. [Google Scholar] [CrossRef]
- Gao, X.; Ning, T.; Pei, L.; Zheng, J.; Li, J.; Wang, J.; Wang, C.; Xie, C. Simultaneous measurement of strain and temperature based on no-core fiber and two-core fiber. Sens. Actuators A Phys. 2021, 331, 113013. [Google Scholar] [CrossRef]
- Hatta, A.M.; Semenova, Y.; Wu, Q.; Farrell, G. Strain sensor based on a pair of single-mode– multimode–single-mode fiber structures in a ratiometric power measurement scheme. Appl. Opt. 2010, 49, 536–541. [Google Scholar] [CrossRef]
- André, R.M.; Biazoli, C.R.; Silva, S.O.; Marques, M.B.; Cordeiro, C.M.B.; Frazão, O. Multimode interference in tapered single mode-multimode-single mode fiber structures for strain sensing applications. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 October 2012; Liao, Y., Jin, W., Sampson, D.D., Yamauchi, R., Chung, Y., Nakamura, K., Rao, Y., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8421, pp. 576–579. [Google Scholar]
- Bai, Y.; Zeng, J.; Huang, J.; Yan, Z.; Wu, Y.; Li, K.; Wu, Q.; Liang, D. Air pressure measurement of circular thin plate using optical fiber multimode interferometer. Measurement 2021, 182, 109784. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Giraldi, M.T.M.R.; de Sousa, M.J.; Costa, J.C.W.A.; Gouveia, C.; Jorge, P.; Franco, M.A.R. Curvature and Vibration Sensing Based on Core Diameter Mismatch Structures. IEEE Trans. Instrum. Meas. 2016, 65, 2120–2128. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.J.R.; Baldovino-Pantaleón, O.; Cruz, R.F.D.; Zamarreño, C.R.; Matías, I.R.; May-Arrioja, D.A. Gasohol Quality Control for Real Time Applications by Means of a Multimode Interference Fiber Sensor. Sensors 2014, 14, 17818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kechagias, J.; Fountas, N.; Ninikas, K.; Petousis, M.; Vidakis, N.; Vaxevanidis, N. Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Mater. Manuf. Process. 2021, 1–11. [Google Scholar] [CrossRef]
- Morshed, A.H.; Atta, R.; Packirisamy, M. Fluidic Flow Measurement Using Single Mode–Multimode–Single Mode Optical Fiber Sensor. IEEE Sens. J. 2021, 21, 13316–13326. [Google Scholar] [CrossRef]
- Costa, J.; Franco, M.A.; Serrão, V.A.; Cordeiro, C.M.; Giraldi, M.T. Macrobending SMS fiber-optic anemometer and flow sensor. Opt. Fiber Technol. 2019, 52, 101981. [Google Scholar] [CrossRef]
- Ruan, J. Fiber curvature sensor based on concave-heterotypic cascaded fiber Sagnac interferometer. Microw. Opt. Technol Lett. 2020, 62, 3645–3649. [Google Scholar] [CrossRef]
- Li, X.; Chen, N.; Zhou, X.; Gong, P.; Wang, S.; Zhang, Y.; Zhao, Y. A review of specialty fiber biosensors based on interferometer configuration. J. Biophotonics 2021, 14, e202100068. [Google Scholar] [CrossRef]
- Wu, Q.; Qu, Y.; Liu, J.; Yuan, J.; Wan, S.P.; Wu, T.; He, X.D.; Liu, B.; Liu, D.; Ma, Y.; et al. Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sens. J. 2021, 21, 12734–12751. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Köhler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in Optical Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sens. J. 2021, 21, 132–142. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Thomas, P.J.; Hellevang, J.O. A Review of Methods for Fibre-Optic Distributed Chemical Sensing. Sensors 2019, 19, 2876. [Google Scholar] [CrossRef] [Green Version]
- Roriz, P.; Silva, S.; Frazão, O.; Novais, S. Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors 2020, 20, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markvart, A.A.; Liokumovich, L.B.; Ushakov, N.A. Simultaneous measurement of strain and bend with a fiber optic SMS structure. In Optical Fiber Sensors, Proceedings of the Optical Fiber Sensors Conference, Washington, DC, USA, 8–12 June 2020, Special ed.; Optica Publishing Group: Washington, DC, USA, 2020; p. W4.57. [Google Scholar]
