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Abstract: This paper presents datasets utilised for synthetic near-infrared (NIR) image generation
and bounding-box level fruit detection systems. A high-quality dataset is one of the essential building
blocks that can lead to success in model generalisation and the deployment of data-driven deep
neural networks. In particular, synthetic data generation tasks often require more training samples
than other supervised approaches. Therefore, in this paper, we share the NIR+RGB datasets that
are re-processed from two public datasets (i.e., nirscene and SEN12MS), expanded our previous
study, deepFruits, and our novel NIR+RGB sweet pepper (capsicum) dataset. We oversampled
from the original nirscene dataset at 10, 100, 200, and 400 ratios that yielded a total of 127 k pairs
of images. From the SEN12MS satellite multispectral dataset, we selected Summer (45 k) and All
seasons (180 k) subsets and applied a simple yet important conversion: digital number (DN) to pixel
value conversion followed by image standardisation. Our sweet pepper dataset consists of 1615 pairs
of NIR+RGB images that were collected from commercial farms. We quantitatively and qualitatively
demonstrate that these NIR+RGB datasets are sufficient to be used for synthetic NIR image generation.
We achieved Frechet inception distances (FIDs) of 11.36, 26.53, and 40.15 for nirscene1, SEN12MS,
and sweet pepper datasets, respectively. In addition, we release manual annotations of 11 fruit
bounding boxes that can be exported in various formats using cloud service. Four newly added fruits
(blueberry, cherry, kiwi and wheat) compound 11 novel bounding box datasets on top of our previous
work presented in the deepFruits project (apple, avocado, capsicum, mango, orange, rockmelon and
strawberry). The total number of bounding box instances of the dataset is 162 k and it is ready to
use from a cloud service. For the evaluation of the dataset, Yolov5 single stage detector is exploited
and reported impressive mean-average-precision, mAP[0.5:0.95] results of min:0.49, max:0.812. We hope
these datasets are useful and serve as a baseline for future studies.

Keywords: dataset; synthetic infrared image generation; generative adversarial network; fruit
detection; object detection

1. Introduction

The recent advances in data-driven machine learning (ML) techniques have been
unlocked and achieved impressive outcomes in industrial research sectors and even in our
daily life. As exemplified by applications such as autonomous driving [1], natural language
processing (NLP) [2], synthetic visual data generation [3], protein structure prediction [4],
and nuclear fusion reactor control [5], it is very exciting to see what else ML can learn and
how much it will bring impact to our future life.

In this paper, we are interested in bringing these data-driven ML technologies to
the agriculture sector to take considerable advantages in core agricultural tasks such
as vegetation segmentation and fruit detection. Toward this, we adopt one of the ML

Sensors 2022, 22, 4721. https://doi.org/10.3390/s22134721 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134721
https://doi.org/10.3390/s22134721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5429-0515
https://orcid.org/0000-0001-7418-6280
https://doi.org/10.3390/s22134721
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134721?type=check_update&version=4


Sensors 2022, 22, 4721 2 of 29

techniques, synthetic image generation and data-driven object detection, to see how much
improvement we can obtain. Especially, we first focus on generating synthetic near-infrared
(NIR) images that can then be used for object detection as auxiliary information, as shown
in Figure 1.

Figure 1. Each row indicates a data sample and the corresponding output drawn from nirscene,
SEN12MS, and capsicum datasets respectively. The 1st and 2nd columns are RGB+NIR image pairs
used for model training, 3rd is a NIR prediction given the RGB image and their normalised difference
vegetation index (NDVI) for the rest of the columns. This figure is best viewed in colour.

Within the agriculture domain, NIR information (λ∼750–850 nm) has played a pivotal
role in various tasks since 1970. One of the most important contributions is enabling
vegetation indices (NDVI) with a simple and fast closed-form [6], and this still now sets a
stepping stone for many other advanced indices such as the enhanced vegetation index
(EVI) or normalized difference water index (NDWI). Analogous to the thermal spectrum,
which allows measuring beyond the visible range and brings significant salient features,
the NIR spectrum enables observing plants’ chlorophyll responses (mainly from leaves).
This information is crucial for agronomists to phenotype vegetation’s status and conditions.

