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Abstract: Motion capturing is used to record the natural movements of humans for a particular task.
The motions recorded are extensively used to produce animation characters with natural movements
and for virtual reality (VR) devices. The raw captured motion signals, however, contain noises
introduced during the capturing process. Therefore, the signals should be effectively processed before
they can be applied to animation characters. In this study, we analyzed several common methods used
for smoothing signals. The smoothed signals were then compared based on the smoothness metrics
defined. It was concluded that the filtering based on the B-spline-based least square method could
achieve high-quality outputs with predetermined continuity and minimal parameter adjustments for
a variety of motion signals.

Keywords: motion capture; motion data processing; digital signal processing; motion smoothing;
motion denoising; B-splines

1. Introduction

Motion capture (MoCap) has become one of the main sources of simulating real,
natural motions. The produced motions have extensive applications in motion analysis
research, animation, gaming, and virtual reality products.

The raw motion signals captured, however, are usually contaminated with noises from
different sources. Therefore, these signals should undergo special processes to generate
high-quality motion signals that can be used in the various applications mentioned above.
Moreover, due to the rapid development of virtual reality (VR), augmented reality (AR),
extended reality (XR), mixed reality (MR) and metaverse-based technologies, there is an
increased need to process human motion-captured signals in computer animation. For
these reasons, studies of motion smoothing or denoising techniques for generating more
realistic motion signals have always been appealing and can gain useful applications in
real-world digital entertainment systems.

Recently, a systematic review of the applications of motion capture (MoCap) in various
industries was studied by Menolotto et al. [1]. Their study mainly focused on applications
in the construction, robotics, and automotive industries. Motion capturing is achieved
by using various motion-capture devices, including body-fixed sensors [2], monocular
cameras [3], marker [4] or marker-less [5] approaches, and visual information [6], that
can track certain body points of the moving target object. Moreover, using infrared sen-
sors, depth cameras such as Microsoft Kinect and Vicon 3D [7] provide a convenient way
to track and extract motion data from depth maps with high accuracy [8–10]. Further-
more, Chatzitofis et al. [11] proposed DeepMoCap, a marker-based, optical motion-capture
method equipped with a multistage fully convolutional network (FCN) deep-learning ar-
chitecture. The proposed method could achieve up to 4.5% more accuracy compared to the
next best model in their study. For the design aspect of motion-capture wearables, readers
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are referred to a study by Marin et al. [12] in which they presented a design framework that
could help identify the design requirements for creating wearable products.

Regarding the smoothing of data obtained from a continuous experiment, vast liter-
ature is available. One of the earliest works was performed by Savitzky and Golay [13]
in which they leveraged the power of early computers to compute the smooth curve that
best fit the data using a simplified least square method. Eilers and Marx [14] combined
B-spline and difference penalties to form the so-called P-splines. They also presented a
way to calculate the optimal value of the smoothness penalty factor using the Akaike
information criterion (AIC). Moreover, in 2003, Eilers [15] proposed an improved version
of the Savitzky–Golay filter, the so-called perfect smoother, using a discrete penalized least
square method that offered continuous control over smoothness of the curve. Moreover,
this method allowed for fast leave-one-out cross-validation.

Hsieh [16] utilized B-spline wavelets to smooth the motion data. In his work, the noise
was modeled as high-frequency, small-amplitude components added to the original signal,
and then the noisy signal was decomposed using a wavelet transform process to detect and
eliminate the noise.

Qi et al. [17] presented and compared three different filtering methods, namely wavelet
filter, Gauss filter, and mean filter, to produce natural motion data. They smoothed the
position and orientation signals separately.

Lou and Chai [18] presented an example-based approach. They formulated the signal
denoising process as a nonlinear optimization process in which the objective function had
two parts to ensure the minimum distance between the noisy input and the filtered signal,
as well as the preservation of the spatial–temporal patterns of the human motion signals.

Using image and signal processing techniques such as multiresolution motion filtering,
multitarget motion interpolation with time-warping, and motion displacement mapping,
Bruderlin and Williams [19] used existing motion data to design and modify the animated
motions. Their method of blending motions could be used independently of the way the
animation was produced, whether it was achieved via traditional keyframing, motion
capture, or procedural animation.