- Fernandes, C.S.; Rocco Giraldi, M.T.M.; de Sousa, M.J.; Costa, J.C.W.A.; Rodrigues, L.D.; da Silva, F.R.B.; Ferreira, G.F.; dos Reis, R.A.N. Strain sensing based on a core diameter mismatch structure. Microw. Opt. Technol. Lett. 2019, 61, 2013–2019. [Google Scholar] [CrossRef]
- Hatta, A.M.; Permana, H.E.; Setijono, H.; Kusumawardhani, A.; Sekartedjo, H. Strain measurement based on SMS fiber structure sensor and OTDR. Microw. Opt. Technol. Lett. 2013, 55, 2576–2578. [Google Scholar] [CrossRef]
- Liu, Z.b.; Li, Y.; Liu, Y.; Tan, Z.W.; Jian, S. A Static Axial Strain Fiber Ring Cavity Laser Sensor Based on Multi-Modal Interference. IEEE Photonics Technol. Lett. 2013, 25, 2050–2053. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Lu, P.; Sun, Q.; Yang, W.; Wang, S.; Liu, L.; Ni, W. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure. Opt. Commun. 2017, 405, 416–420. [Google Scholar] [CrossRef]
- Panneerselvam, T.; Raghuraman, S.; Krishnan, N.V. Investigating Mechanical Properties of 3D-Printed Polyethylene Terephthalate Glycol Material Under Fused Deposition Modeling. J. Inst. Eng. (India) Ser. C 2021, 102, 375–387. [Google Scholar] [CrossRef]
- Cheetham, P.; Nowell, R.; Al-Taie, A.; McAuley, J.; Kim, C.; Graber, L.; Pamidi, S. Exploration of Additive Manufacturing for HTS Cable Components for Electric Aircrafts. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Cianci, C.; Pappalettera, G.; Renna, G.; Casavola, C.; Laurenziello, M.; Battista, G.; Pappalettere, C.; Ciavarella, D. Mechanical Behavior of PET-G Tooth Aligners under Cyclic Loading. Front. Mater. 2020, 7, 104. [Google Scholar] [CrossRef]
- He, X.L.; Wang, Z.Q.; Wang, D.H.; Wang, X.B.; Liu, Y.; Jiang, F.C.; Yuan, L.B. Optical Fiber Sensor for Strain Monitoring of Metallic Device Produced by Very High-Power Ultrasonic Additive Manufacturing. IEEE Sens. J. 2019, 19, 10680–10685. [Google Scholar] [CrossRef]
- Camposeo, A.; Persano, L.; Farsari, M.; Pisignano, D. Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Adv. Opt. Mater. 2019, 7, 1800419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.; Zhang, Y.; Borana, L. Design, Fabrication and Testing of a 3D Printed FBG Pressure Sensor. IEEE Access 2019, 7, 38577–38583. [Google Scholar] [CrossRef]
- Hong, C.; Yuan, Y.; Yang, Y.; Zhang, Y.; Abro, Z.A. A simple FBG pressure sensor fabricated using fused deposition modelling process. Sens. Actuators A Phys. 2019, 285, 269–274. [Google Scholar] [CrossRef]
- Munghen, D.; Iacobellis, V.; Behdinan, K. Incorporation of fiber Bragg grating sensors in additive manufactured Acrylonitrile butadiene styrene for strain monitoring during fatigue loading. Int. J. Fatigue 2022, 154, 106485. [Google Scholar] [CrossRef]
- Nascimento, M.; Inácio, P.; Paixão, T.; Camacho, E.; Novais, S.; Santos, T.G.; Fernandes, F.M.B.; Pinto, J.L. Embedded Fiber Sensors to Monitor Temperature and Strain of Polymeric Parts Fabricated by Additive Manufacturing and Reinforced with NiTi Wires. Sensors 2020, 20, 1122. [Google Scholar] [CrossRef] [Green Version]
- Zou, R.; Liang, X.; Cao, R.; Li, S.; To, A.; Ohodnicki, P.; Buric, M.; Chen, K. Optical Fiber Sensor-Fused Additive Manufacturing and Its Applications in Residual Stress Measurements. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2017; Optica Publishing Group: Washungton, DC, USA, 2017; p. AW1B.2. [Google Scholar]
- Schuler, H.; Müller, M. Fatigue Measurements in an Existing Highway Concrete Bridge. Sensors 2022, 22, 2868. [Google Scholar] [CrossRef]
