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Abstract: Alzheimer’s Disease (AD) is a health apprehension of significant proportions that is
negatively impacting the ageing population globally. It is characterized by neuronal loss and the
formation of structures such as neurofibrillary tangles and amyloid plaques in the early as well as
later stages of the disease. Neuroimaging modalities are routinely used in clinical practice to capture
brain alterations associated with AD. On the other hand, deep learning methods are routinely used
to recognize patterns in underlying data distributions effectively. This work uses Convolutional
Neural Network (CNN) architectures in both 2D and 3D domains to classify the initial stages of AD
into AD, Mild Cognitive Impairment (MCI) and Normal Control (NC) classes using the positron
emission tomography neuroimaging modality deploying data augmentation in a random zoomed
in/out scheme. We used novel concepts such as the blurring before subsampling principle and
distant domain transfer learning to build 2D CNN architectures. We performed three binaries, that
is, AD/NC, AD/MCI, MCI/NC and one multiclass classification task AD/NC/MCI. The statistical
comparison revealed that 3D-CNN architecture performed the best achieving an accuracy of 89.21%
on AD/NC, 71.70% on AD/MCI, 62.25% on NC/MCI and 59.73% on AD/NC/MCI classification
tasks using a five-fold cross-validation hyperparameter selection approach. Data augmentation helps
in achieving superior performance on the multiclass classification task. The obtained results support
the application of deep learning models towards early recognition of AD.

Keywords: Alzheimer’s disease; binary classification; multiclass classification; statistical evaluation;
positron emission tomography; deep learning; data augmentation
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1. Introduction

Alzheimer’s Disease (AD) is a continuously evolving degenerative disturbance of
the brain and a frequently occurring disorder that mostly affects the aged population
worldwide [1]. It is distinguished by the continuous degeneration of nerve cells, formation
of neurofibrillary tangles as well as of amyloid plaques [2]. There is a strong possibility
that the cases of AD subjects may reach approximately 300 million till the year 2050 [3].
Detecting AD in its initial stages is essential to stop the degenerative process later [4].
Accurate diagnosis of AD is a cumbersome and specialized clinical task due to the ambiguity
involved and the expertise required in the evaluation of the impaired responsiveness.
Mild Cognitive Impairment (MCI) is a phase that occurs prior to AD and has received
considerable attention in recent times.

Neuroimaging modalities, for instance Magnetic Resonance Imaging (MRI) [5] and
Positron Emission Tomography (PET) [6], are playing a significant role in the recognition of
AD, with several other biomarkers deployed in clinical practice [7]. PET imaging can detect
Aβ deposition in the brain as well as τ-injury caused by τ plaques while neurodegeneration
can be detected by the structural MRI modality.

Machine and deep learning (ML/DL) techniques have received substantial attention
for the assessment of data from different sets of inputs such as text, images or volumes for
different applications such as depression recognition [8], opinion leader identification [9],
multi-object fuse detection [10], AD classification [11–13], cancer prediction [14], joint
Alzheimer’s and Parkinson’s diseases classification [15,16], automatic modulation classifi-
cation [17,18], diabetic retinopathy classification [19], AD assessment using independent
component analysis technique [20], and endangered plant species recognition [21]. These
methods can optimally infer representations from raw data through the use of a stratified
sampling approach with many varying levels of intricacies. In these networks, top level
topographies are more stable to the input noise than their bottom level counterparts [22,23].
Despite their strengths, problems such as overfitting, underfitting, class imbalance and
missing data limit the performance of these architectures. Overfitting (due to a high dimen-
sionality input image) is especially a well-known challenge in supervised classification that
occurs when a method generates a complex separating function that cannot adequately
explain a data set.

Supervised classification is important in disease diagnosis tasks such as early diag-
nosis of AD. Here, the aim is to search for a representation that maps the input data to
a set of labels [24]. Methods such as data augmentation, architectural choices and class
imbalance etc. impact the performance of an algorithm on a supervised classification
task. Diagnosis of AD is naturally a multiclass problem; however, it is normally solved as
genus of binary classification problems. Meaningful interpretation of features extracted by
deep architectures, for instance, Convolutional Neural Networks (CNNs) for classification
remains an open problem requiring further investigation and research.

Data augmentation methods such as image cropping, resizing, shifting, blurring, color
jittering, and other affine transformations as well as plastic and elastic deformations etc.
are routinely used in practice to enhance the size of datasets artificially which enables a
DL algorithm to generalize effectively. The effect of such transformations on the applied
domain enables a method to form effective representations helping it to achieve desired
results optimally. In this study, we have deployed random zoomed in/out as a data
augmentation method on a CNN model for multiclass classification between AD, MCI, and
Normal Control (NC) classes.