In the case of motion signals, the signals usually contain a wide range of frequencies,
depending on the activity being captured and the channel being processed. Moreover, the
signals may contain outliers, or some data may be missing, depending on the capturing
tools, their accuracy, and the environment conditions.

There are several factors that contribute to the noise in the captured signal. They can
broadly be categorized into internal and external factors. By internal factors, we mean
noises associated with electronic parts used in the capturing device. Several contributing
factors for external noises can be due to (1) the experiment environment condition related
to the temperature, the weather, or the lighting; (2) the kind of activity being captured (for
example if it involves sudden movements or sudden changes in direction); (3) accidental
touching of the markers attached to the capture subject; and (4) interference by other radio
frequency signals present in the lab environment.

As can be seen, most of the contributing factors are inevitable in the process of motion
capturing. Therefore, denoising or other post-processing remedies, for example, in the
case of missing data, are essential parts of the process to acquire high-quality, smooth
motion signals.

The classical filters, such as moving average or Kalman filters, may not perform
well since they are too dependent on the current or immediate neighboring data being
processed. This motivates the application of B-spline smoothing to motion signals. B-spline
smoothing is appealing to us because of its flexible nature, i.e., the piecewise connectivity
between the curves and, more importantly, because the degree of continuity (and, hence,
the smoothness) of the produced signals is guaranteed and can be readily increased with
minimal effort. This is the unique property of B-spline-smoothed signals that cannot be
accessed through other filters. Therefore, in cases of the presence of outliers or missing data,
a B-spline smoother can naturally produce outputs that are reliable and smoothed to the
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required degree. Moreover, for studies involving the extraction of signal features such as
velocity and acceleration for downstream data processing, such as clustering and classifier
training [20], the ability to obtain reliable values for derivatives is required. B-spline
smoothing can be used to denoise motion signals, which then can be used reliably for the
accurate calculation of derivatives. This unique feature is not accessible using classical
filtering methods such as moving average and Kalman filters. The limitation of the B-spline
method, however, is that it can be used in an offline setting only. Nevertheless, since the
applications of offline motion-captured signals are vast, the method can be useful in these
applications. Furthermore, other filters, such as Kalman and moving average, can be used
for online settings because their calculations are localized around the current timeframe.
That is, they are based on the current datapoint and some immediate, neighboring, past
datapoints, and they may not perform well when dealing with sudden local spikes in the
signal. In addition, we use low-pass filters here since we are trying to eliminate shaky
movements, which are mainly due to high-frequency noises, from our captured motion
signals. Designing a specific band-pass filter for our workflow is not our intention in
this study. Here, we aim for utilizing B-spline filtering because of the flexibility and the
straightforward control it provides over the continuity of its piecewise connected curves.

In this paper, we compare three different smoothing methods and investigate their per-
formances and limitations for the processing of motion signals. The methods we consider
here are moving average smoothing, B-spline smoothing, and the well-known Kalman filter.
The methods are introduced in Section 2. Their performances are subsequently analyzed
through testing with simulated noisy signals and real captured motion signals in Section 3.
The superior properties of B-spline-smoothed curves are also explained.

2. Materials and Methods

In this section, we present the formulations for three different motion-smoothing
techniques, namely the moving average filter, B-spline smoothing, and the Kalman filter.

2.1. Moving Average Filtering

The moving average technique is one of the simplest yet most effective filters and is
widely used in signal processing [13]. The idea is that the filtered value of the signal at
the current time t is obtained by averaging the value of the signal in the current datapoint
and a few other immediate, neighboring datapoints. The number of neighboring points
contributing to the average value is adjusted by the user and can be varied based on the
type and quality of the signals being processed. Moreover, the neighboring datapoints
can be chosen from the past or future of the current datapoint at t. In the case of online
filtering, only past datapoints are available. This method resembles convolution methods
where the filtering process is conducted on a window of datapoints, and this window slides
through all of the sampling datapoints. The values of the sampling points in each window
can also be multiplied by a weighting coefficient. The averaging window can be chosen
asymmetrically (i.e., only the past samples are used for averaging) or symmetrically (i.e.,
an equal number of points from the past and future of the current data point contribute to
the averaging).