- Wang, Q.; Farrell, G.; Yan, W. Investigation on single-mode-multimode-single-mode fiber structure. J. Light. Technol. 2008, 26, 512–519. [Google Scholar] [CrossRef]
- Xiao, D.; Shao, L.; Wang, C.; Wang, G.; Yue, Y.; Shum, P.P. A Curvature Sensor with High Resolution Based on SMS-Structure and Microwave Photonic Filter. In Proceedings of the 2021 International Topical Meeting on Microwave Photonics (MWP), Online, 15–17 November 2021; pp. 1–3. [Google Scholar]
- Mao, L.; Lu, P.; Lao, Z.; Liu, D. In-fiber Mach–Zehnder interferometer based on multi-mode fiber and up-taper for curvature sensing. Optik 2014, 125, 5108–5111. [Google Scholar] [CrossRef]
- Yin, B.; Li, Y.; Liu, Z.; Feng, S.; Bai, Y.; Xu, Y.; Jian, S. Investigation on a compact in-line multimode-single-mode-multimode fiber structure. Opt. Laser Technol. 2016, 80, 16–21. [Google Scholar] [CrossRef]
- Wu, Q.; Semenova, Y.; Wang, P.; Farrell, G. High sensitivity SMS fiber structure based refractometer—Analysis and experiment. Opt. Express 2011, 19, 7937–7944. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Jian, S. Multimode interference refractive index sensor based on coreless fiber. Photonic Sens. 2014, 4, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- li, E. Temperature compensation of multimode-interference based fiber devices. Opt. Lett. 2007, 32, 2064–2066. [Google Scholar] [CrossRef] [PubMed]
- Petersson, L.; Kvien, I.; Oksman, K. Structure and thermal properties of poly(lactic acid)/cellulosewhiskers nanocomposite materials. Compos. Sci. Technol. 2007, 67, 2535–2544. [Google Scholar] [CrossRef]
- Vouyiouka, S.; Papaspyrides, C. 4.34—Mechanistic Aspects of Solid-State Polycondensation. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 857–874. [Google Scholar]
- Travieso-Rodriguez, J.; Jerez-Mesa, R.; Llumà, J.; Gomez-Gras, G.; Casadesus, O. Comparative study of the flexural properties of ABS, PLA and a PLA—Wood composite manufactured through fused filament fabrication. Rapid Prototyp. J. 2021, 27, 81–92. [Google Scholar] [CrossRef]
Structure | Material | Young’s Modulus (GPa) | Poisson Ratio | Density (kg/m) |
---|---|---|---|---|
Optical sensor | Silica | 66.3 | 0.15 | 2.7 × 10 |
Adhesive | Cyanoacrylate | 1.26 | 0.36 | 1.07 × 10 |
Piece | PLA | 3.9 | 0.33 | 1.24 × 10 |
DS (mm) | FP (mm) | Sensitivity (nm/mm) | Dynamic Range (mm) | |
---|---|---|---|---|
80 | 5 | −0.876 | 5 | 0.9909 |
80 | 10 | −0.3892 | 4 | 0.9954 |
80 | 15 | −0.768 | 2 | 0.9811 |
110 | 5 | −0.22 | 8 | 0.9979 |
110 | 10 | −0.2284 | 3 | 0.9888 |
110 | 15 | −0.691 | 3.5 | 0.9892 |
80 with support | 5 | −6.4157 | 7.0 | 0.9867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, V.H.R.; Caldas, P.; Giraldi, M.T.R.; Fernandes, C.S.; Frazão, O.; Costa, J.C.W.A.; Santos, J.L. A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement. Sensors 2022, 22, 4560. https://doi.org/10.3390/s22124560
Cardoso VHR, Caldas P, Giraldi MTR, Fernandes CS, Frazão O, Costa JCWA, Santos JL. A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement. Sensors. 2022; 22(12):4560. https://doi.org/10.3390/s22124560
Chicago/Turabian StyleCardoso, Victor H. R., Paulo Caldas, Maria Thereza R. Giraldi, Cindy Stella Fernandes, Orlando Frazão, João C. W. Albuquerque Costa, and José Luís Santos. 2022. "A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement" Sensors 22, no. 12: 4560. https://doi.org/10.3390/s22124560
APA StyleCardoso, V. H. R., Caldas, P., Giraldi, M. T. R., Fernandes, C. S., Frazão, O., Costa, J. C. W. A., & Santos, J. L. (2022). A Simple Optical Sensor Based on Multimodal Interference Superimposed on Additive Manufacturing for Diameter Measurement. Sensors, 22(12), 4560. https://doi.org/10.3390/s22124560