Transfer learning is a meaningful way to achieve effective performances on different
tasks. It has two variants, cross-domain and cross-modal. In the cross-domain variant of
transfer learning, the distribution which a task belongs to is different from the original
distribution of a task while in cross-modal learning it is the same. Cross-modal transfer
learning has shown some remarkable successes in recent years while cross-domain trans-
fer learning especially the one based on imagenet dataset features is a popular way of
improving the performances of tasks across different applications.



Sensors 2022, 22, 4609 3 of 18

Choosing optimal set of hyperparameters for DL algorithms is a difficult task due to
the fact that these models usually have millions of hyperparameters. In the experiments, we
chose a five-fold cross-validation (CV) approach to deal with this challenge. An advantage
of this approach is that due to the small size of training and large size of validation split on
a particular dataset in comparison to other CV approaches such as 10-fold CV, the obtained
solution is closer to the scenarios in the real world.

The Internet of Things (IoTs) [25] has revolutionized the way things interact in health
care, agriculture, signal processing, control systems, 5G and beyond 5G technologies as
well as in other domains. They provided an umbrella under which sensors, software and
other physical layer technologies are integrated to ease communication between devices
for the provision of different services. In the medical domain, these services are critical for
the early diagnosis of chronic diseases helping in disease prevention and control.

In the literature, several studies have been proposed for both AD-NC classification and
MCI-to-AD prediction tasks using an iterative sparse and DL model [26], for classifying
subjects into AD, MCI and NC classes using stacked denoising auto-encoders, 3D-CNNs,
support vector machines (SVM), random forests, decision trees, and k-nearest neighbor
classifiers [27], for AD subject classification using the gene subset from the DNA methyla-
tion dataset and enhanced deep recurrent neural network [28], for AD-NC classification
using cerebral catheter angiogram neuroimages and a combination of inception version 3
and densenet201 architectures [29], as well as utilizing dysregulation patterns of miRNA
biomarkers for the prediction of AD [30]. They also proposed methods for the classification
of frontotemporal dementia, AD and NC using the MRI neuroimaging modality and DL
models [31], a novel dense CNN network to differentiate among stable and progressive MCI
classes using hippocampal morphometry [32], a U-Net styled DL architecture for AD-NC
classification task from retinal vasculature images [33], an explainable 3D residual attention
deep neural network (DNN) for AD-NC and progressive MCI–static MCI classification
tasks [34], a multi-modal data platform architecture to implement regression tasks and
to predict the progression of AD [35], as well as transfer learning models such as LeNet,
AlexNet, VGG-16, VGG-19, Inception-V1, Inception-V2, Inception-V3, DenseNet-121, etc.,
for binary classification between NC, MCI and AD classes [36]. Similarly, research has been
done to propose a deep separable CNN model along with AlexNet and GoogLeNet transfer
learning based models for AD early diagnosis [37], aggregation of CNN with a deep neural
network model for AD-NC classification task [38], gait-based cognitive screening and
machine learning to differentiate among AD, MCI and NC classes [39], a variant of CNN
for AD, NC, MCI, early MCI and late MCI classification [40], as well as an end-to-end
framework comprising of CNNs and MRI scans for AD-NC binary and for multiclass
tasks [41]. Furthermore, the authors have proposed a correlation analysis method for
disease diagnosis between single-nucleotide polymorphisms and region of interest based
on a DL model [42], transfer learning-based EfficientNet architectures for the classification
of AD, MCI and NC classes [43,44], a finetuned ResNet18 network to predict MCI, early
MCI, late MCI and AD classes [45], and gray level co-occurrence matrix-based features for
AD-NC classification task using decision trees and support vector machine-based classi-
fiers [46]. In addition, the authors have proposed techniques for the classification of mild
dementia, moderate dementia, non-dementia and very mild dementia using deepdream,
fuzzy color image enhancement, hypercolumn data enhancement techniques and support
vector machine-based classifier [47], for the prediction of clinical scores of AD using group
LASSO, correntropy and multilayer recurrent neural network [48], a densely connected
CNN with attention mechanism for hierarchical multilevel feature extraction based on MRI
images for AD-NC, MCI converter-NC and MCI converter–MCI nonconverter classification
tasks [49], as well as a DL-based approach for AD-NC classification using functional MRI
and PET images [50].

The up-to-date CNN architectures do not obey the Nyquist sampling theorem due to
which small perturbations in input such as random shifting operation even by one pixel
changes the output of the CNN architectures drastically deviating from the true target. To



Sensors 2022, 22, 4609 4 of 18

overcome this, blurring before subsampling is a widely deployed technique that works
in such a way that blur removes above Nyquist limit frequencies, so that subsampling
does not cause aliasing. To introduce this principle in modern CNN architectures, pooling
operation can be performed in two steps: a stride 1 max-pooling layer followed by a stride
2 convolutional layer [51].

