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Abstract: Job Shop Scheduling is currently one of the most addressed planning and scheduling
optimization problems in the field. Due to its complexity, as it belongs to the NP-Hard class of
problems, meta-heuristics are one of the most commonly used approaches in its resolution, with
Genetic Algorithms being one of the most effective methods in this category. However, it is well
known that this meta-heuristic is affected by phenomena that worsen the quality of its population,
such as premature convergence and population concentration in regions of local optima. To cir-
cumvent these difficulties, we propose, in this work, the use of a guidance operator responsible for
modifying ill-adapted individuals using genetic material from well-adapted individuals. We also
propose, in this paper, a new method of determining the genetic quality of individuals using genetic
frequency analysis. Our method is evaluated over a wide range of modern GAs and considers two
case studies defined by well-established JSSP benchmarks in the literature. The results show that
the use of the proposed operator assists in managing individuals with poor fitness values, which
improves the population quality of the algorithms and, consequently, leads to obtaining better results
in the solution of JSSP instances. Finally, the use of the proposed operator in the most elaborate
GA-like method in the literature was able to reduce its mean relative error from 1.395% to 0.755%,
representing an improvement of 45.88%.

Keywords: evolutionary algorithm; genetic algorithm; genetic improvement; job shop scheduling
problem; combinatorial optimization

1. Introduction

Combinatorial optimization problems (COPs) consist of situations in which it is neces-
sary to determine, through permutations of elements of a finite set, the configuration of
parameters that is more advantageous [1]. Due to its high degree of applicability, many
researchers have been using COPs in different contexts—for example, applications in the
logistics [2], vehicle routing [3] and railway transport control [4], among other current
problems [5]. In particular, one of the most addressed COPs in the literature is production
scheduling [6], which, according to Groover [7], is part of the Production Planning and
Control activities and is responsible for determining the design of operations that will be
conducted, such as the environment in which products are processed, what resources are
used and what is the start and end time for each production order.
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Academic research and the development of solution methodologies have focused on a
limited number of classic planning and production scheduling problems, one of the most
researched is the variation known as Job Shop Scheduling Problem (JSSP) [8], in which a
finite set of jobs must be processed by a finite set of machines. In this category of problems,
the objective is usually to determine a configuration in the order of processing of a set of
jobs or tasks to minimize, for example, the time of using resources [9]. In this case, several
performance measures are useful to evaluate how satisfactory a given configuration is
for a JSSP, with a makespan [10] that corresponds to the total time needed to finish the
production of a set of jobs (one of the most used).

Belonging to the well-known class of problems NP-Hard, JSSP presents itself as a
computational challenge, since it is not a trivial task to develop an approach to determine
exact solutions that represent a configuration with an adequate performance measure,
within a reasonable time, even considering small and moderate cases [11]. From this
need, algorithms that present approximate results in a feasible computational time were
developed and applied to JSSP. The main methods used are those composed of meta-
heuristics [12], mainly by the Evolutionary Algorithm (EA) known as Genetic Algorithm
(GA) [13–17]. Even so, the JSSP consists of a class of problems that remain open [18] and
with many instances still unsolved in the well-known benchmarks of the area [19]. This
is because the existing methods do not have the necessary efficiency to guarantee their
practical use.

More specifically, it is possible to highlight certain disadvantages in the use of GA
in solving COPs [20,21]. In detail, it is common for this set of techniques to become
stagnant [22], during their iterations in solutions that are local minimums, which configures
the phenomenon known as premature convergence [23]. Furthermore, GAs may require
high computational time [24] to obtain good solutions to this type of problem. Therefore,
for complex problems, GA needs to be assimilated to specific problem routines to make the
approach effective. Hybridization can be a deeply effective way to improve the performance
of these techniques. The most common form of hybridization is the addition of GAs to
local search strategies and the incorporation of domain-specific knowledge in the search
process [25].

In the latter, there are genetic improvement operators through manipulations in
specific genes on a chromosome. These have a main objective to provide reinforcement
coming from one or more individuals who have been successful in the adaptation process
to individuals who are not able to stand out in a population. In other words, these operators
direct the worst individuals in a population to areas known to be good in the search space.

The authors do Amaral and Hruschka JR [26,27] presented an operator in this line of
reasoning, entitled a transgenic operator, which simulates the process of genetic improve-
ment. To conduct such a procedure, in one of the stages of the GA, the population of the
same is replicated to four parallel sub-populations, and in each of these four populations,
the best individuals transfer up to four genes, based on historical information, to selected
individuals. Then, only the best individuals among the four sub-populations remain.Viana,
Morandin Junior and Contreras [15] proposed an adaptation of the transgenic operator of
do Amaral and Hruschka JR [27] to solve a JSSP with GA. The authors propose the identi-
fication of relevance in the genes used in the transgenic process through a preprocessing
step. However, such preprocessing is computationally time-consuming and may not be
viable in large JSSPs.

In this work, we propose a new population guidance operator for GAs: the Genetic
Improvement based on Frequency Analysis (GIFA) Operator. Our method consists of a
new way to determine the genetic relevance based on the frequency analysis of the genes
of individuals who have good fitness values in the population. We also propose the con-
struction of a representative individual that represents this group of good individuals and
that is used in the process of genetic manipulation to guide the worst individuals towards
good solutions and, potentially, that these become positive highlights in the population.
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This paper is an extended version of our preliminary work [28]. In this manuscript,
we add a literature review section, and we consider more testing instances in our exper-
imental evaluations. Furthermore, all steps of the method are outlined and detailed in
the form of algorithms that simplify the reproducibility of the technique. This work is
divided into six sections. Specifically, we discuss, in Section 2, works related to ours.
In Section 3, we describe the JSSP fundamentation. We present, in Section 4, the details
about the proposed GIFA operator and the requirements that a GA needs to satisfy to
use it. Experimental results on different GAs using GIFA and the advancement in the
state of the art of JSSPs are presented in Section 5. The work is finished in Section 6 with
conclusions about the developments as well as future projections for improving the method
and possible applications.

2. Related Works

Several meta-heuristics have been proposed in the literature to treat the JSSP, such
as GA [11,13,15,20,29–35]; Simulated Annealing [36,37]; Hybrid social spider optimiza-
tion [38]; Harris hawk optimizer [39]; Grey Wolf Optimization [40]; Bat Algorithm [41];
Chicken Swarm Optimization [42], Single seekers society:[43] and Particle Swarm Optimiza-
tion: [44]. However, GAs remain one of the most common approaches used in resolving
JSSPs. In the following paragraphs, we discuss certain works in the literature that deal with
the JSSP production scheduling problem through meta-heuristics. These works were chosen
because they have a great impact on the specialized literature and/or represent the state-of-
the-art. The following detailed works are those authored by Ombuki and Ventresca [29],
Watanabe et al. [30], Asadzadeh [20], Jorapur et al. [31], Wang et al. [11], Wang et al. [36],
Dao et al. [41], Jiang [40], Semlali et al. [42] and Kurdi [32].

The authors Ombuki and Ventresca [29] proposed the Local Search Genetic Algorithm
(LSGA) meta-heuristic to treat JSSP. The proposed LSGA is a Genetic Algorithm (GA)
with local search, which has an operator similar to the mutation that is focused on local
research, with the aim of further improving the quality of the solution. The LSGA of
Ombuki and Ventresca [29] is a hybrid strategy that uses GA with the addition of a Tabu
Search (TS) routine. LSGA was one of the first works to incorporate a more elaborate local
search strategy, which proved to be efficient in the GA-like methods of the time. However,
the technique was not able to find the optimal values of medium difficulty instances, such
as FT10 [45]

Watanabe et al. [30] proposed a meta-heuristic based on a modified GA with search
area adaptation (GSA). The proposed GSA has an adaptation of the search area with the
ability to adapt to the structure of the solution space and to control the balance between
global and local searches. The crossover operation of the GSA consists of performing
the crossover several times on all pairs of parents each time a new cutoff point is drawn.
The crossover is repeated until a child better than the worst individual in the population
is found or until a certain number of iterations is reached. The GSA mutation operation
consists of executing perturbations several times on all children and performing several
swaps in their genes. The mutation is repeated until a mutant child better than the worst
individual in the population is found or until a certain number of iterations is reached. As
it was one of the first methods in this sense, the GSA was evaluated in a few instances and
presented results far below the most recent methods.

