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Abstract: Low-dimensional transition-metal dichalcogenides (TMDs) have recently emerged as
promising materials for electronics and optoelectronics. In particular, photodetectors based on
mono- and multilayered molybdenum disulfide (MoS2) have received much attention owing to their
outstanding properties, such as high sensitivity and responsivity. In this study, photodetectors based
on dispersed MoS2 nanoflakes (NFs) are demonstrated. MoS2 NFs interact with Ag nanoparticles
(NPs) via low-temperature annealing, which plays a crucial role in determining device characteristics
such as good sensitivity and short response time. The fabricated devices exhibited a rapid response
and recovery, good photo-responsivity, and a high on-to-off photocurrent ratio under visible light
illumination with an intensity lower than 0.5 mW/cm2.

Keywords: transition-metal dichalcogenides (TMDs); MoS2 nanoflakes; MoS2 photodetectors; visible
light sensor

1. Introduction

Low-dimensional transition-metal dichalcogenides (TMDs) have received consider-
able attention as promising materials for high-performance semiconductors in several
fields such as electronics, optoelectronics, and energy conversion and storage [1–8]. In
particular, extensive research has been conducted to explore molybdenum disulfide (MoS2),
which has a direct bandgap structure contributing to its excellent electrical and optical
properties [9,10]. The fundamental properties of MoS2, such as quantum confinement
effects and the functions of chalcogen vacancies and photoexcited carriers, have been
extensively studied for their practical and potential applications [11–15]. Several elec-
tronic and optoelectronic devices, including field-effect transistors, charge-trap memories,
and photodetectors based on mono- and multilayered MoS2, have been realized [16–19].
Interestingly, thin layers of MoS2 with structural integrity exhibit high light-absorption coef-
ficients, enabling sensitive photon detection via photoexcited carriers. These thin layers are
conventionally fabricated using chemical vapor deposition (CVD) growth methods [20–22].
Recently, solution-phase exfoliation and stabilization of TMDs have been proposed as alter-
native methods that facilitate facile and rapid fabrication [23–26]. These methods enable
synthesis of MoS2 with small dimensions, such as nanoflakes (NFs), in a size-controlled
manner, demonstrating their significant advantages such as low-temperature and solution-
based processing. However, in the context of photodetecting, connectivity between MoS2
nanostructures with high light-absorption coefficients is required during film formation to
provide conducting pathways for the collecting photoexcited carriers generated in MoS2
through electrodes. Thus, considerable research is underway to achieve high electrical
conductivity and environmental stability in nanostructured MoS2 films. For example,
band-selective photodetection has been successfully demonstrated using TMD nanosheets
exfoliated with amine-terminated polymers in solution [27].
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In this study, thin photodetectors based on dispersed MoS2 NFs are presented, and
the optoelectronic properties for high absorption coefficients of photons are discussed
in relation to experimental and theoretical studies. Initially, MoS2 NFs are synthesized
in the solution phase with planar dimensions of ~20 nm for thin film formation via the
drop-coating method, using Ag nanoparticles (NPs) formed from Ag nanofilms to ensure
electrical connectivity between the MoS2 NFs. The Ag contacts to bulk MoS2 layers are
known to become ohmic, and the resistivity of the MoS2 layers decreases after annealing
at 400–600 ◦C [28]. Furthermore, Ag NPs and islands can enhance light absorption in
photoresponsive devices via plasmonic [29,30]. Thus, the photoexcited carriers in MoS2
can be efficiently collected even under low-intensity illumination (<0.5 mW/cm2) with
rapid response and recovery times. Photodetectors based on MoS2 NFs and Ag NPs have
exhibited good photodetection abilities under low-intensity illumination and ambient
conditions. This study provides a novel and simple route to achieve good performance thin
photodetectors with desirable photodetection abilities for practical applications, particularly
under low-intensity illumination conditions. These results demonstrate great potential for
the development of advanced light-sensing systems, and other TMD-based applications
such as transistors, memories, and energy conversion and storage devices.