This study is designed to compare different DL architectures in the 2D and 3D domains.
The purpose is to understand the performance differences between the architectures learned
in these domains as they try to diagnose early stages of AD. To achieve this objective, we
made use of CNN architectures in the 2D and 3D domains to extract features from the
PET neuroimaging modality. We also deployed novel methods such as blurring before
subsampling principle for AD-NC classification task and data augmentation methods such
as random zoomed in/out for the multiclass classification task to study their impact on
the final classification performances. This study is unique as it combines many interesting
concepts in DL such as blurring before subsampling principle, cross-domain transfer
learning as well as learning in the 3D domain for the early categorization of AD deploying
only the PET neuroimaging modality for the first time in the literature.

The remaining contents of this paper are described next. The dataset used for this
study is presented in Section 2. Methods are described in Section 3, experiments in Section 4
followed by the description of results and their discussion in Section 5. Lastly, in Section 6,
we present the conclusions.

2. Dataset Description

We employed the PET neuroimaging modality and used scans of this modality from
the AD Neuroimaging Initiative (ADNI) [52] database. Subject demographics used in this
study are shown in Table 1. We presented the data in the form of mean (min-max) format.
Images are used from the ADNI-1 baseline project. We used whole brain scans in our
simulations to extract features that are more likely to be generalized while acknowledging
that they might not be able to identify delicate changes in fine brain structures which
can lead to a wrong diagnosis. Some sample scans used in the experiments are shown in
Figure 1.

Table 1. Demographics of patients and normal control individuals considered for this study.

Research
Group

Number of
Subjects Age Weight FAQ Total

Score
NPI-Q Total

Score

NC 102 76.01
(62.2–86.6)

75.7
(49–130.3) 0.186 (0–6) 0.402 (0–5)

MCI 97 74.54
(55.3–87.2)

77.13
(45.1–120.2) 3.16 (0–15) 1.97 (0–17)

AD 94 75.82
(55.3–88)

74.12
(42.6–127.5) 13.67 (0–27) 4.07 (0–15)
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3. Methods

We used both transfer and non-transfer learning-based DL architectures, i.e., CNNs in
the 2D and 3D domains to study three binary, i.e., AD/NC, AD/MCI, and NC/MCI and
one multiclass, i.e., AD/NC/MCI, classification problems. We deployed custom 3D CNN
architectures to study all these problems. Furthermore, We deployed a transfer learning
model based on Xception architecture [53] for categorization between MCI and AD classes
as well as for multiclass classification among NC, MCI and AD. A custom CNN architecture
is used in the 2D domain for classification between NC and MCI classes as well as between
NC and AD classes. We used blurring before subsampling principle to create the CNN
architecture in the 2D domain for discrimination among NC and AD classes.

For the balanced multiclass classification task, Confusion Entropy (CEN), Relative
Classifier Information (RCI), Geometric Mean (GM), Index of Balanced Accuracy (IBA),
and Matthew’s Correlation Coefficient (MCC) are used as performance metrics while for
the balanced binary classification tasks, sensitivity (SEN), specificity (SPEC), F1-score or
F-measure, balanced accuracy and precision are used as performance metrics due to their
versatility and ease of deployment [54].

RCI is a measure of class separability that tells us how distinctly classes have been
detached from one another. Its values are in the interval between zero and one. RCI values
closer to one represent better classification. CEN is a measure grounded in information
theory designed to measure the performances of classifiers. CEN uses the idea of entropy
and evaluates the confusion that leads to misclassified samples. Smaller values of CEN
are better and highly desirable. IBA gives evidence about supremacy of a class with the
optimum level of precision at an individual level. Higher values of this measure are
highly desirable. GM gives information in a class coherent manner and its attention is
focused only on the recall of an individual class. Higher values of GM are desirable in
class discrimination tasks. MCC is the performance metric defined as the coefficient of
correlation between the observed and predicted classifications. Higher values of MCC are
highly desirable.

Balanced Accuracy is the recall for each class, averaged over the number of classes.
It is intuitively simple as an assessment tool; the predictive quality is measured for each
class independently and then aggregated. SEN or Recall represents the percentage of true
positives to the true positives and false negatives summation. SPEC represents the propor-
tion of true negatives to the summation of true negatives and false positives. Precision is
the proportion of true positives to the sum of true positives and false positives. F1-Score or
F-measure is the harmonic average of the recall and precision.