On the same theme, Asadzadeh [20] presented the meta-heuristic Local Search Genetic
Algorithm (aLSGA) with the inclusion of intelligent agents. The method is composed of a
multi-agent system, in which each agent has a specialized behavior to implement the local
search. The aLSGA combines local search heuristics with crossover and mutation operators.
The use of multiple mutation functions expands the search power of the method; however,
for the more elaborate search strategy of the method, only one function is considered
in aLSGA.

The authors Jorapur et al. [31] proposed the Promising Initial Population-Based Genetic
Algorithm (IPBGA) meta-heuristic. The IPBGA algorithm is a combination of GA with a
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new job-based modeling for the construction of the initial population. The objective of the
work was to present an alternative population modeling for GA and, also, to present the
impact that this type of alteration can obtain concerning the effectiveness of GA. However,
in addition to the IPBGA achieving the best-known solution in few instances; in the others,
the results obtained were significantly far from the optimal solution.

The Adaptive Multi-population Genetic Algorithm (AMGA) meta-heuristic was pro-
posed by Wang et al. [11]. The idea of AMGA is based on an GA that uses multi-population
and has an adaptive probability of crossover and mutation, intending to expand the scope
of the search and improve its performance. The work has some points that differ from
other works that deal with the JSSP problem with GA. The first point is the insertion of
multi-population in GA, the second point is to have an adaptive probability of crossover
and mutation and the third point is that the elite individuals (individuals with better fitness)
from each population are directly evolved into the next generation.

AMGA was tested on 39 instances, and it was able to find the best-known solution
in 38 of those instances. The computational results showed that the AMGA can produce
optimal or near-optimal values in almost all the benchmark instances tested; however,
in the instances of Lawrence [46], not all were tested, and the instances that were left
without evaluation are precisely the instances that present a greater complexity

Jiang [40] developed the Hybrid Gray Wolf Optimization (HGWO) meta-heuristic.
The HGWO is composed of the combination of the GWO algorithm with the local VNS
algorithm as well as the addition of genetic operators (crossover and mutation) to balance
the capacity of local and global exploration of the algorithm. In the proposal, three neigh-
borhood structures were used: Swap, Insert and Inverse. The proposed algorithm obtained
competitive results when compared with relevant works in the literature; however, of the
40 instances proposed by [46], only the 20 smallest were considered, and thus there is no
way to evaluate the behavior of the algorithm in instances with greater complexity.

Wang et al. [36] proposed the TSAUN meta-heuristic, which is a hybrid local search al-
gorithm. TSAUN is composed of the combination of the Simulated Annealing (SA) method
and the Tabu Search (TS) method. The TSAUN structure runs an SA core and applies the
TS technique to a local search. This hybrid algorithm takes advantage of stochastic SA to
escape local minimums, and at the same time, improves the search performance through a
TS. TSAUN did not achieve the best results in the tested instances; however, the method
proved to be competitive with other works present in the state of the art. The work presents
a contribution in the area of hybrid algorithms with the insertion of local search techniques,
and through the results obtained, the improvement that these combinations of techniques
can achieve is reinforced.

In the article of Dao et al. [41], the meta-heuristic Parallel Bat Algorithm (PBA) was
proposed, which is composed of the meta-heuristic Bat Algorithm (BA) with the inclu-
sion of parallel processing. The objective of adding parallel processing to BA was that,
with communication strategies, it is possible to correlate individuals in each cluster and
share information among them. Communications provide improved diversity and accel-
erate the search for satisfactory solutions. Neighborhood operators of the types Swap,
Insert and Inverse were also included in the proposal. It is clear from the work that the BA
with the inclusion of parallel processing can achieve better solutions in JSSPs than can a
basic BA.

Semlali et al. [42] proposed the meta-heuristic Memetic Chicken Swarm Optimiza-
tion (MeCSO). The method integrates the Chicken Swarm Optimization (CSO) algorithm
with local search method 2-opt of Croes [47]. The CSO algorithm was established by
Meng et al. [48] and was inspired by the behavior of a swarm of chickens while looking for
food. The algorithm had good efficiency in instances of smaller sizes; however, in larger
instances, the method presented a great deal of difficulty. In this case, in observing the
results, it is possible to notice that the algorithm has a tendency to become stuck in local
optima and cannot go beyond certain points when considering larger instances.
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Kurdi [32] investigated the impacts of selecting the genetic materials exchanged
during the crossover with prior information about the critical paths that exist in the domain
rather than randomly selecting them. Through the presented results, the author was able to
present the impact that this area of study brings. According to the author, the basic proposed
idea for the identification of the genes that hold the most important characteristics is a
promising area of research and deserves further investigation since it produces significant
improvements when applied in the JSSP.

Hamzadayı et al. [43] proposed to adapt some components of the Single Seekers Society
(SSS) metaheuristic to deal with combinatorial optimization problems. The proposed SSS
was applied in two types of production scheduling: the Flow Shop Scheduling Problem
and the JSSP. The SSS algorithm consists of a metaheuristic that allows cooperation between
different search heuristics. In this case, SSS incorporates several metaheuristics, such as
Simulated Annealing, Threshold Accepting, Greedy Search (GS), and all information from
each method works in an integrated way. To generate new solutions, SSS shares information
via crossover and handles the search by integrating the information via neighborhood
structure. SSS was not the method that obtained the best results for JSSP instances; however,
it obtained competitive results and was able to find the best known value in 14 instances of
the 20 instances that were tested. The method proved to be able to maintain its effectiveness
in similar combinatorial optimization problems, obtaining satisfactory results in both the
production and scheduling problems evaluated.

Yu et al. [44] proposed an improved hybrid PSO with non-linear inertia weight and
Gaussian mutation (NGPSO) to solve the JSSP. The nonlinear inertia weight was added to
the method in order to improve the local search capability and the Gaussian mutation was
added in order to improve the global search capability. The method seeks to maintain a
balance between local searches and ensuring population diversity, thereby, reducing the
probability of the algorithm falling into a local optimal solution. The experimental results
indicated that the NGPSO algorithm had satisfactory performance and high capacity in JSSP
resolution, and was able to find the best known value in 38 of 62 instances. The techniques
added to improve local search and global search significantly improved the PSO; however,
for more complex instances, a better balance between searches is needed.

A hybrid discrete Cuckoo Search (CS) method with Simulated Annealing, called
DCSA, was proposed by Alkhateeb et al. [49] to handle JSSP instances. DCSA incorporates
the SA optimization operators into the CS search algorithm. A combination of VNS and
Lévy flight methods is used for a better exploration of the search space. In the performed
evaluations, the DCSA presented a faster convergence than the other compared methods
and was able to find the best known solution in 29 instances of the 34 that were selected
for testing. The DCSA also presented a lower computational cost compared with the other
methods compared. The authors assumed that the improvement must be attributed to
the integration of SA to CS and to the use of different exploration methods, such as VNS
and Lévy flight. However, in the work, the instances considered more difficult were not
considered, and most of the methods in the literature usually became stuck in local minima.

In the works of Viana et al. [13] and Viana et al. [14], a new GA approach with
improved local search and multi-crossover techniques (mXLSGA) was proposed. Three
operators specialized in local search were proposed: one built into the mutation operator;
one with massive behavior; and another with multi-crossover routines. Viana et al. [15]
proposed a genetic algorithm with the inclusion of an operator called “Transgenic”. This
operator is based on the idea of genetically modified organisms and with the proposal to
guide individuals, who have the worst fitness values in the population, to a region of the
search space that would be more favorable for solving the problem.

This operator selects significant genes from individuals that have been well evaluated
and inserts those genes into the worst individuals through a preprocessing step in the form
of JSSP resolution simulations. In this work, we propose an alternative to the transgenic
operator in the sense that a preprocessing step, which is usually expensive, is unnecessary,
since the calculation of gene importance is performed during each generation of the method.



Sensors 2022, 22, 4561 6 of 26

We can see through the bibliographic review that JSSP has attracted the attention
of several researchers due to having combinatorial behavior and being classified as NP-
Hard. Several approaches using meta-heuristics applied in JSSP have been proposed,
and some have included intelligent agents, parallel populations or the hybridization of
meta-heuristics with other techniques. It appears, through the works reported, that hy-
bridization is an effective way to improve the performance and effectiveness of several
meta-heuristics. Some forms of hybridization successfully applied in the literature are the
union of local search strategies and the incorporation of specific knowledge of the domain
in the search process.