In order to synthesise NIR information from RGB input, it is necessary to properly
approximate a highly nonlinear mapping, fθ such that fθ : {IRGB} 7→ INIR where θ is unknown
parameters (e.g., neural networks’ parameters). The nonlinearity stems from incident
lighting sources, surface reflectances, intrinsic and extrinsic camera inherent characteristics
and many other factors. Hence, it is one of the challenges to estimate the global optimal
solution that guarantees convergence. Instead, we attempt to learn the mapping in a data-
driven, unsupervised manner that does not require manual annotations or labels. To do
this, we set the objective function that minimises differences between synthetic and original
NIR images given RGB images. This idea is straightforward, and there are already several
previous studies in generating not only NIR [7,8] but also thermal [9] and depth [10,11].

This paper is different to [7,8] in the following aspects. First and most importantly,
we clearly present experimental results with a high level of technical detail which is
lacking in both. In synthetic image generation and generally machine learning, it is one
of the important tasks to carefully split train and test sets to hold equivalent or similar
statistical properties (e.g., feature distributions) among sets. However, none of them
correctly disclosed this, and only present scores which are somehow meaningless. None
of them made the dataset available for public use so it is impossible to reproduce or build
another system on top of their studies. Lastly, it is vague why and how synthetically
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generated information is useful in their work. We demonstrate this by feeding forward
synthetic NIR images into a subsequent fruit detection task. Therefore our contributions in
this paper are:

• We made publicly available NIR+RGB datasets for synthetic image generation [12].
Note that we utilised 2 publicly available datasets, nirscene [13] and SEN12MS [14],
in generating these synthetic datasets. For image pre-processing, oversampling with
hard random cropping was applied to nirscene and image standardisation (i.e., µ = 0,
σ = 1 was applied. It is the first time to realise the capsicum NIR+RGB dataset. All
datasets are split in a 8:1:1 (train/validation/test) ratio. This dataset follows a standard
format so that it is straightforward to be exploited with any other synthetic image
generating engine.

• We expanded our previous study [15], and we added four more fruit categories
including their bounding box annotations. A total of 11 fruit/crops were rigorously
evaluated and to our best knowledge, this is the largest type of dataset currently
available.

Figure 2 summarises all datasets presented in this paper. The left green boxes indicate
NIR + RGB pair datasets and their technical detail and the right blue box denotes the
bounding box dataset for object detection.

Other than the above contributions, we also present detailed experimental results,
their analysis and insights that can be useful for readers. The dataset can be downloaded
from http://tiny.one/deepNIR (accessed on 17 June 2022).

Figure 2. NIR+RGB pair and object detection datasets overview.

The rest of the paper is structured as follows. Section 2 presents literature reviews on
synthetic image generation and object detection. Section 3 covers methodologies used for
generating synthetic images and dataset detail and the concise summary of the generative
adversarial network and a single-stage detection framework. Section 4 contains evaluation
metrics for both synthetic image generation and object detection followed by qualitative
and quantitative results. This also includes inter-comparisons between models developed
in this paper and baseline comparisons with evaluations from other studies. We also discuss
the advantages and limitations that we found in Section 5. Section 6 concludes the paper
by giving a summary of results, impact of the proposed work and future outlook.

http://tiny.one/deepNIR
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2. Related Work

In this section, we describe previous related studies; especially focusing on public
RGB–NIR datasets, synthetic image generation and object detection approaches. This
section presents a clear distinction between other datasets and what we proposed and state-
of-the-art synthetic image generation and object detection techniques that other researchers
can alternatively exploit. Therefore this section is helpful for readers to better understand
the remaining sections.

2.1. Near-Infrared (NIR) and RGB Image Dataset

Modern data-driven deep learning approaches have demonstrated very promising
and impressive performance in a variety of sectors, and it is no exaggeration to say that
large-scale and high-quality training datasets have played a pivotal role in achieving
these successes. Especially within the agricultural domain, NIR-RGB (or multispectral
interchangeably) datasets provide rich feature information about vegetation such as crops
or fruits. They are regarded as one of the important key indices for agronomists, data
scientists and machine learning researchers. Hence there exist valuable and noticeable
contributions [16–20] in broad-arcs, horticulture [21] or protected farm scenarios [22,23].