3.1. CNN Architectures in 2D and 3D Domains for Multiclass Categorization among AD, MCI
and NC Classes

CNN architectures for multiclass classification are shown in Figures 2 and 3. We
chose the Xception model due to its good performance in 2D domain trained on Imagenet
database. This architecture uses the idea of depthwise separable convolutions to build
a robust architecture. We removed the last layers in the Xception model and embedded
a flatten layer, a dense layer of 256 neurons with rectified linear unit (ReLU) activation
function, a layer with a dropout probability of 0.5 and a second dense layer with 3 neurons
activated by the softmax activation function to solve the multiclass classification problem.

The CNN architecture in 3D domain for multiclass classification is shown in Figure 3.
An input of 79 × 95 × 69 is utilized in this architecture, which is initialized with a zero
center normalization technique that divides each dimension (channel) by its standard
deviation and subtracts the mean from each of these dimensions. After then, a block is
repeated five times in a row. This block contains a convolutional feature extraction layer
with a kernel size of 3 and 6 feature maps with a weight and bias L2 factor of 0.00005, which
is used to push the weights closer to the origin. The main purpose of this convolutional
layer is to extract features. Following the convolutional layer, a batch normalization (BN)
layer is added to act as a regularizer and speed up the computations, followed by an
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exponential linear unit (ELU) activation layer with its hyperparameter α set to 1 and a
maxpooling layer with filter and stride size 2 × 2 × 2, to reduce the spatial feature maps
dimension and reduce the number of computations required by the network. Finally, there
are three dense layers, a dropout probability of 0.1 layer, a softmax nonlinear layer, and
a classification layer. To tackle the multiclass classification issue, the first fully connected
(FC) layer has 100 neurons, the second has 50 neurons, and the third has three neurons. The
weight and bias L2 factors of these FC layers are 0.00005.
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The 2D CNN architecture for binary classification between the AD and MCI classes is
shown in Figure 4. We chose the Xception model as a transfer learning model once more.
We eliminated the last layers of the Xception model and replaced them with a flatten layer,
an FC layer of 256 neurons, a dropout layer with probability 50%, and a second FC layer
with a single neuron driven by the sigmoid function.

For this task, Figure 5 shows the CNN architecture in the 3D domain. In this archi-
tecture, an input layer accepts an input of size 79 × 95 × 69 that has been zero-centered
normalized. Then, a block is repeated three times in a row. A convolutional feature ex-
traction layer with kernel size 3 and 5 feature maps is included in this block. Following
the convolutional layer, there is a non-linear activation layer with ELU non-linearity and
its hyperparameter α set to 1, followed by a maxpooling dimensionality reduction layer
with filter size 2 and stride size 1 to reduce the spatial dimension of feature maps, and
finally a BN layer to speed up computations. Finally, there is a probability 0.5 dropout
layer, followed by three FC layers, a softmax non-linear activation function layer, and
a classification layer. To solve the binary classification problem, the first FC layer has
100 neurons, the second one has 10 neurons, and the third one has two neurons.

3.3. CNN Architectures in 2D and 3D Domains for AD-NC Binary Classification

CNN architectures for binary classification between AD and NC classes are shown in
Figures 6 and 7.
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Figure 6 shows a 2D CNN architecture for 2-class classification between AD and NC
classes. This architecture embeds the blurring before subsampling principle. The input
layer in this design accepts size 79 × 95 and is initialized with the zero center normalization
process. Then, a block is repeated three times in a row. The convolutional layer is trailed
by a layer to implement the BN procedure, an ELU nonlinear activation layer with its
hyperparameter α set to 1, a dimensionality reduction layer with maxpooling operator
with filter size 2 and stride size 1 to reduce the spatial dimension of feature maps, and
another convolutional feature extracting layer with kernel and stride size 2 and number of
feature maps equaling 64 with a weight and bias L2 factor equal to 0.00005. Then, another
block is repeated three times in a row. This block has a convolutional feature extraction
layer with a kernel size of 3 and 96 feature maps with weight and bias L2 factors of 0.00005.
The convolutional layer is followed by a BN layer, which is followed by a non-linear layer
with an ELU activation function with its hyperparameter α set to a value of 1, which is
followed by a maxpooling dimensionality reduction layer with a filter size of 2 and a stride
size of 1, which is followed by another convolutional feature extracting layer with a kernel
and stride size of 2 and 96 feature maps with a weight and bias L2 factor of 0.00005. Then,
another block is repeated once in a row. This block has a convolutional feature extraction
layer with a kernel size of 3 and 128 feature maps with weight and bias L2 factors of 0.00005.
The convolutional layer is followed by a BN layer, which is followed by a non-linear layer
with ELU activation function and its hyperparameter α set to 1, which is followed by a
maxpooling dimensionality reduction layer with filter size 2 and stride size 1, which is
followed by another convolutional feature extracting layer with kernel and stride size 2
and 128 feature maps with a weight and bias L2 factor of 0.00005. Finally, there is a global
average pooling layer that averages out all features inside a feature map, followed by three
dense layers, a layer with a dropout probability of 0.1, a layer with a softmax activation
function, and a data classification layer. To solve the binary classification problem, the first
FC layer has 300 neurons, the second has 100 neurons, and the third has 2 neurons.