When the averaging window is asymmetric, we inevitably experience a phase-shift
in the smoothed signal. This is because, at each point in time, considering the averaging
window size of n datapoints, the value of the current datapoint is composed of (n−1)/n of
the past data and only 1/n of the present data. For this reason, as well as for the sake of
computational efficiency, the minimum number of sampling points that fulfill the desired
level of smoothness of the signal should be chosen for moving average filtering, especially
in the case of asymmetric averaging.

2.2. B-Spline Smoothing

B-splines have been used for the interpolation and approximation of data resulting
from a variety of scientific experiments [14,21,22]. Their order of continuity (smoothness)
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can be readily increased. Since they are piecewise polynomials joined end-to-end, they
offer great flexibility.

The B-spline approximation curve is written as:

C = ∑m
i=1Ni,p(ξ)Pi, (1)

where Pi are the control points, m is the number of control points, and Ni,p(ξ) are the
B-spline basis functions of the degree p defined using the Cox–de Boor recursion formula
as follows.

For p = 0:

Ni,0(ξ) =

{
1, if ξi ≤ ξ ≤ ξi+1,
0, otherwise.

(2)

For p ≥ 1:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3)

The control points Pi are to be found. We used least square methodology to establish
the optimal curve, which had the minimum distance error in the sense of the least square
definition. That is:

R =
n

∑
j=1

∣∣yj − Cj
∣∣2 (4)

where Cj, which is the value of the B-spline curve C at point cinna corresponding to point
yj in the signal, can be evaluated using Equation (1). Note that the number of control
points could be less than the number of datapoints since we were approximating the signal
curve. In the case of interpolation, the number of B-spline control points and the number of
datapoints are equal. By differentiating Equation (4) with respect to Pi and setting them to
zero, the optimal curve could be found. We had m equations and m unknowns.

∂R
∂Pi

=
n

∑
j=1

∣∣∣∣∣yj −
m

∑
i=1

Ni,p
(
ξ j
)

Pi

∣∣∣∣∣
2

= 0. (5)

Since we were constructing the B-spline curve, the degree of smoothness of the curve
was determined by the degree of B-spline basis functions. Furthermore, the flexibility of the
curve could be adjusted by the number of control points (or, equally related, the number of
knots in the knot vector).

2.3. Kalman Filter

The Kalman filter uses an iterative mathematical process, which is given a series of
data inputs all containing noises, random errors, or uncertainty, and can quickly estimate
the exact value of the signal being measured [23]. Kalman filtering is popular in applications
such as the guidance and navigation of vehicles, aircraft, and robotic motion planning.
Moreover, it has been used in processing signals when accurate estimates of measurements
are needed.

The calculation of the value of measurement is performed in three stages, namely
calculation of the Kalman gain, estimation of the current measurement, and estimation of
the current error value, as follows:

KG =
Eest

Eest + Emea
, (6)

ESTt = ESTt−1 + KG(mea− ESTt−1), (7)

Eest = (1− KG)Eest. (8)
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Kalman filtering can be used in online, as well as offline, settings. However, the
current gain and the current error estimate are adjusted based on the cumulative history
of datapoints.

2.4. Research Method

To gain more insights about the methods, we considered two numerical case studies.
For the first case study, we set up a sample sine signal, shown in Figure 1a, and added
randomly generated white noise to the original signal, shown in Figure 1b.
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Figure 1. (a) The experimental true sine signal of frequency 1 and (b) the sine signal with randomly
generated noise added.