3. Formulation of the Job Shop Scheduling Problem

We can define JSSP as a COP that has a set of N jobs that must be processed on a set
of M machines. Furthermore, each job has a script that determines the order in which
it must pass through the machines for its process to be completed. Each job processing
per machine represents an operation and the objective of a JSSP can be interpreted as
being the challenge of determining the optimal sequencing of operations with one or
more performance measures as a guide. The components of this problem follow certain
restrictions [9]:

• Each job can be processed on a single machine at a time.
• Each machine can process only one job at a time.
• Operations are considered non-preemptive, i.e., they cannot be interrupted.
• Configuration times are included in the processing times and are independent of the

sequencing decisions.

In this work, we adopted makespan (MKS) as a performance measure. The MKS is the
total time that a JSSP instance takes to complete the processing of a set of jobs on a set of
machines considering a given operation sequence.

Mathematically, let us assume the following components of a JSSP:

• J = {J1, J2, . . . , JN} is the set of jobs.
• M = {m1, m2, . . . , mM} is the set of machines.
• O = (O1, O2, . . . , ON·M) is an operation sequence that sets the priority order for

processing the set of jobs in the set of machines.
• Ti(O) represents the time taken by the job Ji to be processed by all machines in its

script according to the operation sequence defined in O.

Then, according to [13–15], the MKS can be defined as the total time that all jobs take
to be processed according to a given operation sequence, as presented in Equation (1).

MKS = max
i

Ti(O). (1)

It is worth mentioning that, in this work, a more intuitive notation was adopted
for modeling the JSSP constraints and measures. However, mathematically elaborate
formulations involving constrained optimization can be found in the specialized literature.
For that, we suggest the survey of Xiong et al. [50] to the interested reader.

4. A New Genetic Improvement Operator Based on Frequency Analysis for GA
Applied to JSSP

In this section, we present in detail how the proposed method works. We specify the
idea of determining genetic relevance by analyzing the frequency of genes that represent
good characteristics in individuals with adequate fitness values in the population and,
with that, we intend to obtain innovation with the following three topics:

• A new strategy for defining genetic relevance in GAs chromosomes.
• A new genetic improvement operator that is versatile and can be used in GA variations.
• Improving the state of the art of JSSP benchmark results.
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4.1. Genetic Representation

Our operator was developed to operate in all GA-like methods with minor modifica-
tions. In the meantime, we conduct its fundamentation on a specific encoding. In this case,
we use the “coding by operation order” [51]. In this representation [13], the feasible space
of a JSSP instance defined by N jobs and M machines is formed by chromosomes c ∈ NN·M,
such that exactly M coordinates of c are equal to i (representing the job index i), for every
i ∈ {1, 2, . . . , N}.

This encoding determines in the chromosome the operation priority with respect to
the machine allocation. For example, as in [14], let us assume c = (2, 1, 2, 2, 1, 1) as a feasible
solution in a JSSP instance with dimension 2× 3 (N = 2 and M = 3). Thus, according to
the operations defined in c, the following actions must be conducted in parallel or if the
previous action has already been completed:

• (First) Job 2 must be processed by the first machine of its script.
• (Second) Job 1 must be processed by the first machine of its script.
• (Third) Job 2 must be processed by the second machine of its script.
• (Fourth) Job 2 must be processed by the third machine of its script.
• (Fifth) Job 1 must be processed by the second machine of its script.
• (Sixth) Job 1 must be processed by the third machine of its script.

4.2. Fitness Function

The encoding used makes it natural to define the fitness function of the problem as the
makespan of a JSSP instance given according to the stipulated operation sequence—that is,
the fitness function [15] used is given according to Equation (2):

F : O −→ R
O 7−→ F(O) := max

i
Ti(O), (2)

in which O is the set of all possible operation sequences for the defined JSSP instance.
In this way, for this fitness function, the MKS of the JSSP instance is calculated accord-

ing to a given operation sequence, and then the meta-heuristic must look for an operation
sequence in which the MKS is as small as possible and, consequently, the set of jobs must
be processed by the set of machines taking the shortest possible time.

4.3. Proposed Genetic Improvement Based on Frequency Analysis Operator

In this work, we propose a new genetic improvement operator for evolutionary
algorithms: the GIFA operator. The operator is based on a frequency analysis matrix
calculated during the iterations of each GA. GIFA aims to calculate which genes on a
chromosome can direct individuals with poor fitness values to better solutions and better
search spaces. GIFA has two main stages: the first being defined by the making of the
representative individual—that is, an individual that is determined by the configuration
of the most frequent genes in the best individuals in the population; and the second
stage consists of the use of the representative individual in the transgenic process—that
is, the genetic manipulation through the insertion of specific genes of the representative
individual in genes of the worst individuals in the population. Below, we present these
steps in detail.

Stage 1: Composition of the representative individual Initially, a portion of the popula-
tion that presents the best fitness values is selected. Specifically, we select NTop individuals
who are considered to be good examples of solutions in the population. This selection is
made according to an order based on the fitness value of individuals in the population,
as presented in Algorithm 1.
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Algorithm 1 Defining the NTop best individuals

Input:

NPop Number of chromosomes in the population

P =
{

p1, p2, . . . , pNPop

}
Population

F Fitness function

NTop Number of good individuals

1: F := {}

2: for i = 1 to NPop do

3: ωi := F(pi)

4: F := F ∪ {ωi}

5: end for

6:
(

ωi1 , ωi2 , . . . , ωiNPop

)
:= fsort(F ) . The function fsort(·) ascending

sorts the elements in a given set. In this case, i1 is the index of the lowest fitness, i2 is

the index of the second-lowest fitness and so on, up to iNPop , which is the index of the

highest fitness value.

7:
(

pi1 , pi2 , . . . , piNPop

)
. We arrange individuals according to their fitness, from the best

to the worst.

8: for j = 1 to NTop do

9: cj := pij . Let us define the NTop best individuals.

10: end for

Output:
{

c1, c2, . . . , cNTop

}
NTop best individuals

In the sequence, for each index job i, a frequency vector ~vi ∈ RN·M is associated,
in which the number of its occurrences is stored in each coordinate where the product i ap-
pears exactly at the position of this coordinate on the chromosomes selected for comparison.
In Algorithm 2, the construction of vectors ~vi is detailed.

In Figure 1, an example of the calculation of the frequency vectors ~vi is presented
when considering four individuals c1, c2, c3 and c4 with the best values of fitness in a 3× 2
dimension JSSP instance.

2 1 2 3 31

3 1 2 3 12

2 3 3 2 11

1 2 2 3 31

1 2 0 0 23

2 1 3 1 01

1 1 1 3 20

Figure 1. Calculating the frequency vectors (~vi) of the three jobs in each coordinate of the four best
chromosomes in the population.
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Algorithm 2 Calculating the genetic frequency of the best adapted individuals

Input:

{
c1, c2, . . . , cNTop

}
NTop best individuals

N ×M Dimension of JSSP instance

1: for i = 1 to N do

2: ~vi :=~0N·M . Initializing the frequency vectors. In this case,~0N·M is the null vector

with N ·M coordinates.

3: end for

4: for i = 1 to N do

5: for j = 1 to N ·M do . The value N ·M is the number of coordinates of

chromosomes.

6: for k = 1 to NTop do

7: if ck,j = i then . Is job i in the j-th coordinate of ck?

8: vi,j := vi,j + 1 . If so, let us add 1 to the j-th coordinate of the frequency

vector ~vi.

9: end if

10: end for

11: end for

12: end for

Output: ~v1,~v2, . . . ,~vN Frequency vectors

Once the vector ~vi has been made for every job index i, a chromosome whose coordi-
nates are determined by the job with the highest frequency in this coordinate is defined as
a representative individual. That is, each gene (coordinate) of the representative individual
is defined as the job index that is most present in this coordinate in the best individuals in
the population. It is also possible to establish an order of genetic relevance according to the
frequency vectors ~vi.