2. Materials and Methods
2.1. Preparation of MoS2 NFs Solution

MoS2 NFs were prepared using a simple liquid exfoliation technique; 500 mg of
MoS2 micro-crystals (Sigma Aldrich, St. Louis, MO, USA) were dispersed in 250 mL of a
deionized (DI) water:ethyl alcohol (1:1) solution. The mixture was sonicated using a probe
sonic tip (19 mm in diameter) at a power of 500 W using 10 s ON and 10 s OFF pulses for
10 h. DI water:ethyl alcohol solution (1:1, 50 mL) was added into the beaker every 2 h to
maintain the volume of the MoS2 solution (250 mL) because the solution easily evaporated
during ultrasonication owing to the high temperature. Additionally, the continuous feeding
of the solution prevented a steep increase in temperature during the ultrasonication process.
Subsequently, the solution was diluted to 1000 mL and centrifuged for 5 min at 5000 rpm
to separate and remove the unexfoliated MoS2. The supernatant solution was further
centrifuged at 8000 rpm for 30 min to remove large MoS2 particles. Approximately 90% of
the supernatant solution was filtered under vacuum onto a membrane paper with a pore
size of 100 nm. The filtered solution was dried in an oven to concentrate the MoS2 NF
solution, until the volume of the solution reached 500 mL.

2.2. Photodetector Fabrication

Photodetectors were fabricated based on the schemes shown in Figure 1a. For example,
the photodetector (20 nm Ag, 400 ◦C, vacuum, 24 h) exhibited high performance. In the
typical procedure for the bottom-mode photodetector, a rectangular SiO2 (300 nm)/Si
substrate with dimensions of 1 × 1 cm2 was cleaned using oxygen plasma equipment.
The substrate was drop coated with the MoS2 NF solution at a solution/substrate ratio
of ~0.3 mL/cm2. Subsequently, the solution was dried on the substrate in an oven at
80 ◦C for 30 min. The top Ag thin film was evaporated onto the sample under vacuum
(<2 × 10−6 Torr) using a thermal evaporation system. The prepared sample was then
annealed at 400 ◦C for 24 h in a muffle furnace at 1 atm, using a heating rate of 50 ◦C/min.
After cooling to room temperature, the Au electrodes (50 nm) were evaporated onto the
thin annealed film under vacuum using a patterned shadow mask. For the middle-mode
photodetector, a 10 nm Ag layer was deposited on the SiO2 substrate and annealed at
400 ◦C for 24 h at atmospheric pressure. The MoS2 solution was then drop coated and dried
in an oven at 80 ◦C for 30 min. A second 10 nm thick Ag film was deposited on the dried
sample and annealed under the same conditions. Subsequently, the Au electrodes (50 nm)
were evaporated onto the thin annealed film, as described above. An optical image of the
fabricated device is shown in Figure 1c.
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Figure 1. (a) Illustration of the fabrication of photodetecting devices. (b) Schematic of the bottom- 
and middle-mode structures. (c) Optical image of the fabricated device and magnified image of Ag 
islands on the MoS2 layer. (d) SEM image of MoS2 film and magnified AFM image of boxed area (e) 
Size distribution of the MoS2 NFs. (f) Raman spectra of MoS2 film on silver film. 

2.3. Process and Measurements 
The following equipment was used: ultrasonicactor (SONICS-VCX500, SONICS, 

Newtown, CT, USA), centrifuge (UNIVERSAL 320R, Hettich, Beverly, MA, USA), field 
emission scanning electron microscope (FESEM, JSM-7500F, JEOL, Tokyo, Japan), vac-
uum muffle furnace (Neytech Qex, DEGUSSA-NEY DENTAL, INC., Bloomfield, CT, 
USA), light source (FOK-100W, Fiber Optic Korea, Cheonan, Korea), photodetectivity 
measurement system (4200-SCS, Keithley, Beaverton, OR, USA), thermal evaporation sys-
tem, and solar simulator for the on/off test (XES-301S, SAN-EI ELECTRIC CO., Ltd., 
Osaka, Japan). 

  

Figure 1. (a) Illustration of the fabrication of photodetecting devices. (b) Schematic of the bottom-
and middle-mode structures. (c) Optical image of the fabricated device and magnified image of Ag
islands on the MoS2 layer. (d) SEM image of MoS2 film and magnified AFM image of boxed area
(e) Size distribution of the MoS2 NFs. (f) Raman spectra of MoS2 film on silver film.