For the second case study, we examined real-world captured motion data available
from the Carnegie Mellon motion dataset [24] in more detail. Motion data in this database
are captured using a Vicon motion-capture system with 12 infrared MX-40 cameras. The
person carrying out the motions wears a black garment and 41 markers on different parts
of their body. These markers are then detected by the infrared cameras, and their motions
are recorded [24]. The methods discussed in the previous sections can be used for a variety
of motion signals. To this end, the motion data we chose for the numerical experiments
(subject #11, kick soccer ball), was from a character who, starting from a neutral pose,
walked towards and then kicked a ball. Therefore, the motion of this kicking model
included a variety of different movements, divided mainly into a simple walking motion
and a more-involved kicking motion. For this motion data, there were 132 channels of
motion signals. Each channel corresponded to the motion signal for one degree of freedom
of a joint. For this motion data, the signals for the root-joint of the character, i.e., the hip
movements, were considered. There were six channels related to this point, of which three
were positional movements, and three were rotational movements. For our numerical
experiments, we considered the signals from channels 1 and 3 of this joint. Channel 1 was
selected since it mainly consisted of low-frequency components. Since smoothing filters
are essentially low-pass filters, it is good to measure their ability to properly reproduce
low-frequency inputs. The channel 3 signal was selected since it contained mid- to high-
frequency components and, therefore, a fair number of opportunities for the filter to
smooth out the noisy portion of the signal. For each case study, the chosen signals were
then processed (smoothed) using the methods introduced in Section 2, namely the moving
average, B-spline, and Kalman filters.

Several metrics were defined to measure the performance of the filtering methods.
The SM1 parameter, as defined in Equation (9), was essentially the first-order backward
difference formula in which the division by ∆h, the spacing between two consecutive
frames, was omitted since the distance between the frames was constant and could be
considered as one. SM1 can be understood as a measure of smoothness of the whole signal
curve, or the sum of the slopes of the signal curve at consecutive points in time in the
absolute sense (since only the magnitude of the slope was important for our measurement).
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A similar metric was previously used by [15] as a measure of the smoothness of the curve
that then adjusted its effect using a penalty factor. SM1 was most meaningful when it was
compared relatively for the signal curve before and after the filtering process. Therefore, the
percentage of relative difference for this value (denoted by %SM1) between signals before
and after filtering (denoted by SM10 and SM11, respectively) defined in Equation (10) is
also presented in the corresponding tables. This can be interpreted as the reduction in high-
frequency, shaky movements of the character (depending on what “high-frequency” means
for that signal). When dealing with motion signals, we needed a measurable quantity that
could indicate whether the output signal was a good fit for the original signal because
there were a lot of channels to consider (~100 channels is very typical). %SM1 could serve
this purpose. The threshold for the SM1 relative difference could be set for each channel
separately. However, we observed in our numerical experiments that, as a rule of thumb,
SM1 relative differences of around 10 to 15 percent gave acceptable outputs, while outputs
with SM1 relative differences of more than 30 percent needed to be checked to ensure that
the desired level of filtering was performed. The SM2 parameter defined in Equation (11)
was known as the energy of the signal and was representative of the smoothness of the
signal curve as a whole. The expression within the absolute symbols was essentially a
first-order central difference formula with division by ∆h omitted because of the same
reason discussed above in the explanation of Equation (9). Similar to the SM1 metric, the
percentage of relative difference of SM2, denoted by %SM2 and defined in Equation (12), is
also given in the corresponding tables. Parameters SM20 and SM21 in Equation (12) denote
the values of the SM2 metric for signals before and after filtering, respectively.

SM1 =
n

∑
i=2
|yi − yi−1| (9)

%SM1 = 100
(SM10 − SM11)

SM10
(10)

SM2 =
n−1

∑
i=2
|yi−1 − 2yi + yi+1|2 (11)

%SM2 = 100
(SM20 − SM21)

SM20
(12)

Furthermore, for all the figures in this paper, the curves corresponding to signals
before and after filtering are respectively denoted by signal0_ and signal1_ prefixes in their
legend boxes.

3. Results

In this section, following the numerical case studies set up in Section 2, we present
and discuss the results obtained using the methods discussed in Section 2. In Section 3.1,
we consider the simulated noisy sine signal as a benchmark experiment. We then continue
with the same procedure for the real-life motion signal in Section 3.2.

3.1. Simulated Noisy Sine Signal

We considered the noisy sine signal and denoised this signal using the methods dis-
cussed in Section 2. We started with the moving average filter to eliminate the noise,
using windows of different types, i.e., symmetric or asymmetric, and sizes. By comparing
the values for the SM1 and SM2 parameters presented in Table 1, it can be seen that the
larger the averaging window size, the smoother the filtered signal. Moreover, the sym-
metric averaging windows tended to produce smoother curves compared to asymmetric
windows. However, the outputs in Figure 2a–d show that filtered signals still contained
high-frequency noises in the original signal. Therefore, the moving average filter was of lim-
ited effectiveness when the signal contained high-frequency noises of medium magnitude.
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Table 1. Performance metrics of the moving average filtering method for different window types
and sizes. The definitions of the symbols used are provided in the corresponding explanations for
Equations (9)–(11). * WT: window type; # WS: window size.