That is, it is possible to define which genes of the representative individual are more
suitable to be transferred in the process of genetic improvement. Such relevance is also
defined according to the frequency that the products present in each coordinate of the
best individuals so that the genes that present the same job in many good individuals
can categorize a “trend” that leads to good fitness values. Therefore, these genes must be
considered to be relevant, since they describe a positive characteristic in several individuals
that stand out in the population. Mathematically, the representative individual and its
genetic relevance are made according to the following procedure:

1. Let c be the representative individual and w a vector that designates a score for each
of its coordinates, initially null. In the following items, the coordinates of c and w
are made.

2. We define I1 as being arg max
i
{~vi,1}. That is, I1 is the index of the job that has the

highest frequency in the first coordinate of the exemplary individuals. Therefore,
the first coordinate of the representative individual is defined as I1. Mathematically,

c1 := I1.
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In addition, a w1 score defined as the maximum frequency shown in the first coordi-
nate of the best individuals is associated with the first coordinate of c. That is,

w1 := max
i
{~vi,1} = ~vI1,1.

3. Assign the value 2 to j.
4. We define Ij as being arg max

i
{~vi,j}, that is, Ij is the most frequent product index in

the j coordinate in the NTop individuals. However, in order to guarantee the feasibility
of the representative individual, it is necessary to establish two more restrictions:

4.1 If the product Ij is not in M coordinates of c, then it is defined as Ij the j-th
coordinate of the representative individual. That is,

cj := Ij.

In this case, the respective score is associated with the j -th coordinate of the
representative individual as the maximum possible value presented in the j-th
coordinate of the best individuals. That is,

wj := max
i
{~vi,j} = ~vIj ,j.

4.2 Otherwise, to guarantee the feasibility of c, the frequencies of the index job
Ij are disregarded, since it is already arranged in M coordinates of c and,
therefore, cannot occupy any more of its coordinates. To do so, we must cancel
its respective frequency vector, that is,

~vIj :=~0.

To make a new attempt, we must return to item 4.

5. If j 6= N ·M then j := j + 1 and we must return to item 4. Otherwise, the procedure
is finished, and we have the representative individual pair and its respective genetic
score (c, w).

It is not necessary to project the representative individual in the feasible space of the
problem since, due to its construction and the item 4 above, it is already feasible. In Figure 2,
an example of the calculation of the representative individual (c) and the relevance of its
genes (w) in a JSSP instance of dimension 4× 3 is presented, taking, as the best individuals,
the NTop = 5 individuals with the lowest fitness values available in the population.

The details of the construction of the representative individual and the vector of
relevance of its genes are presented in Algorithm 3.

4.3.1. Stage 2: Use of the Representative Individual in Genetic Improvement

Once the representative individual and the relevance of each of its genes are calculated,
then we propose that its most relevant genes be transferred to the worst individuals in
the population, thus, simulating a mechanism for genetic improvement, or transgenics.
For this, we take PWorst := {x1, x2, . . . , xNWorst} as the set of the worst NWorst individuals
in a population. Subsequently, the most significant, or most relevant, NGenes genes of the
representative individual are transferred to all individuals in the PWorst maintaining their
original positions. This procedure can generate infeasible solutions.

Thus, it is necessary to conduct a correction, or projection, process on the individuals
resulting from this operation. For this, we carry out the projection through the Hamming
distance [52] modifying only the genes that were not received from the representative
individual. In this way, the individuals generated in this procedure are projected on the
feasible set of the problem, giving rise to the genetically improved individuals PImproved =
{x̂1, x̂2, . . . , x̂NWorst}.
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It is also necessary to establish how many genes will be transferred from the repre-
sentative individual to the individuals of PWorst. For this, we follow a procedure similar to
that of Viana, Morandin Junior and Contreras [15], which empirically determines that the
adequate amount of genes used in the genetic improvement process is given by the root of
the number of coordinates of the chromosome. Thus, the process remains advantageous
and does not cause early convergence in the population. Thus, in this work, NGenes is
defined as round

(√
N ·M

)
. In Figure 3, an example of the determination of the most

significant genes of a representative individual c when it is given the scores of their genes
w while addressing a JSSP with dimension 4× 3.
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Figure 2. Computation of the representative individual (c) and its genetic relevance (w).
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Figure 3. Determination of the most significant genes of a representative individual.
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Algorithm 3 Calculating the representative individuals and their genetic relevance.

Input:
~v1,~v2, . . . ,~vN Frequency vectors

N ×M Dimension of JSSP instance

1: c =~0N·M . Initialize the representative individual as being null.

2: I1 := arg max
i
{~vi,1} . Most frequent job in the first coordinate of the best individuals.

3: w1 := max
i
{~vi,1} . Number of times that the most frequent Job appears in the first

coordinate of the best individuals.

4: c1 := I1 . Job I1 occupies the first coordinate of the representative individual.

5: j = 2 . Concerning the next coordinates, we proceed similarly but guaranteeing

feasibility.

6: while j ≤ N ·M do

7: Ij := arg max
i

{
~vi,j
}

. Let us calculate the most recurring job in the j-th coordinate

of the frequency vectors.

8: countJob := 0 . To guarantee feasibility, each job must be in only M coordinates of

the representative individual.

9: for k = 1 to N ·M do

10: if ck = Ij then

11: countJob := countJob + 1

12: end if

13: end for

14: if countJob < M then . In case of feasibility, then we define the j-th coordinate of c.

15: wj := max
i

{
~vi,j
}

16: cj := Ij

17: j = j + 1

18: else. Otherwise, the next most recurring job in the j-th coordinate of the frequency

vectors must be evaluated.

19: ~vIj =
~0N·M . Since Ij makes c unfeasible, then we must disregard it for the next

calculations.

20: end if

21: end while

Output:
c Representative individual

w Genetic relevance vector

In Algorithm 4, we present with comments all the steps of the proposed population
improvement method.

Assuming NWorst = 3 and PWorst = {x1, x2, x3} as the set of the worst 3 individuals
in a population, the improvement process is shown in Figure 4 genetic that transfers the
NGenes best genes from the representative individual c of to all individuals in the set PWorst.
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Algorithm 4 Population improvement using representative individual and genetic rele-
vance.

Input:

c Representative individual

w Genetic relevance vector

PWorst =
{

x1, x2, . . . , xNWorst

}
The NWorst worst individuals

N ×M The JSSP dimension

1: NGenes := round
(√

N ·M
)

. Number of genes to be transferred.

2: for i = 1 to NGenes do

3: Ji := arg max
k
{wk} . c coordinates that represent its most important genes.

4: wJi := 0

5: end for

6: for i = 1 to NGenes do

7: for k = 1 to NWorst do

8: xk,i := cJi . Transferring the best genes from c to individuals in PWorst.

9: end for

10: end for

11: PImproved := {}

12: for k = 1 to NWorst do

13: x̂k := projHamming(xk) . Correcting infeasible solutions with Hamming projection.

14: PImproved := PImproved ∪ {x̂k}

15: end for

Output: PImproved =
{

x̂1, x̂2, . . . , x̂NWorst

}
Improved individuals

4
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Figure 4. Genetic improvement proposed. The genes highlighted on a black background are the most
relevant, while the genes highlighted with the red sectioned circle are those that need correction.
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The genetic improvement procedure must be performed after the standard operators
of the GA, or the GA-like method used and right after the generation of a new population.
Thus, the set PWorst must be formed by individuals of the new population of the method.
In addition, after applying genetic improvement, the evaluation of improvement or wors-
ening of affected individuals is made so that the genetic changes made will only be saved
in individuals who have obtained an improvement in fitness. That is, only individuals who
have gained an advantage in the process of genetic improvement will be replaced in the
population; the other individuals should be discarded and replaced by new individuals
generated randomly as detailed in the next subsection.

4.3.2. Generating New Individuals with the Lévy Flight Strategy

The proposed genetic improvement strategy was developed to be as versatile as possi-
ble in the sense that it can be attached to any GA-type method. Thus, the proposed operator
(GIFA) must be used after the execution of the original operators of the considered algo-
rithm in order to guide the solutions that were not able to stand out using such operators.
In addition, the use of the proposed genetic improvement operator must be performed
together with a genetic diversity maintenance strategy in order to not corroborate the
premature genetic stagnation of the population.