2.3. Process and Measurements

The following equipment was used: ultrasonicactor (SONICS-VCX500, SONICS, New-
town, CT, USA), centrifuge (UNIVERSAL 320R, Hettich, Beverly, MA, USA), field emission
scanning electron microscope (FESEM, JSM-7500F, JEOL, Tokyo, Japan), vacuum muffle
furnace (Neytech Qex, DEGUSSA-NEY DENTAL, INC., Bloomfield, CT, USA), light source
(FOK-100W, Fiber Optic Korea, Cheonan, Korea), photodetectivity measurement system
(4200-SCS, Keithley, Beaverton, OR, USA), thermal evaporation system, and solar simulator
for the on/off test (XES-301S, SAN-EI ELECTRIC CO., Ltd., Osaka, Japan).
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3. Results and Discussions

As the solvent of the MoS2 NFs solution was slowly evaporated, the MoS2 NFs were
aggregated in a thin film form on the substrate. The surface morphology of the MoS2
film after solvent evaporation was examined as shown in Figure 1d. Scanning electron
microscope (SEM) and atomic force microscopy (AFM) images clearly revealed that the
MoS2 NFs were agglomerated, forming continuous domains. The thickness of the MoS2 film
was measured to be ~20 nm, indicating the multilayered MoS2 domains. Size distribution
of the MoS2 NFs in the solution is also shown in Figure 1e. Diameters of the NFs were
mostly smaller than 300 nm, and it was also found that the most probable diameter of the
NFs was 150 nm. In addition, Raman spectroscopy was employed to clarify the existence
of the MoS2 NFs in the film without significant changes in chemical composition. Two
prominent peaks were observed around 381 cm−1 and 409 cm−1, as shown in Figure 1f.
These peaks can be assigned to the multilayered MoS2 in consideration of the peak shifts,
which are typically observed in the multilayered MoS2. It is worth noting that the center of
the thin film was not completely covered with the MoS2 NFs, due to the coffee-ring effect
that occurred in the drop-casting process, and thus the substrate was partially exposed
to air.

Figure 2 shows the SEM micrographs of the annealed Ag nanofilm on MoS2 layers at
various temperatures (without annealing and annealed at 200, 400, 450, 500, and 550 ◦C).
All samples were annealed for 24 h at atmospheric pressure. The surface of the Ag nanofilm
(20 nm thick) on the MoS2 layer before the annealing process was flat, and some dark
spots appeared on the surface, as shown in Figure 2a. The dark spots are slightly dented
and considered to be an uncovered region of the MoS2 film. After annealing, the Ag film
on MoS2 was dewetted and formed Ag islands on the surfaces, as shown in Figure 2b–f.
Exfoliated MoS2 nanosheets are known to be electrically conductive [31]; however, the
electrical conductivity of MoS2 films after the drop-coating process was low because there
are many inter-nanosheet junctions between the MoS2 nanosheets, which complicates
electron conduction between them at low voltages [32]. By annealing the Ag film, Ag
diffused into the MoS2 layer, increasing the MoS2 conductivity. Furthermore, the contact
between the metal and the MoS2 layer is known to become ohmic after diffusion, reducing
the resistivity [33]. Thus, annealing of the Ag film improved the electrical contact between
the MoS2 layers. In particular, the device, which was solely based on MoS2 without Ag,
did not show any photo response. As mentioned above, this result is possibly originating
from the inter-nanosheet junctions reducing the electrical conductivity. The MoS2 NFs
were also concentrated at the edge of the thin film due to the coffee-ring effect in the
drop-casting process, causing domain discontinuities near the center. Such disconnection
between MoS2 disrupts the electron transportation and the photo response. However, when
the Ag nanofilm was formed and annealed on the sample, the MoS2 domains were well
connected to each other through the Ag islands consisting of the Ag NPs. The radii of the
Ag islands were measured to be in the range of 10–600 nm, and the particle size increased
with the annealing temperature (See Figure 2). It was also observed that small Ag NPs
(<10 nm) were attached to the MoS2 surface, leading to connection between Ag and MoS2
after annealing. These results are consistent with the previous studies reporting that Ag can
be easily attached to the MoS2 NFs. It has been reported that the Ag NPs can be attached
to the MoS2 surface via the formation of the Ag ions in the solution [34], and the MoS2
layer can play a role as a photocatalyst with the Ag NPs [15]. Notably, the surface plasmon
resonance effect of metal NPs can increase visible light absorption [35,36]. Surface plasmons
can be localized by Ag NPs, and the excitation of localized surface plasmon resonance can
occur. This leads to an enhanced electric field, which increases the photocurrent of the
MoS2 layer.
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Figure 2. FESEM micrographs of annealed Ag nanofilms on the MoS2 layers at various temper-
atures. The thickness of the deposited Ag film was 20 nm. Samples were annealed at (a) room
temperature (without annealing), (b) 200 ◦C, (c) 400 ◦C, (d) 450 ◦C, (e) 500 ◦C, and (f) 550 ◦C. The
solid white bars represent the 1 µm length scale and the sold white bars in the inset of the (c,d)
represent the 100 nm.