* WT # WS SM10 SM20 SM11 SM21 %SM1 %SM2

asym. 2 64.87 19.08 28.12 2.64 56.65 86.17
asym. 3 64.87 19.08 20.29 1.67 68.73 91.25
sym. 3 64.87 19.08 23.14 1.15 64.33 93.97
sym. 5 64.87 19.08 15.48 0.56 76.14 97.07
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Figure 2. The output of the moving average filter with the ground-truth sine signal for comparison
using (a) an asymmetric window of size 2, (b) an asymmetric window of size 3, (c) a symmetric
window of size 3, and (d) a symmetric window of size 5.

The performance of the B-spline method was largely determined by the number of
control points used for approximation of the signal. As the number of control points
was increased, the output became closer to the interpolation of datapoints in the signal.
For approximation and smoothing purposes, only a fraction of the number of datapoints
is usually used. This also helped with the performance of the method since the matrix
produced during the procedure was reduced to a sparse matrix size of only 50 by 50. The
number of control points is usually determined through numerical experiments depending
on the number of datapoints, the characteristics of the signal, and the features of the signal
to preserve.

Examining the metrics presented in Table 2, we can clearly see that we could achieve
smoother signal curves by decreasing the number of control points used for creating the
smooth curve. This trend could also be confirmed from the outputs given in Figure 3a–d.
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Table 2. Performance metrics of the B-spline smoothing method for different numbers of control
points for approximation. The definitions of the symbols used are provided in the corresponding
explanations for Equations (9)–(11). * No. CP: number of control points.

* No. CP SM10 SM20 SM11 SM21 %SM1 %SM2

500 64.87 19.08 23.06 0.88 64.46 95.38
200 64.87 19.08 9.47 0.03 85.39 99.83
100 64.87 19.08 8.21 0.00 87.34 100.00
50 64.87 19.08 8.07 0.00 87.56 100.00
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Figure 3. The output of the B-spline filter with the ground-truth sine signal for comparison using
(a) 500, (b) 200, (c) 100, and (d) 50 control points.

For the Kalman filter, the filtered output could be adjusted by tuning the Emea param-
eter, the measurement error. With higher values of measurement error, the Kalman filter
tried to eliminate more noises and output slightly smoother signals, as can be attested by
the smoothness metrics in Table 3. However, smoother signals came with more lags in the
output, as plotted in Figure 4a,b.

Table 3. Performance metrics of the Kalman filter using different measurement error Emea values.

Measurement Error SM10 SM20 SM11 SM21 %SM1 %SM2

Emea= 0.01 64.87 19.08 8.69 0.08 86.60 99.60
Emea= 0.02 64.87 19.08 7.82 0.02 87.95 99.87

Filtering the sine signal contaminated with artificial noises showed how capable
various filtering methods were in controlled, lab-like experiments. As can be seen in
Figure 2a–d, moving average filtering had very limited capability in effectively removing
high-frequency noises in all the configurations. This was also true for the outputs of the
Kalman filter shown in Figure 4a,b, while the B-spline filter could be readily adjusted to
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effectively remove the high-frequency noises from our true signal, as shown in Figure 3a–d.
These numerical experiments, while simple, represented lab-like experiments with our
filtering tools and set possible expectations when dealing with real-life motion signals, as
explored in the next section.
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Figure 4. The output of the Kalman filter with the ground-truth sine signal for comparison using
(a) Emea = 0.01 and (b) Emea = 0.02.

3.2. Real Motion Signals

This section presents and discusses the results of the performance metric parameters
introduced in Section 2.4 for the motion signals from channels 1 and 3 of the kicking
character explained in Section 2.4.