Figure 7 depicts the CNN architecture for this assignment in the 3D domain. There is
a layer in this design that accepts an input of 79 × 95 × 69 and is initialized with the zero
center normalization process. The block is then repeated 5 times in a row. This block has
four feature maps and a convolutional feature extraction layer with kernel size 3. This layer
is followed by a BN layer, which functions as a regularizer and may be used to speed up
calculations, a non-linear layer with an ELU activation function with its hyperparameter α
set to 1, and a maxpooling dimensionality reduction layer with a filter and stride of size 2.
Finally, there are three FC layers, followed by a layer with a softmax activation function
and a layer that performs the final classification. There is a layer with a dropout probability
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of 0.1 just before the softmax layer. To tackle the binary classification problem, the first
FC layer contains 100 neurons, the second contains 10 neurons, and the third contains
2 neurons.

3.4. CNN Architectures in 2D and 3D Domains for Binary Classification of MCI and NC

The CNN architectures for the binary classification between MCI and NC classes are
given in Figures 8 and 9.
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Figure 8 depicts the CNN architecture in the 2D domain for this job. There is a layer in
this design that accepts 79 × 95 as an input and is initialized with zero-center normalization.
The block is then repeated three times in a row. This block has a convolutional feature
extraction layer with a kernel size of 3 × 3 and 32 feature maps with weight and bias
L2 factors of 0.00005. Succeeding the convolutional layer is a layer that normalizes the
batches, which is followed by a non-linear layer with ELU activation function with its
hyperparameter α set to a value of 1, which is followed by a maxpooling dimensionality
reduction layer with filter and stride of size 2 to reduce the spatial dimension of feature
maps. Then, another block is repeated three times in a row. This block has a convolutional
feature extraction layer with a kernel size of 3 and 64 feature maps with weight and
bias L2 factors of 0.00005. Succeeding the convolutional feature extracting layer is a
layer that normalizes the incoming batches, followed by a non-linear layer with an ELU
activation function and a hyperparameter α set to a value of 1, followed by a maxpooling
dimensionality reduction layer with a filter and stride size of 2 to reduce the spatial
dimension of feature maps. Then, another block is repeated three times in a row. This
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block has a convolutional feature extraction layer with a kernel size of 3 and 96 feature
maps with weight and bias L2 factors of 0.00005. The convolutional feature extracting
layer is followed by a layer that normalizes the incoming batches, followed by a layer
with ELU non-linear activation function with its hyperparameter α set to 1, followed by
a maxpooling dimensionality reduction layer with filter and stride size set to 2 to reduce
the spatial dimension of feature maps. Then, another block is repeated once in a row.
This block consists of three FC layers, a layer with a dropout probability of 0.1, a layer
with a softmax activation function, and finally a classification layer. To solve the binary
classification problem, the first FC layer has 100 neurons, the second has 50 neurons, and
the third has 2 neurons.

Sensors 2022, 22, 4609 10 of 18 
 

 

 
Figure 9. MCI/NC binary classification architecture in 3D domain. 

Figure 8 depicts the CNN architecture in the 2D domain for this job. There is a layer 
in this design that accepts 79 × 95 as an input and is initialized with zero-center 
normalization. The block is then repeated three times in a row. This block has a 
convolutional feature extraction layer with a kernel size of 3 × 3 and 32 feature maps with 
weight and bias L2 factors of 0.00005. Succeeding the convolutional layer is a layer that 
normalizes the batches, which is followed by a non-linear layer with ELU activation 
function with its hyperparameter α set to a value of 1, which is followed by a maxpooling 
dimensionality reduction layer with filter and stride of size 2 to reduce the spatial 
dimension of feature maps. Then, another block is repeated three times in a row. This 
block has a convolutional feature extraction layer with a kernel size of 3 and 64 feature 
maps with weight and bias L2 factors of 0.00005. Succeeding the convolutional feature 
extracting layer is a layer that normalizes the incoming batches, followed by a non-linear 
layer with an ELU activation function and a hyperparameter α set to a value of 1, followed 
by a maxpooling dimensionality reduction layer with a filter and stride size of 2 to reduce 
the spatial dimension of feature maps. Then, another block is repeated three times in a 
row. This block has a convolutional feature extraction layer with a kernel size of 3 and 96 
feature maps with weight and bias L2 factors of 0.00005. The convolutional feature 
extracting layer is followed by a layer that normalizes the incoming batches, followed by 
a layer with ELU non-linear activation function with its hyperparameter α set to 1, 
followed by a maxpooling dimensionality reduction layer with filter and stride size set to 
2 to reduce the spatial dimension of feature maps. Then, another block is repeated once in 
a row. This block consists of three FC layers, a layer with a dropout probability of 0.1, a 
layer with a softmax activation function, and finally a classification layer. To solve the 
binary classification problem, the first FC layer has 100 neurons, the second has 50 
neurons, and the third has 2 neurons. 