Thin photodetectors based on MoS2 NFs and Ag NPs were fabricated as shown
in Figure 1a. The two types of device structures, bottom-mode and middle-mode
structures, are also described in Figure 1b. Prior to measuring performance of the
Ag-coated MoS2 devices, a device with only the MoS2 film on the SiO2/Si substrate
was fabricated that was annealed at various temperatures from 200 to 1000 ◦C in a
muffle furnace. However, no photo response was observed in the device. Subsequently,
two bottom-mode devices were fabricated with 20 and 110 nm thick Ag films. The
Ag nanofilm on the MoS2 layer was annealed at 400 ◦C. The characteristic curves of
the devices are shown in Figure 3a,b. Additionally, a device with a 200 nm Ag film
was fabricated. However, the results for this device are not presented because the Ag
layer was too thick, and Ag did not form islands after annealing. Thus, the device with
a 200 nm Ag film short circuited and exhibited a maximum current of 1 × 10−2 A at
all voltages.

Subsequently, the channel width of the Au electrodes was varied from 90 to
1000 µm, as shown in Figure 3a,b. The characteristic current vs. voltage curves of
the annealed device with the 20 nm Ag film are shown in Figure 3a, and those of the
annealed device with the 110 nm Ag film are shown in Figure 3b. The devices were
exposed under illumination using a visible light source (OSRAM, Munich, Germany,
64637) with a power density of 14.1 mW/cm2. All the devices were photorespon-
sive, and the devices were not strongly dependent on the channel width. As shown
in Figure 3c, both devices with 20 and 110 nm Ag films show dark currents below
1 × 10−6 A and on-currents at 10 V over 1 × 10−4 A. Moreover, the on/off current
ratios of the devices with 20 and 110 nm Ag films are shown in Figure 3c. The fabri-
cation conditions (20 nm Ag film thickness and 500 µm channel width) showed the
best performance and were adopted for further experiments. As shown in Figure 3d,
the on/off ratio was affected the performance of the devices based on the annealing
temperature conditions. The highest on-current at 10 V was observed for the device
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annealed at 450 ◦C. However, the off-current was also relatively higher than those of
the devices annealed at 300 and 400 ◦C. Among them, the device annealed at 400 ◦C,
which had the highest on/off ratio (1.66 × 103), was selected for the fabrication process
for better results in this study.
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Figure 3. Output characteristics (output current vs. sample bias voltage) of the bottom−mode pho-
todetecting devices under various fabricating conditions: (a) 20 nm and (b) 110 nm Ag films annealed
at 400 ◦C with various electrode channel widths (90, 500, and 1000 µm). Output currents were
measured under visible light illumination with an intensity of 14.1 mW/cm2 (on) and 0.0 mW/cm2

(off). (c) Output currents and on/off ratios of bottom−mode devices in (a,b) at a bias voltage of 10 V.
(d) Output currents and on/off ratios at a bias voltage of 10 V of the bottom−mode devices with a
500 µm electrode channel width and 20 nm Ag film thickness annealed at various temperatures (300,
400, 450, and 500 ◦C).

To evaluate the photodetection properties of the device annealed at 400 ◦C, the
output characteristics and photoresponsivity were measured under visible light illu-
mination with various intensities, as shown in Figure 4a. For the photoresponsive
measurements, two sharp probes were brought into contact with the Au electrodes of
the device. As mentioned previously, the device with 20 nm of Ag film and annealed
at 400 ◦C showed the highest performance among the fabricated devices. Its photore-
sponsivity was 4.37 × 101 AW−1 under low-intensity illumination (~0.5 mW/cm2)
and decreased to 1.53 × 101 AW−1 at a light intensity of 14.1 mW/cm2. The photocur-
rent gradually increased as the light intensity increased, and the photoresponsivity
remained constant at ~1.5 × 101 AW−1. It is noteworthy that the photocurrent in-
creased to ~11 mA at a sample bias voltage of 10 V under high-intensity illumination
(14.1 mW/cm2). The time-resolved photo response of the device is shown in Figure 4b.
The photocurrent of the device rapidly changed from 1.7 × 10−5 to ~2.5 × 10−3 A in
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response to the on/off switching of light illumination (126 mW/cm2) at a constant
sample bias voltage of 10 V. The photo response and recovery times were consistently
measured as ~324 and ~262 ms, respectively, because the on- and off-currents instan-
taneously returned to their initial levels without any losses. It is noteworthy that
the shutter speed of the light source (a few milliseconds) was not compensated, and
thus, the real response times were probably shorter than the measured values. The
reversibility of the photoresponsive device is shown in the inset in Figure 4b. As the
light illumination switches on and off, the initial off-current and on-current values are
repeatedly obtained.
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Based on the results, it was difficult to increase the on/off ratio above 2.0 × 103