For the first numerical experiment, the moving average method was applied using
symmetric and asymmetric averaging windows of different sizes. The results for the
SM1 and SM2 metrics are presented in their corresponding columns of Tables 4 and 5,
respectively. The calculated percentages of the relative differences for SM1 and SM2 are
listed in Tables 6 and 7, respectively. The graphs of the outputs of the moving average
filter using various window types and sizes with the original signals for channels 1 and
3 are drawn in Figures 5 and 6, respectively. By examining the corresponding figures, it
can be observed that, while the moving average filter performed well for signals with less
high-frequency noises or movements (because of a highly localized averaging process),
the filter was unable to omit high-frequency movements. To better interpret the results,
the smoothness metrics in Table 7 are drawn in the bar chart in Figure 7. The trend
was remarkably similar for both channels, i.e., the larger the averaging window, the
smoother the output signals. Furthermore, symmetric windows could achieve higher
smoothness values.

Table 4. The values of the SM1 performance metric for moving average, B-spline, and Kalman
filters for signals from channels 1 and 3 of the root-joint for the kicking model using various
control parameters.

Moving Average B-Spline Kalman

asym. asym. sym. sym. p = 3 Emea
Ch. SM10 2 3 3 5 598 200 100 50 25 0.005 0.01 0.02

1 79.42 75.57 70.95 76.04 74.61 78.85 76.24 75.37 73.82 49 66.01 53.45 36.81
3 216.45 168.4 140.58 173.06 154.78 210.78 168.62 143.76 134.84 109.41 127.76 110.64 88.94
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Table 5. The values of the SM2 performance metric for moving average, B-spline, and Kalman
filters for signals from channels 1 and 3 of the root-joint for the kicking model using various
control parameters.

Moving Average B-Spline Kalman

asym. asym. sym. sym. p = 3 Emea
Ch. SM20 2 3 3 5 598 200 100 50 25 0.005 0.01 0.02

1 4.9 1.17 0.85 0.98 0.75 3.36 0.7 0.43 0.38 0.08 0.35 0.18 0.07
3 258.55 50 23.03 40.23 17.7 172.27 15.34 3.41 1.54 0.16 5.48 1.85 0.67

Table 6. The percentages of difference of the SM1 performance metric (100 × (SM10 − SM11)/SM10)
for moving average, B-spline, and Kalman filters for signals from channels 1 and 3 of the root-joint
for the kicking model using various control parameters.

Moving Average B-Spline Kalman

asym. asym. sym. sym. p = 3 Emea
Ch. 2 3 3 5 598 200 100 50 25 0.005 0.01 0.02

1 4.86 10.67 4.26 6.06 0.72 4.01 5.11 7.06 38.3 16.88 32.71 53.65
3 22.2 35.05 20.04 28.49 2.62 22.09 33.58 37.7 49.45 40.97 48.88 58.91

Table 7. The percentage of difference of the SM2 performance metric (100 × (SM20 − SM21)/SM20)
for moving average, B-spline, and Kalman filters for signals from channels 1 and 3 of the root-joint
for the kicking model using various control parameters.

Moving Average B-Spline Kalman

asym. asym. sym. sym. p = 3 Emea
Ch. 2 3 3 5 598 200 100 50 25 0.005 0.01 0.02

1 76.14 82.63 79.96 84.69 31.41 85.76 91.29 92.33 98.46 92.94 96.3 98.51
3 80.66 91.09 84.44 93.15 33.37 94.07 98.68 99.4 99.94 97.88 99.29 99.74

The performance metrics for the B-spline smoothing of the kicking model using 598,
200, 100, 50, and 25 control points are listed in their corresponding columns of Tables 4 and 5.
Their corresponding percentages of relative difference are given in Tables 6 and 7. The results
confirmed a clear gain in the smoothness metrics. The figures in Table 7 suggest that using a
smaller number of control points led to an increase in the overall smoothness parameter of SM2
for both channels. Using fewer control points for smoothing the signal curves allowed for less
strict compliance with the instantaneous signal values and, rather, provided more freedom to
follow the global trend of the signal curve. However, higher smoothness did not always give
the desired output since the output signal may be over-smoothed in a way that it no longer
complied with the general trend of the original signal.