Figure 9 depicts the CNN architecture in 3D for this task. There is an input layer in 
this design that accepts a volume of dimension 79 × 95 × 69 that has been initialized with 
the zero-center normalization process. Then, in a sequential method, a block is repeated 5 
times. A feature extraction convolutional layer with kernel size 3 and 4 feature maps is 
included in this block. This layer is followed by a BN layer, a nonlinear layer with an ELU 
activation function with its hyperparameter α set to a value of 1, and a maxpooling 
dimensionality reduction layer with a filter and stride size of 2. Finally, there are three FC 
layers followed by a softmax activation function layer and a classification layer. There is 
a layer with a dropout probability of 10% immediately preceding the softmax layer. To 
solve the binary classification problem, the first FC layer has 100 neurons, the second has 
10 neurons, and the third one has two neurons. 

4. Experiments 

Figure 9. MCI/NC binary classification architecture in 3D domain.

Figure 9 depicts the CNN architecture in 3D for this task. There is an input layer in
this design that accepts a volume of dimension 79 × 95 × 69 that has been initialized with
the zero-center normalization process. Then, in a sequential method, a block is repeated
5 times. A feature extraction convolutional layer with kernel size 3 and 4 feature maps
is included in this block. This layer is followed by a BN layer, a nonlinear layer with an
ELU activation function with its hyperparameter α set to a value of 1, and a maxpooling
dimensionality reduction layer with a filter and stride size of 2. Finally, there are three FC
layers followed by a softmax activation function layer and a classification layer. There is
a layer with a dropout probability of 10% immediately preceding the softmax layer. To
solve the binary classification problem, the first FC layer has 100 neurons, the second has
10 neurons, and the third one has two neurons.

4. Experiments

To choose an optimum set of hyperparameters for the different architectures employed
in this study, we employed a five-fold CV approach. An independent set is constructed for
testing purposes. In the test set, there were 12 instances of NC class, 7 instances of MCI
class and 4 instances of AD class. We studied balanced binary and multiclass classification
problems. In the training and validation sets, we used 90 instances each of NC, MCI and
AD classes.

For experiments between MCI and AD classes in the 2D domain using transfer learning,
we deployed a scheduler that uses step learning rate decay as a policy for dropping the
learning rate. We set the initial learning rate to 0.0001. Moreover, as an optimizer, stochastic
gradient descent (SGD) is used along with categorical cross-entropy loss function. We chose
a minibatch of size 16 for all the experiments. All the 2D images are preprocessed through
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rescaling by a factor of 1/255. The gradient clipping technique is also used that works by
truncating the gradients if their magnitudes exceed a certain threshold.

For the experiments on binary categorization between NC and AD classes as well as
NC and MCI classes in the 2D and 3D domains and for the MCI/AD binary classification
task in the 3D domain, we deployed a scheduler that uses step learning rate decay as a
policy. Adam [55] is used as an optimizer while categorical cross entropy is applied as a
loss function.

For multiclass classification experiments in the 3D domain, we deployed a scheduler
that uses step learning rate decay as a policy for dropping the learning rate after every
epoch. We used Adam as an optimizer while categorical cross entropy is used as a loss
function. We augment samples only in the training set for the experimental purpose using
random zoom in/out augmentation scheme.

5. Results and Discussion

Result of the multiclass classification task is shown in Table 2 while those of binary
classification tasks in Tables 3–5. In Tables 2–5, it can be observed that the 3D CNN
architectures outperformed their 2D counterparts in almost all performance metrics.

Table 2. Performance metrics for the multiclass classification task.