using the MoS2-Ag photoresponsive materials formed under the investigated conditions.
Although the on-current of the device with a 10 nm thick Ag film was lower than that
of the other fabricated devices with thicker Ag films, it exhibited a higher on/off ratio at
10 V compared with the other devices. Based on this result, another device configuration
was evaluated to increase the on/off ratio. The middle-mode structure of the light-sensing
device was designed, as shown in Figure 1b. To increase the light absorption of the device
while maintaining a high on/off ratio, an Ag nanofilm was deposited and annealed before
the MoS2 drop-coating process. This structure is called a ‘middle-mode’ structure, and the
structure of previously discussed is called a ‘bottom-mode’ structure, as shown in Figure 1b.
The designation of the structures was determined by the position of the MoS2 layer on
the Ag films. In this study, the thickness of the Ag film below the MoS2 layer was 10 nm,
and the same Ag film thickness was used for the device with the middle-mode structure.
All Ag nanofilms of the devices were annealed immediately after deposition, as described
previously. Particularly, the off-current of the device with 10 nm of Ag film annealed at
400 ◦C had a low value to be distinguished, compared with the devices with thicker Ag
films. Thus, the middle-mode structure is suggested for increasing the on/off ratio of the
photoresponsive device.
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The characteristic curves of the two different devices annealed at 400 ◦C are shown
in Figure 5a. The off-current of the bottom-mode device (Ag (20 nm)/MoS2/substrate)
at a sample bias voltage of 10 V was relatively higher than the middle-mode device (Ag
(10 nm)/MoS2/Ag (10 nm)/substrate), which was annealed at the same temperature.
The device with the middle-mode structure showed a lower off-current, which resulted
in a high on/off current ratio at 10 V. As shown in Figure 5b, the on-current of the
middle-mode device under illumination with a visible light intensity of 14.1 mW/cm2

and a sample bias voltage of 10 V was 6.88 × 10−5 A, and the off-current under the
same conditions was 1.25 × 10−9 A. Thus, the middle-mode device annealed at 400 ◦C
exhibited low on- and off-current values, and the on/off current ratio was 5.61 × 104 at
10 V, which is higher than that of the bottom-mode device with a 20 nm Ag film annealed
at the same temperature. As shown in Figure 5b, the photocurrent of the middle-mode
device gradually increased as the light intensity increased from 0 to 14.1 mW/cm2 at a
sample bias voltage of 10 V. The photoresponsivity was 1.17 AW−1 under low-intensity
illumination (~1.8 mW/cm2) and decreased to 9.75 × 10−1 AW−1 at a light intensity of
14.1 mW/cm2.

Another device was fabricated under different annealing conditions to reduce the
annealing temperature. The characteristic curves of the two different devices annealed
at 300 ◦C are shown in Figure 5c. The off-current of the middle-mode device at a sample
bias voltage of 10 V was lower than that of the bottom-mode device with a 20 nm Ag
film annealed at 300 ◦C. The middle-mode device exhibited a higher on/off current ratio
at a sample bias voltage of 10 V, compared with the bottom-mode device. As shown
in Figure 5d, the on-current at a sample bias voltage of 10 V under illumination with
a visible light intensity of 14.1 mW/cm2 was 1.74 × 10−4 A, and the off-current under
the same conditions was 1.22 × 10−8 A. The middle-mode device annealed at 300 ◦C
showed low on- and off-current values, and the on/off current ratio was 1.42 × 104,
which is 82.7 times higher than that of the bottom-mode device with a 20 nm Ag film
annealed at 300 ◦C. The photocurrent of the middle-mode device at a sample bias voltage
of 10 V gradually increased as the light intensity increased from 0 to 14.1 mW/cm2,
as shown in Figure 5d. The photoresponsivity was 8.10 × 10−2 AW−1 under low-
intensity illumination (~1.8 mW/cm2) and increased to 2.47 AW−1 at a light intensity of
14.1 mW/cm2. Moreover, switching test was performed using the middle-mode device,
of which the MoS2 film was sandwiched between the two Ag films (i.e., top and bottom).
Each Ag film was 10 nm thick, and annealed at 300 ◦C. The device was repeatedly
exposed to the visible light with an intensity of 14.1 mW/cm2 for 60 s. The current
rapidly increased and decreased in response to the light as shown in Figure 5e. The
device responded 43 cycles during 60 s, and the on-current was consistently maintained
at ~1.6 × 10−4 A on average.