The numbers provided in Table 6 for filtering using 25 control points suggested that
the output signal should be checked (since the value of %SM1 was more than 30 percent) to
ensure the desired level of filtering. The graphs of the filtered signals using 598, 100, 50,
and 25 control points for channels 1 and 3 with their corresponding original signals are
shown in Figures 8 and 9, respectively. It is observable that, for both channels, the output
signals using 25 control points did not conform well with the general trend of the signal
curve. It is also important to note that using the same number of control points as our data
points essentially led to an interpolation curve. Therefore, choosing the proper number of
control points to be used with the B-spline smoother was crucial to ensure correct, smooth
signal reconstruction. The proper number of control points could be found readily with
few numerical experiments.
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Figure 5. Original noisy motion signal from channel 1 of the root-joint of the kicking character versus
the smoothed signal via the moving average filter using (a) an asymmetric window of size 2, (b) an
asymmetric window of size 3, (c) a symmetric window of size 3, and (d) a symmetric window of
size 5.
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Figure 6. Original noisy motion signal from channel 3 of the root-joint of the kicking character versus
the smoothed signal via the moving average filter using (a) an asymmetric window of size 2, (b) an
asymmetric window of size 3, (c) a symmetric window of size 3, and (d) a symmetric window of
size 5.
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Figure 7. Percentages of relative difference for smoothness gained for the selected root-joint signals
of the kicking character using the moving average filter with symmetric and asymmetric averaging
windows of different sizes.
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Figure 8. Original noisy motion signal from channel 1 of the root-joint of the kicking character versus
the smoothed signal via B-spline smoothing using (a) 598, (b) 100, (c) 50, and (d) 25 control points.
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Figure 9. Original noisy motion signal from channel 3 of the root-joint of the kicking character versus
the smoothed signal via B-spline smoothing using (a) 598, (b) 100, (c) 50, and (d) 25 control points.

Next, the Kalman filter was utilized to process the signals of the kicking character,
and the values of the SM1 and SM2 measures are given in their corresponding columns
in Tables 4 and 5, respectively. Moreover, their corresponding percentages of relative
difference are listed in Tables 6 and 7. By comparing the smoothness metrics in Table 7
with the corresponding values reported for other the methods studied, the Kalman filter
provided fewer smooth outputs in terms of the SM2 parameter. The SM1 percentage of
relative difference values provided in Table 6 were also too high. The output signals, as
well as their original signals, using various Kalman filter parameters Emea are shown in
Figures 10 and 11. Upon inspection of the filtered signals, we confirmed that only the
outputs using Emea = 0.005 properly reproduced the desired filtering. Moreover, the filtered
signals occasionally showed noisy movements because of instantaneous loops of estimated
error and gain.
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Figure 10. Original noisy motion signal from channel 1 of the root-joint of the kicking character versus
the smoothed signal via the Kalman filter using (a) Emea = 0.005, (b) Emea = 0.01 and (c) Emea = 0.02.
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Figure 11. Original noisy motion signal from channel 3 of the root-joint of the kicking character versus
the smoothed signal via the Kalman filter using (a) Emea = 0.005, (b) Emea = 0.01 and (c) Emea = 0.02.

The results presented in this section can be set as benchmark for the considered
methods, as well as for other filtering methods, when used for motion signals. In addition,
the results showed how different parameters affected the outputs of the filtering methods.
The B-spline filter provided the smoothest outputs and is recommended for scenarios when
calculations of the derivatives of the signal are needed.

4. Conclusions

A comparison study for various filtering methods, namely moving average, B-spline,
and Kalman filters, for motion signal smoothing was presented. The effect of different ad-
justable filter parameters on their smoothing performances was investigated. The B-spline
smoother, in particular, showed a superior performance in achieving high-quality, smooth
motion signals in the presence of low-, mid-, and high-frequency components in the signal.
Moreover, the degree of continuity (smoothness) of the signal curves could be increased
readily. In addition, because of the piecewise nature of B-spline curves, the method offered
a great deal of flexibility. These features are essential in downstream data processing when
calculations of the derivatives of a signal curve are needed, for example, in clustering
and classifier training. The moving average method offered very low computational cost.
However, because of highly localized computations, the filter did not perform well in the
presence of high-frequency noises in the signal. The Kalman filter offered an online estimate
of the true signal. The performance of the filter, however, was highly dependent on the
estimated measurement error parameters provided by the user. Moreover, the smoothness
of the output signal may not be sufficient for the desired applications.
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