One of the most commonly used routines in the literature for this purpose is the
replacement of individuals from the population with new individuals generated from the
Lévy distribution. Intuitively in [53], this distribution was associated with random walks
whose steps are defined by exponential distributions—that is, Lévy(s) ∼ |s|−1−β, with β ∈
(0, 2]. Mathematically, as in [54], a random number generated by a Lévy distribution obeys
the following distribution:

Lévy(s, γ, µ) =


√

γ

2π
e−

γ
2(s−µ) (s− µ)−

3
2 , 0 < µ < s < ∞,

0, s ≤ 0,
(3)

where µ is the minimum step of the random walk and γ is a scale factor.
In this operator, to generate new individuals, a function fshuffle : O → O is used,

which is defined as an index shuffler operator except for generating random numbers with
a Lévy distribution. Specifically, it is necessary to evaluate the individuals who should
receive genetic improvement before and after the procedure, and those who cannot show
improvement should be replaced by new individuals generated with fshuffle. In detail,
the steps that define the genetic improvement operator are presented in Algorithm 5 below.

4.4. Scheme of Use for Proposed Operators: Algorithm Structure

The proposed genetic improvement strategy was developed to be as versatile as
possible in the sense that it can be attached to any GA-like method. Thus, the proposed
operator must be used after the execution of the original operators of the method considered
in order to guide solutions that were not able to stand out through the traditional strategies
defined in the method. In other words, to use the proposed operator in a given GA-like
method, we must obey the following steps:

1. Define the initial parameters and specifics of the chosen GA-like method.
2. Execute the operators that make up the GA-like method. These being, for example,

the operators of crossover, mutation, local search, creation of new population, etc.
3. At the end of an iteration involving the traditional operators of the selected GA-like

method, we make a sub-population PWorst with the worst NWorst individuals in the
current population.

4. At the same time, we select the best NTop individuals in the population to compose
the representative individual.

5. Build the representative individual using the strategy described in Stage 1 of Section 4.3.
6. Determine a relevance scale to the genes of the representative individual.
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Algorithm 5 Population improvement with diversity maintenance.

Input:

c Representative individual

w Genetic relevance vector

PWorst =
{

x1, x2, . . . , xNWorst

}
The NWorst worst individuals

N ×M The JSSP dimension

F Fitness function

1: PImproved := Algorithm 4(c, w, PWorst, N, M) . The set of individuals improved by the

genetic improvement process is obtained through Algorithm 4.

2: for i = 1 to NGenes do . All improved individuals x̂i should be evaluated to ensure that

the fitness has improved.

3: Fno improvement := F(xi) . xi is the original individual.

4: Fimprovement := F(x̂i) . x̂i is the improved individual.

5: if Fno improvement ≤ Fimprovement then . In case there is no improvement,

the individual in question must be replaced by a new individual generated from the

random permutation, with this being defined by the Lévy distribution, of a feasible

solution.

6: PImproved := PImproved − {x̂i}. . The individual from PImproved is removed.

7: x̂i := fshuffle((1, 1, . . . , 1, 2, 2, . . . , 2, . . . , N, N, . . . , N)) . The new individual is

generated using the Lévy distribution.

8: PImproved := PImproved ∪ {x̂i}. . The generated individual assumes its position

in PImproved.

9: end if

10: end for

Output: PImproved =
{

x̂1, x̂2, . . . , x̂NWorst

}
Improved individuals

7. Conduct the genetic improvement of the PWorst individuals using the most relevant
NGenes genes of the representative individual.

8. Replace in the current population of the method all individuals who obtained an
improvement in the fitness value in the process of genetic improvement and return
in the execution of the original operators of the considered GA-like method. Those
who have not improved should be replaced by new individuals randomly generated
according to Levy’s exponential distribution, following the procedure of Al-Obaidi
and Hussein [55].

In Figure 5, we present a flowchart that illustrates the sequence of steps of the proposed
genetic improvement process.
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Define initial parameters

GA-like method operators

Select the NWorst worst
individuals to build

PWorst = {x1, x2, . . . , xNWorst}

Select the NTop individuals
with better fitness values

Determine the repre-
sentative individual c

Determine the NGenes
most relevant genes

Conduct the genetic improve-
ment of PWorst using the NGenes

most relevant genes of c

Stop
criteria is
reached?

Replace xi by x̂i in the population.

F(x̂i) < F(xi)?

Generate Levy(xi)
using Levy flight dis-
tribution and replace
x̂i by it in PImproved.

Create PImproved =
{x̂1, x̂2, . . . , x̂NWorst}

End

yes

no

yesno

Figure 5. Flow chart of our proposed Genetic Improvement operator for Genetic Algorithm.

5. Implementation and Experimental Results
5.1. Experimental Environment

For the conduction of the experiments, we considered two different situations: in
the first, we evaluated the impact that the proposed operator causes on five GA-like
methods, all of which were obtained using the framework of Viana, Morandin Junior and
Contreras [13], in eight JSSP instances of varying complexity; in the second, we compare
with recent methods in the literature the ability of the proposed operator to look for
good solutions in 58 instances of JSSP that compose the area benchmark, with 3 from
Fisher and Thompson (FT) [45], 40 from Lawrence (LA) [46], 10 from Applegate and Cook
(ORB) [56] and 5 from Adams, Balas and Zawack (ABZ) [57]. In detail, in this second
situation, we consider relevant and recent methods which deal with the JSSP with the same
specific instances and, when existing, presented in papers published in the last three years.
In all, we consider for comparison the following methods: mXLSGA [13], NGPSO [44],
SSS [43], GA-CPG-GT [32], DWPA [58], MeCSO [42], GWO [59], IPB-GA [31], NIMGA [60],
aLSGA [20], PaGA [61]. The proposed algorithm is coded in MATLAB and we performed
the evaluations on a computer with 2.4GHz Intel(R) Core i7 CPU and 16GB of RAM.

5.2. Results and Comparison with Other Algorithms

For the first testing situation, we consider five variations of the Viana, Morandin
Junior and Contreras [13] framework: a basic GA (GA), GA with Search Area Adaptation
(GSA) [30], GA with Local Search (LSGA) [29], GA with Elite Local Search and agent adjust-
ment (aLSGA) [20] and GA with multi-crossover and massive local search (mXLSGA) [13].
In each of these versions that represent the state-of-the-art in GA-type techniques for JSSP
solution, the proposed genetic improvement operator, GIFA, is added, and evaluations
were performed on eight JSSP instances of varying complexity that compose the benchmark
of the area, as 1 by Fisher and Thompson (1963) (FT) and 7 by Lawrence (1984) (LA): the FT
06, of dimension 6× 6, and best known solution (BKS) equal to 55; the LA 01, of dimension
10× 5, and the BKS is equal to 666; LA 06, of dimension 15× 5, and the BKS is equal to
926; the LA 11, of dimension 20× 5, and the BKS is equal to 1222; LA 16, of dimension
10× 10, and the BKS is equal to 945; LA 23, of dimension 15× 10, and the BKS is equal
to 1032; LA 26, of dimension 20× 10, and the BKS is equal to 1218; and LA 31, with a
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dimension of 30× 10, and the BKS is equal to 1784. Thus, each GA-like method considered
has a version with the proposed operator, represented by the acronym GIFA next to its
standard acronym.

Our main purpose was to evaluate the impact of using GIFA in each of the GA-
like methods; therefore, we kept the best possible configuration of each of the methods
available in the original works, with the exception that everyone had 100 individuals in
their populations, and we ran it for 100 generations. Furthermore, we added to each of them
the configuration referring to GIFA, which is defined as follows: NTop = NWorst = 10. It is
worth noting that the choice for these last two parameters is not random. We experimentally
verified that this would be the fairest possible common configuration when considering all
the GA-like methods mentioned here. For that, we analyzed some specific performance
metrics. In detail, let SΦ(NTop, NWorst) be the solution obtained by the method Φ without
using the proposed operator and SΦ+GIFA(NTop, NWorst) the solution obtained using the
GIFA operator, both of which use the same values for NTop and for NWorst. Furthermore,
we define ImpΦ(NTop, NWorst) to be the improvement that using the GIFA operator gives
to the Φ method considering NTop and NWorst as:

ImpΦ(NTop, NWorst) := max

{
SΦ(NTop, NWorst)− SΦ+GIFA(NTop, NWorst)

SΦ(NTop, NWorst)
, 0

}
. (4)

The objective is to analyze an average of improvement values ImpΦ(NTop, NWorst) in
several executions of the method on the same specific instance and on the same parameter
configuration. Furthermore, we consider an average value for this improvement measure
depending on the methods considered and the configuration given for the GIFA parameters:
the value AvgImp(NTop, NWorst), defined in Equation (5):

AvgImp(NTop, NWorst) :=
1
5 ∑

Φ∈{GA,GSA,LSGA,aLSGA,mXLSGA}

1
Nrun

Nrun

∑
i=1

Impi
Φ(NTop, NWorst), (5)

where each method is executed Nrun times and Impi
Φ(NTop, NWorst) represents the GIFA

improvement with respect to i-th execution of that method.
In Figure 6, we represent through heatmaps the values of AvgImp(NTop, NWorst) calcu-

lated considering Nrun = 35 runs of each GA -like method and with respect to three example
bases: LA01, which consists of a simple instance; and instances LA21 and LA25, considered
with high difficulty. In addition, the following set of possible NTop and NWorst configurations
was considered for the creation of these images: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20,
30, 40, 50}. In these conditions, we noticed that the use of the operator contributed with
greater intensity in the more complex bases than in the simple base.