Domain Performance Metrics

3D

RCI = 0.2054,

CEN = ‘AD’: 0.5088, ‘MCI’: 0.8038, ‘NC’: 0.5346,

IBA = ‘AD’: 0.5660, ‘MCI’: 0.1091, ‘NC’: 0.5745,

GM = ‘AD’: 0.7928, ‘MCI’: 0.4914, ‘NC’: 0.7406,

MCC = ‘AD’: 0.5784, ‘MCI’: 0.1462, ‘NC’: 0.4614

2D

RCI = 0.03,

CEN = ’AD’: 0.74, ’MCI’: 0.77, ’NC’: 0.76,

IBA = ’AD’: 0.203, ’MCI’: 0.28, ’NC’: 0.1,

GM = ’AD’: 0.574, ’MCI’: 0.51, ’NC’: 0.48,

MCC = ’AD’: 0.22, ’MCI’: 0.029, ’NC’: 0.125

Table 3. Performance metrics for the AD-MCI binary classification task.

Domain Performance Metrics

3D

SEN = 0.7021,

SPEC = 0.7320,

F1-score = 0.7097,

Precision = 0.7174,

Balanced Accuracy = 0.7170

2D

SEN = 0.5395,

SPEC = 0.5976,

F1-score = 0.5520,

Precision = 0.5651,

Balanced Accuracy = 0.5686
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Table 4. Performance metrics for the AD-NC binary classification task.

Domain Performance Metrics

3D

SEN = 0.8723,

SPEC = 0.9118,

F1-score = 0.8865,

Precision = 0.9011,

Balanced Accuracy = 0.8921

2D

SEN = 0.4288,

SPEC = 0.6782,

F1-score = 0.4823,

Precision = 0.5511,

Balanced Accuracy = 0.5535

Table 5. Performance metrics for the MCI-NC binary classification task.

Domain Performance Metrics

3D

SEN = 0.5979, SPEC = 0.6471,

F1-score = 0.6073, Precision = 0.6170,

Balanced Accuracy = 0.6225

2D

SEN = 0.4729, SPEC = 0.5358,

F1-score = 0.4823, Precision = 0.4921,

Balanced Accuracy = 0.5043

We deployed the blurring before subsampling principle [51] to build 2D CNN architec-
ture for the binary classification between NC and AD classes as modern CNN architectures
failed to follow the classical Nyquist sampling criterion due to which they lose the in-
variance of representation. However, we found that this principle has not helped the
2D domain architecture in achieving better performance in comparison to its 3D domain
counterpart which could be due to weak representations learned by this architecture.

In Table 2, it can be seen that CEN (‘MCI’ class), IBA (‘MCI’ class) and GM (‘MCI’ class)
for the 2D CNN architecture is better than the values of its corresponding 3D counterpart. In
Tables 3–5, 3D CNN architecture has completely outperformed its 2D domain counterpart
which shows the effectiveness of the representations learned by this type of architecture as
these representations possess the properties of equivariance, invariance, and equivalence.
An explanation for the superior performance of 3D approaches has been confirmed by [56]
through their work as they found that 3D approaches outperformed their 2D counterparts
comprehensively. The PET imaging modality has been shown to have better performance
than MRI for AD classification task [57].

There are many reasons for the better performance of 3D CNN architectures over their
2D domain counterparts. Firstly, 3D CNN models incorporate spatial dimension during
training which allows them to form representations during training. On the other hand, the
2D CNN architectures does not use this information during training but only in inference
mode. Secondly, the architectural differences and hyperparameters (such as learning rate,
batch size, filter numbers etc.) differed in both these architectures, which has an impact on
final performances. The blurring before subsampling principle also has an impact on the
performance of 2D CNN architecture for AD-NC binary classification task as it has lowered
the performance of this architecture in comparison to its 3D domain counterpart which
could be due to strided convolution in the architecture as convolution with strides leave
information which are exploited by the 3D CNN architectures.
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An evaluation free of any bias is essential in any DL classification task. This is espe-
cially important for the experiments in the medical domain because the DL architectures
offer extreme flexibility in the choice of hyperparameters and other architectural choices. A
major restraint of this study has been the absence of testing on cross-modal datasets. An-
other limitation is the choice of hyperparameters for the experiments as we cannot eliminate
the possibility that other architectural choices might have achieved better performances
than our own. This problem can be resolved by continuous testing of hyperparameters
which is a computationally demanding task.

Transfer learning architectures that are employed in this study have inferior perfor-
mance to the architectures that are trained from scratch, for instance, 3D CNN architectures.
We used cross-domain transfer learning utilizing the features of Imagenet dataset which
are generalized across many different domains and datasets such as natural images. One
reason for the superior performance of architectures learned from scratch is that they learn
input distributions better when compared with transfer learning methods. Since we only
fine-tuned our transfer learning architectures, therefore, the features that are already fixed
in the earlier layers due to Imagenet based training were not very helpful in obtaining
better classification performances.