Based on these results, the on/off current of the device can be increased by fabricating
a middle-mode structure and decreasing the annealing temperature to enhance the per-
formance. Although the performance was not very high, the device annealed at 300 ◦C
exhibited sufficient performance for application as a photoresponsive device. As reported
in a previous study, Ag NPs located below the MoS2 layer enhanced the light absorption in
the photoresponsive system [35]. In this study, a dewetted Ag film formed NPs on a MoS2
layer, which enhanced light absorption in the system. Thus, the dark current value was not
significantly changed, and the on-current greatly increased owing to the enhanced light
absorption by the Ag NPs below the active layer, resulting in an increase in the on/off ratio
of the photoresponsive device.
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Figure 5. (a) Output characteristics of the bottom-mode device with 20 nm (top) of Ag film and
middle-mode device with 10 nm (top)/10 nm (bottom) of Ag film, both annealed at 400 ◦C. (b) Output
characteristics of the middle-mode device with 10 nm (top)/10 nm (bottom) of Ag film annealed
at 400 ◦C under visible light illumination with various intensities. (c) Output characteristics of the
bottom-mode device with 20 nm (top) of Ag film and middle-mode device with 10 nm (top)/10 nm
(bottom) of Ag film, both annealed at 300 ◦C. (d) Output characteristics of the middle-mode device
with 10 nm (top)/10 nm (bottom) of Ag film annealed at 300 ◦C under visible light illumination with
various intensities. The on and off-currents of (a,c) were measured under visible light illumination
with an intensity of 14.1 mW/cm2. The output currents of (b,d) were measured under visible light
illumination with various intensities of 0.0 (dark), 1.8, 4.8, 8.5, 12.5, and 14.1 mW/cm2. (e) Switching
test curve of the middle-mode device with 10 nm (top)/10 nm (bottom) of Ag film annealed at
300 ◦C. The device responded 43 cycles for 60 s under visible light illumination with an intensity of
14.1 mW/cm2.
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4. Conclusions

Photodetectors were developed based on MoS2 NFs as the conversion center to
transfer energy from photons to electrons in the thin film. In this study, after annealing,
Ag diffused into the MoS2 layer, which decreased the resistance of the inter-nanosheet
junctions between the MoS2 layers. Ag islands connected discontinuous MoS2 NFs each
other. This increased the conductivity of the MoS2 layer. Moreover, the newly formed Ag
islands on the MoS2 layer enhanced the absorption efficiency of light because the surface
plasmon resonance effect of metal NPs increases visible light absorption. Two different
device modes were fabricated for the photodetector. First, bottom-mode devices were
fabricated to determine the optimal fabrication conditions based on performance. The
bottom-mode device with a 20 nm Ag film annealed at 400 ◦C showed the highest perfor-
mance, with a photoresponsivity of 4.37 × 101 AW−1 under low-intensity illumination
(~0.5 mW/cm2) at a sample bias voltage of 10 V, and it exhibited the highest on/off ratio
(1.66 × 103). Second, a middle-mode device was fabricated to increase the on/off ratio.
The middle-mode device annealed at 400 ◦C exhibited lower off-current, which caused
a high on/off current ratio of 5.61 × 104 at a sample bias voltage of 10 V. Therefore,
the on/off ratio increased by over an order and was 82.7 times higher than that of the
bottom-mode device annealed at 300 ◦C. In conclusion, MoS2 NFs play a major role in
transferring newly generated electrons to the Ag film under illumination. Therefore,
the developed methodology is proposed as an effective way to capture energy from
conversion centers, such as TMD NFs using nano-thick metal films. This is a crucial
concept for the utilization of various NFs and TMDs in optoelectronic applications.
Thus, these results are expected to contribute to the advancement of high-performance
photoresponsive systems for light-sensing applications.
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