This is because the GA-Like methods can find good solutions for instance LA01
without the help of the operator; however, they have great difficulty finding good solutions
for instances LA21 and LA25. Therefore, we noticed that the influence of the proposed
operator is greater for more complex instances. Furthermore, we noticed a certain tendency
in the sense that the operator is not able to positively influence the GA-like method when
we choose small values, i.e., close to 1, and large values, greater than 15, for N Top and
NWorst. This is because very low values for these parameters reduce the functionality and
influence of the operator since it has a low population sample, because NTop is low and a
low influence in poorly adapted individuals, as NWorst is also low.

Furthermore, if the values assigned to these parameters are too large, the diversity of
the population will be compromised, since a large portion of the population, defined by
NWorst individuals, will receive the genes defined by the other portion of the population,
formed by NTop individuals. For this reason we see a concentration of higher average
AvgImp(NTop, NWorst) in the central regions of the heatmaps, that is when NTop and NWorst



Sensors 2022, 22, 4561 18 of 26

assume values close to 10 individuals. Therefore, we consider this configuration for the
following analyses.
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Figure 6. Experiments with respect to NTop and NWorst settings. In each heatmap, the aver-
age enhancement values AvgImp(NTop, NWorst) for NTop and NWorst are varying in grid on set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50}. For the computation of these values, Nrun = 35
executions for each method were considered. (a) LA01. (b) LA21. (c) LA25.

In this case, the best value, the worst value, the mean and the standard deviation (SD)
of the makespan values calculated at 35 independent executions of each method on the
eight JSSP instances considered are presented in Table 1. The number of times the method
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reached the best known solution is also presented (Number of optima); the number of
iterations (Iteration of the Optimum) required to reach the best known solution; and the
average time (Time (s)) in seconds that the technique takes to perform 100 iterations.

Table 1. GA-like methods statistics for 35 executions of each method.

Instance Method Best Worst Mean SD Number of
Optima

Iteration of
the Optimum Time (s)

FT06

GA 55 57 55.45 0.85 27 52 2.4
GIFA-GA 55 56 55.14 0.35 30 38 2.63
GSA 55 55 55 0 35 8 39.78
GIFA-GSA 55 55 55 0 35 8 40.02
LSGA 55 59 57.68 1.43 6 27 7.95
GIFA-LSGA 55 56 55.83 0.38 6 20 8.17
aLSGA 55 55 55 0 35 11 11.51
GIFA-aLSGA 55 55 55 0 35 6 13.01
mXLSGA 55 55 55 0 35 5 22.11
GIFA-mXLSGA 55 55 55 0 35 5 22.37

LA01

GA 666 712 679.02 9.98 6 76 2.65
GIFA-GA 666 678 669.37 5.17 15 26 2.94
GSA 666 715 677.8 13.61 13 10 51.79
GIFA-GSA 666 687 672.34 7.43 17 10 51.96
LSGA 666 726 697 16.65 1 61 12.15
GIFA-LSGA 666 707 688.67 15.59 8 23 12.42
aLSGA 666 666 666 0 35 11 20.07
GIFA-aLSGA 666 666 666 0 35 6 20.29
mXLSGA 666 666 666 0 35 5 38.06
GIFA-mXLSGA 666 666 666 0 35 4 38.34

LA06

GA 926 938 927.4 2.87 24 79 3.34
GIFA-GA 926 936 926.86 2.26 30 54 3.57
GSA 926 935 926.31 1.54 33 7 67.31
GIFA-GSA 926 926 926 0 35 7 67.56
LSGA 926 970 935.8 13.15 17 55 19.87
GIFA-LSGA 926 952 932.28 9.08 20 41 20.13
aLSGA 926 926 926 0 35 3 38.07
GIFA-aLSGA 926 926 926 0 35 3 38.31
mXLSGA 926 926 926 0 35 2 71.98
GIFA-mXLSGA 926 926 926 0 35 2 72.21

LA11

GA 1222 1256 1235.97 10.81 5 58 3.97
GIFA-GA 1222 1253 1233.48 9.52 6 51 4.18
GSA 1222 1276 1232.14 14.94 20 19 81.59
GIFA-GSA 1222 1263 1231.24 13.56 26 15 81.7
LSGA 1222 1299 1251.6 19.62 2 32 31.33
GIFA-LSGA 1222 1278 1250.17 11.09 4 26 31.59
aLSGA 1222 1222 1222 0 35 5 60.82
GIFA-aLSGA 1222 1222 1222 0 35 4 61.03
mXLSGA 1222 1222 1222 0 35 3 116.57
GIFA-mXLSGA 1222 1222 1222 0 35 3 116.84

LA16

GA 982 1100 1045.6 26.4 0 - 2.89
GIFA-GA 982 1061 1022.89 20.51 0 - 3.12
GSA 994 1110 1046.77 26.37 0 - 55.31
GIFA-GSA 994 1021 1017.38 15.49 0 - 55.63
LSGA 1016 1148 1084.25 32.27 0 - 20.62
GIFA-LSGA 1016 1077 1037.11 26.62 0 - 20.83
aLSGA 959 985 980.51 4.48 0 - 38.75
GIFA-aLSGA 956 982 975.12 2.36 0 - 38.98
mXLSGA 945 982 972.25 13.3 2 96 66.25
GIFA-mXLSGA 945 979 959.93 6.37 7 49 66.51
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Table 1. Cont.

LA23

GA 1189 1336 1271.71 34.44 0 - 3.78
GIFA-GA 1151 1324 1269.51 30.95 0 - 4
GSA 1148 1347 1214.08 43.85 0 - 73.19
GIFA-GSA 1121 1339 1191.25 30.27 0 - 73.42
LSGA 1214 1419 1295.34 43.7 0 - 38.39
GIFA-LSGA 1115 1369 1278.36 34.79 0 - 38.63
aLSGA 1035 1115 1078 16.34 0 - 75.62
GIFA-aLSGA 1032 1098 1067.58 15.06 2 75 75.79
mXLSGA 1032 1093 1060.45 17.96 1 51 123.64
GIFA-mXLSGA 1032 1093 1039.8 16.54 2 34 123.87

LA26

GA 1525 1699 1619.51 39.5 0 - 4.44
GIFA-GA 1485 1667 1614.11 32.59 0 - 4.65
GSA 1433 1586 1512.22 36.47 0 - 91.67
GIFA-GSA 1420 1523 1503.73 17.99 0 - 91.94
LSGA 1517 1665 1597.94 36.67 0 - 60.84
GIFA-LSGA 1492 1537 1534.11 28.74 0 - 61.07
aLSGA 1302 1384 1343.28 19.69 0 - 124.93
GIFA-aLSGA 1273 1382 1332.68 13.28 0 - 125.12
mXLSGA 1218 1371 1300.85 41.88 6 85 203.95
GIFA-mXLSGA 1218 1371 1258.51 32.32 11 67 204.3

LA31

GA 2120 2326 2223.14 48.45 0 - 6.23
GIFA-GA 2111 2322 2197.31 45.19 0 - 6.51
GSA 1943 2142 2050.17 63.09 0 - 130.65
GIFA-GSA 1919 2101 1964.2 56.94 0 - 130.89
LSGA 2005 2336 2177 66.29 0 - 123.23
GIFA-LSGA 1986 2301 2119.88 62.49 0 - 123.57
aLSGA 1808 1897 1843.51 21.17 0 - 258.53
GIFA-aLSGA 1784 1861 1841.25 19.13 2 80 258.81
mXLSGA 1784 1845 1807.71 19.2 5 80 424.56
GIFA-mXLSGA 1784 1845 1805.98 18.96 7 71 424.77

In Table 1, it is possible to observe that the operator made all methods more stable,
reducing the amplitude of the mean and standard deviation in all situations in which
improvement was possible. Furthermore, in most cases, the addition of the GIFA operator
resulted in a decrease in the worst makespan value found. In fact, the operator was not
able to improve this indicator only with respect to the mXLSGA method and considering
three instances: LA 23, LA 26 and LA 31. An analogous phenomenon can be observed with
respect to the best value obtained by each technique, since that, in most cases, the use of the
GIFA operator makes the original technique able to reach a value closer to the best-known
solution for the evaluated instance. In this case, it is possible to observe that the use of the
GIFA operator increased the number of best-known solutions found by the techniques in
all instances.