We found dataset augmentation to be very helpful in obtaining better classification
performances on the multiclass classification problem. Augmentation synthetically in-
creases the size of the dataset helping DL models to perform better as these systems are
data-hungry and generalize better when they are presented with a large number of samples.
However, data augmentation may not always help as we learned in this study that for the
binary classification tasks, it actually results in the inferior performances of architectures.
Caution should be exercised in the use of data augmentation methods so that maximum
benefits may be reaped due to their usage.

We deployed pre-processed rather than raw data due to its superior performance as
shown in [56,58,59]. In Tables 2–5, we can see that the discrimination between NC and
AD classes is easier in comparison to the one between NC and MCI classes or MCI and
AD classes. One reason for this behavior is that MCI lies on the continuum between NC
and AD classes and it is relatively difficult to discriminate it from NC or AD classes. As a
matter of fact, MCI class instances can be further divided into two subcategories, namely
progressive MCI and static MCI, where progressive MCI represent cases that progress to
AD after a certain period of time while static MCI are cases that do not do so.

Table 6 presents an assessment of our work with other approaches described in the
literature. Bold values in Table 6 represent our approach. As can be in Table 6, our approach
using 3D CNN architectures outperformed other approaches on both binary classification
between AD/NC, AD/MCI and AD/NC/MCI classification tasks. However, for NC/MCI
binary classification task, the obtained results are not better than the corresponding ap-
proaches. For NC/MCI binary classification task, we observed that specialized features
and the use of more data samples has brought dividends in terms of better performances
on this task.

Another point worth noting is that the NC/MCI binary classification task may benefit
strongly from learning from hand-crafted features than more generalized ones. One reason
for this behavior could be that MCI class instances are closer in trajectory to NC class
instances than to AD class instances, helping them to benefit from a design that offers the
flexibility of allowing stronger correlation with the NC class instances. This point warrants
further investigation.
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Table 6. A comparative overview of methods on different binary and multiclass classification tasks
for early AD diagnosis.

Authors Data Method(s) Accuracy Classification Task

Oh et al. [60] MRI

Inception
auto-encoder
based CNN
architecture

84.5% AD/NC

Ekin Yagis et al. [61] MRI 3D-CNN
architectures 73.4% AD/NC

Cosimo
Ieracitano et al. [62] MRI

Electroencephalo
graphic
signals

85.78% AD/NC

Proposed approach PET 3D-CNN
whole brain 89.21% AD/NC

Karim Aderghal
et al. [63] MRI

2D CNNs
hippocampal

region
66.5% AD/MCI

Karim Aderghal
et al. [64] MRI

2D CNNs
coronal, sagittal

and axial
projections

63.28% AD/MCI

Firouzeh Razavi
et al. [65] MRI + PET + CSF

Scattered
filtering and

softmax
regression

71.2% AD/MCI

Proposed approach PET 3D-CNN
whole brain 71.70% AD/MCI

Olfa Ben Ahmed
et al. [66] MRI

Circular
Harmonic
Functions

69.45% NC/MCI

Proposed approach PET 3D-CNN
whole brain 62.25% NC/MCI

Bijen Khagi
et al. [67] PET, MRI

DL architecture
employing

3D-CNN layers
50.21% AD/NC/MCI

Multiclass

Proposed approach PET 3D-CNN
whole brain 59.73% AD/NC/MCI

Multiclass

6. Conclusions

In this paper, we compared and contrasted the performance of CNN architectures in
2D and 3D domains for the early detection of AD. We performed three binaries: AD/NC,
NC/MCI, and AD/MCI and one multiclass AD/NC/MCI classification task using the PET
neuroimaging modality and whole brain images by deploying a five-fold CV approach for
hyperparameter selection. We used both transfer learning approaches (Xception architec-
ture) as well as approaches that used training from scratch. We achieved an accuracy of
89.21% on AD/NC, 71.70% on AD/MCI, 62.25% on NC/MCI and 59.73% on AD/NC/MCI
classification tasks using 3D-CNN architectures. We found the performance of CNN ar-
chitectures in the 3D domain to be the best, which shows the importance of learning in
the higher domain while training from scratch. We also found that the random zoomed
in/out data augmentation method helps in achieving better performance for the multiclass
classification task which indicates the importance of data augmentation for this problem.
We also confirm that the blurring before subsampling principle does not help us in getting
good classification performance. Challenges still exist in getting optimal performances
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such as a limited number of samples and generalization to unseen examples, etc., which
can hamper the performance of classification architectures towards the early diagnosis of
AD. We intend to expand on this research in the future by employing novel architectures
and data augmentation approaches such as graph convolutional networks and generative
adversarial networks, as well as learning in other domains such as the frequency domain
using the discrete cosine transform technique.
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