This fact is observed mainly in instances of lesser complexity. However, in more
complex instances, specifically from the instance LA 16, the proposed operator was able to
help a base technique to find the best-known solution only in the cases of the aLSGA and
mXLSGA techniques, the latter being able to find these values without the use of the genetic
improvement operator. This serves as an indication that the proposed operator offers a
considerable increase in the stability of the method; however, the ability to explore the
search space still has a strong dependence on the original technique. This occurs because
GIFA guides individuals with makespan values considered bad in regions where individ-
uals with good fitness values are known to exist, in order to increase local exploration
and, therefore, find good solutions; however, it is up to the original technique to indicate
good search regions. In addition, it is worth noting that the improvement that the GIFA
operator provides to a base technique does not have much relation to the computational
time required for its execution, since this is defined between 0.2 and 0.3 seconds, unlike the
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transgenic operator of [15], which requires an expensive preprocessing and simulation step
to determine the genetic relevance.

Thus, the second situation considered should serve as an experiment in this sense
so that we can evaluate the ability of the proposed operator to increase the search and
exploration power of a given technique. For this, we added the proposed GIFA operator in a
technique already known to be effective in finding good solutions in the JSSP instances that
compose the benchmark today: the mXLSGA [13]. In this case, we evaluate GIFA-mXLSGA
at 3 FT instances; 40 instances LA; 10 ORB instances; and 5 ABZ instances. In Tables 2–5,
we presented the results derived from 10 independent executions of our method on each
instance. The columns indicate, respectively, the instance that was tested, the instance size
(number of Jobs × number of Machines), the optimal solution of each instance, the results
achieved by each method considering all the executions (best solution found and error
percentage (Equation (6)) and the mean of the error with respect to each benchmark (MErr).

E% = 100× Best− BKS
BKS

, (6)

in which E% is the relative error, “BKS” is the best known Solution and “Best” is the best
value obtained by executing the algorithm 10 times for each instance.

Table 2. Comparison of computational results between GIFA-mXLSGA and other algorithms for FT.
The symbol “-” means “not evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA NGPSO SSS GA-CPG-GT GWO IPB-GA aLSGA
Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

FT06 6× 6 55 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00
FT10 10× 10 930 930 0.00 930 0.00 930 0.00 936 0.64 935 0.53 940 1.07 960 3.22 930 0.00
FT20 20× 5 1165 1165 0.00 1165 0.00 1210 3.86 1165 0.00 1180 1.28 1178 1.11 1192 2.31 1165 0.00

MErr 0.00 0.00 1.28 0.21 0.60 0.73 1.84 0.00

Table 3. Comparison of computational results between GIFA-mXLSGA and other algorithms for LA.
The symbol “-” means “not evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA NGPSO SSS GA-CPG-GT DWPA GWO IPB-GA aLSGA
Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

LA01 10× 5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00
LA02 10× 5 655 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00
LA03 10× 5 597 597 0.00 597 0.00 597 0.00 597 0.00 597 0.00 614 2.84 597 0.00 599 0.33 606 1.50
LA04 10× 5 590 590 0.00 590 0.00 590 0.00 590 0.00 590 0.00 598 1.35 590 0.00 590 0.00 593 0.50
LA05 10× 5 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00
LA06 15× 5 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00
LA07 15× 5 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00
LA08 15× 5 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00
LA09 15× 5 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00
LA10 15× 5 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00
LA11 20× 5 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00
LA12 20× 5 1039 1039 0.00 1039 0.00 1039 0.00 - - 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00
LA13 20× 5 1150 1150 0.00 1150 0.00 1150 0.00 - - 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00
LA14 20× 5 1292 1292 0.00 1292 0.00 1292 0.00 - - 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00
LA15 20× 5 1207 1207 0.00 1207 0.00 1207 0.00 - - 1207 0.00 1273 5.46 1207 0.00 1207 0.00 1207 0.00
LA16 10× 10 945 945 0.00 945 0.00 945 0.00 947 0.21 946 0.10 993 5.07 956 1.16 946 0.10 946 0.10
LA17 10× 10 784 784 0.00 784 0.00 794 1.27 - - 784 0.00 793 1.14 790 0.76 784 0.00 784 0.00
LA18 10× 10 848 848 0.00 848 0.00 848 0.00 - - 848 0.00 861 1.53 859 1.29 853 0.58 848 0.00
LA19 10× 10 842 842 0.00 842 0.00 842 0.00 - - 842 0.00 888 5.46 845 0.35 866 2.85 852 1.18
LA20 10× 10 902 902 0.00 902 0.00 908 0.66 - - 907 0.55 934 3.54 937 3.88 913 1.21 907 0.55
LA21 15× 10 1046 1052 0.57 1059 1.24 1183 13.09 1076 2.86 1090 4.20 1105 5.64 1090 4.20 1081 3.34 1068 2.10
LA22 15× 10 927 927 0.00 935 0.86 927 0.00 - - 954 2.91 989 6.68 970 4.63 970 4.63 956 3.12
LA23 15× 10 1032 1032 0.00 1032 0.00 1032 0.00 - - 1032 0.00 1051 1.84 1032 0.00 1032 0.00 1032 0.00
LA24 15× 10 935 940 0.53 946 1.17 968 3.52 - - 974 4.17 988 5.66 982 5.02 1002 7.16 966 3.31
LA25 15× 10 977 984 0.71 986 0.92 977 0.00 - - 999 2.25 1039 6.34 1008 3.17 1023 4.70 1002 2.55
LA26 20× 10 1218 1218 0.00 1218 0.00 1218 0.00 - - 1237 1.55 1303 6.97 1239 1.72 1273 4.51 1223 0.41
LA27 20× 10 1235 1261 2.10 1269 2.75 1394 12.87 1256 1.70 1313 6.31 1346 8.98 1290 4.45 1317 6.63 1281 3.72
LA28 20× 10 1216 1239 1.89 1239 1.89 1216 0.00 - - 1280 5.26 1291 6.16 1263 3.86 1288 5.92 1245 2.38
LA29 20× 10 1152 1190 3.29 1201 4.25 1280 11.11 - - 1247 8.24 1275 10.67 1244 7.98 1233 7.03 1230 6.77
LA30 20× 10 1355 1355 0.00 1355 0.00 1355 0.00 - - 1367 0.88 1389 2.50 1355 0.00 1377 1.62 1355 0.00
LA31 30× 10 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00
LA32 30× 10 1850 1850 0.00 1850 0.00 1850 0.00 - - 1850 0.00 1850 0.00 1850 0.00 1851 0.05 1850 0.00
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Table 3. Cont.

Instance Size BKS GIFA-mXLSGA mXLSGA NGPSO SSS GA-CPG-GT DWPA GWO IPB-GA aLSGA
Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

LA33 30× 10 1719 1719 0.00 1719 0.00 1719 0.00 - - 1719 0.00 1719 0.00 1719 0.00 1719 0.00 1719 0.00
LA34 30× 10 1721 1721 0.00 1721 0.00 1721 0.00 - - 1725 0.23 1788 3.89 1721 0.00 1749 1.62 1721 0.00
LA35 30× 10 1888 1888 0.00 1888 0.00 1888 0.00 - - 1888 0.00 1947 3.125 1888 0.00 1888 0.00 1888 0.00
LA36 15× 15 1268 1295 2.12 1295 2.12 1408 11.04 1304 2.83 1308 3.15 1388 9.46 1311 3.39 1334 5.20 - -
LA37 15× 15 1397 1407 0.71 1415 1.28 1515 8.44 - - 1489 6.58 1486 6.37 - - 1467 5.01 - -
LA38 15× 15 1196 1246 4.18 1246 4.18 1196 0.00 - - 1275 6.60 1339 11.95 - - 1278 6.85 - -
LA39 15× 15 1233 1258 2.02 1258 2.02 1662 34.79 - - 1290 4.62 1334 8.19 - - 1296 5.10 - -
LA40 15× 15 1222 1243 1.71 1243 1.71 1222 0.00 1252 2.45 1252 2.45 1347 10.22 - - 1284 5.07 - -

MErr 0.49 0.61 2.42 0.59 1.50 3.52 1.27 1.99 0.80

Table 4. Comparison of computational results between GIFA-mXLSGA and other algorithms for
ORB. The symbol “-” means “not evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA IPB-GA NIMGA aLSGA PaGA LSGA
Best E% Best E% Best E% Best E% Best E% Best E% Best E%

ORB01 10 × 10 1059 1068 0.85 1068 0.85 1099 3.78 1059 0 1092 3.12 1149 8.5 1088 2.74
ORB02 10 × 10 888 889 0.11 889 0.11 906 2.03 890 0.23 894 0.68 929 4.62 921 3.72
ORB03 10 × 10 1005 1023 1.79 1023 1.79 1056 5.07 1026 2.09 1029 2.39 1129 12.34 1041 3.58
ORB04 10 × 10 1005 1005 0 1005 0 1032 2.69 1019 1.39 1016 1.09 1062 5.67 1052 4.68
ORB05 10 × 10 887 887 0 889 0.23 909 2.48 893 0.68 901 1.58 936 5.52 903 1.8
ORB06 10 × 10 1010 1013 0.3 1019 0.89 1038 2.77 1012 0.2 1028 1.78 1060 4.95 1062 5.15
ORB07 10 × 10 397 397 0 397 0 411 3.53 397 0 405 2.02 416 4.79 408 2.77
ORB08 10 × 10 899 907 0.89 907 0.89 917 2 909 1.11 914 1.67 1010 12.35 908 1
ORB09 10 × 10 934 940 0.64 940 0.64 - 942 0.86 943 0.96 994 6.42 980 4.93
ORB10 10 × 10 944 944 0 944 0 - - - -

MErr 0.46 0.54 3.04 0.73 1.7 7.24 3.37

Table 5. Comparison of computational results between GIFA-mXLSGA and other algorithms for
ABZ. The symbol “-” means “not evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA GA-CPG-GT MeCSO IPB-GA
Best E% Best E% Best E% Best E% Best E%

ABZ05 10 × 10 1234 1234 0 1234 0 1238 0.32 1236 0.16 1241 0.57
ABZ06 10 × 10 943 943 0 943 0 947 0.42 949 0.64 964 2.23
ABZ07 20 × 15 656 657 0.15 695 5.95 - - - - 719 9.6
ABZ08 20 × 15 648 713 10.03 713 10.03 - - - - 738 13.89
ABZ09 20 × 15 679 680 0.15 721 6.19 - - - - 742 9.28

MErr 2.07 4.43 0.37 0.4 7.11

Analyzing Tables 2–5, we can see that the proposed genetic improvement operator
was able to improve the search capability of the mXLSGA method (the GA-like method
with the best results for JSSP). Specifically, considering only the LA instances, the use of
the proposed operator was able to reduce the magnitude of the mean relative error by
0.12, which corresponds to a reduction of 19.67% of its value. In other words, the GIFA
operator made the mXLSGA method able to find the best known makespan in 72.5% of
the LA instances, obtaining a mean relative error of 0.50, the lowest among all methods.
With respect to FT instances, the proposed operator GIFA did not compromise the search
capability of mXLSGA, causing the best known solutions to be found in all instances. In the
case of ORB instances, GIFA improved the performance of mXLSGA in ORB05 instance
and made the method capable of finding the best known solution in ORB06, reducing the
average error of the technique from 0.54 to 0.46. Furthermore, with respect to the ABZ
instances, the average error of GIFA-mXLSGA is less than half the error of mXLSGA, since
the proposed genetic improvement operator improved the results of the base technique
in the ABZ07 and ABZ09 instances. In summary, some points can be highlighted when
analyzing the results referring to Tables 2–5:

• There was no worsening of the results in any instance with the use of the GIFA operator;
• The GIFA-mXLSGA method had the smallest relative error;
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• The GIFA operator made mXLSGA able to find the best known solution in instance
LA 22;

• GIFA operator improved mXLSGA results in 7 LA instances;
• The GIFA operator made mXLSGA able to find the best known solution in instance

ORB06 and improved the solution obtained in ORB05,
• The GIFA operator reduced the average error of mXLSGA by 53% in ABZ instances.

With these results, it can be seen that in the tested JSSP instances, the proposed
genetic improvement operator is effective in increasing the efficiency of the mXLSGA base
technique in finding good solutions.

6. Conclusions

To obtain advances in the solution of instances of the well-known JSSP, this work
proposed the development of a genetic improvement operator based on the analysis of
the frequency of genes present in well-adapted individuals of the population: the GIFA
operator. This operator was proposed in a versatile way so that it can be easily integrated
into any GA-like method. In this work, its performance was proven in 58 well-known
JSSP instances of different complexities. The considered instances were FT [45], LA [46],
ORB [56] and ABZ [57]. GIFA results were compared with other approaches in related
works: mXLSGA [13], NGPSO [44], SSS [43], GA-CPG-GT [32], DWPA [58], GWO [59],
IPB-GA [31], aLSGA [20], among others.

To evaluate GIFA’s performance, the operator was attached to five different GA-like
metaheuristics that represent the state of the art in the specialized literature, with mXLSGA
as one. All techniques and their versions with GIFA were performed 35 times, and some
facts were observed. In this case, during the evaluations, we found that GIFA made all the
metaheuristics more stable since it reduced the mean and standard deviation in all cases
where this was possible.

In addition, the worst value presented by each technique during its executions was also
reduced in most cases. Something similar occurred with the indicator of the best solution
found with each technique. These facts corroborate the assumption that GIFA helps GA-
like metaheuristics to find better solutions. However, the search capability of the GA-like
method itself has a strong influence on the operator, as the operator guides poorly adapted
individuals to good regions of the search space; however, it is up to the base technique
to detect these regions. In the second situation, the ability of the proposed material to
calculate good solutions for JSSP instances was evaluated and, for that, the obtained results
with metaheuristics of the most varied types and inspirations were compared.

Thus, it was possible to observe that mXLSGA with GIFA presents a competitive
search power compared to the works that comprise the state of the art on the subject. In this
case, the method presented the smallest mean relative error in most situations considered,
having surpassed all the techniques on which its components were based. This also serves
as confirmation for the assumption that GIFA is capable of helping GA-like metaheuristics
increase their search power.

Numerically, the GIFA operator was able to improve the relative error MErr of the
mXLSGA method from 0.61% to 0.49% in the case of LA bases, from 0.54% to 0.46% in
the case of ORB bases and from 4.43% to 2.07% in the case of ABZ bases, representing,
respectively, improvements of 19.67%, 14.81% and 53.27% for that measure. Consequently,
the average between the MErr of the mXLSGA considering all four test bases, corresponding
to 1.395%, was reduced to 0.7555% with the use of the proposed operator—a reduction of
45.88% from the original value. Thus, we concluded that the proposed method is robust
with the ability to obtain good results in instances of varied complexities, since GIFA-
mXLSGA presented better or at least competitive results when compared with the other
methods present in the specialized literature.

For future advances and developments, we intend to consider deep-learning tech-
niques, mainly reinforcement-learning methods, to detect genetic influences on chromo-
somes from a GA-like method population. Furthermore, we intend to expand the devel-
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oped material to other problems in the same field of application, such as Flexible Job Shop
Scheduling [62] and to other classes of problems that demand combinatorial optimization,
such as pseudo-colorization problems in graphs [21,22].
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