Brown et al. [13] is one of the frontier NIR–RGB datasets focusing on scene recognition
tasks by utilising the multispectral information. As mentioned earlier, this dataset contains
477 RGB+NIR image pairs that were asynchronously captured using two cameras in mostly
outdoor daily-life scenes. This dataset is useful, and we also utilised it in this paper. Still, a
temporal discrepancy in a pair and a lack of radiometric calibration and small-scale datasets
are challenges to the use of this dataset. We demonstrate the impact of dataset scale and
oversampling strategy in the following section.

More recently, one of our previous studies [19,24] that focused on sweet pepper detec-
tion and semantic segmentation using multispectral images contributed to the horticulture
sector. A total of 103 pixel-level annotations and NIR+RGB pairs were used in this work.
Considering challenges in the agricultural scene pixel-labelling task, it was one of the novel
datasets together with [25] that contributed 60 annotations even though the scale was
relatively smaller than current datasets. More importantly, we share in this paper another
1615 NIR–RGB pair dataset collected in that campaign yet annotated. The summary of
NIR-RGB dataset is presented in Table 1.

Chebrolu et al. [16] offered a comprehensive large-scale agricultural robot dataset
that is suitable for vegetation semantic segmentation as well as localization and mapping.
Multispectral images, RGB-D, LiDAR, RTK-GPS and wheel odometry sensor data were
collected over a sugar beet field for two months in Germany. A total of 5 TB of the dataset
was obtained, but [16] does not provide a dataset summary table, so it is rather difficult
to find how many multispectral images and their annotations without attempting to use
the dataset.

In agriculture, satellite imagery is one of the important resources that is widely utilised
in many applications as a key source of information. They provide abundant, large-
scale earth observations, which are useful for data-driven machine learning approaches.
Therefore, promising studies [26] and a public dataset [14] utilised satellite multispectral
imagery (e.g., Sentinel-2 A+B twin satellites platforms launched by the European Space
Agency (ESA)).

Schmitt et al. [14] introduced an unprecedented multi-spectral dataset in 2019. They
sampled from 256 globally distributed locations over four seasons which constitutes about
180 k NIR+RGB pairs. We adopt this dataset with the following processes in this paper. We
converted the raw dataset formatted as multi-channel GeoTIFF into an ordinary image for-
mation with image standardisation for each image pair and split it to train/validation/test
sets. We agree that these steps are trivial and straightforward to achieve. However, in
practice especially training a model using 180 k multispectral images, it often matters to
know concise and exact split sets and to secure a direct trainable dataset rather than an am-
biguous and questionable split [7,8] or requiring any modifications from a reproducibility
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perspective. This ambiguity can result in spending time and effort building up a baseline.
For instance, converting a digital number (DN) to 8-bit per channel standard image format
can be a non-trivial task, and evaluation metrics can also vary depending on how the
dataset is split. From these perspectives, it is important to establish a fixed dataset split
with the corresponding metric to see how much other factors impact the performance (i.e.,
ablation studies).

Table 1. Summary of related studies on NIR–RGB dataset.

Study Advantages Can Improve

Brown et al. [13] Outdoor
daily-life scenes

A temporal discrepancy in a pair
Lack of radiometric calibration
Small scale dataset to use

Chebrolu et al. [16] Comprehensive large-scale dataset Lack of comprehensive
dataset summary table

Schmitt et al. [14] Sampling from different locations
over 4 seasons Requires preprocessing to use

2.2. Synthetic Image Generation

Synthetic image generation is perhaps one of the most attractive and active fields
among many other interesting and promising applications of deep learning techniques.
Rooting from generative adversarial networks (GAN) [27], there are brilliant ideas that
either improved the original adversarial idea or established another stepping stone.

Mirza et al. [28] proposed a new idea that conditionally takes not only noise in-
put for a generator but auxiliary information for better model convergence and general-
isation (cGAN). They demonstrated the impact for the image-to-image translation task
and enabled/highly influenced other variants such as Pix2pix [29,30], StyleGAN [31],
CycleGAN [32] or more recently OASIS [33]. Even though they propose different ap-
proaches and applications, the fundamental idea stems from the studies mentioned above.
In this paper, we adopt the work of [30] in order to evaluate and confirm the implications
of our dataset, but readers can freely choose any state-of-the-art framework as a synthetic
generation tool.

On top of these core works, many interesting applications use synthetic image genera-
tion. Transforming from visible range (RGB) to near-infrared spectrum (NIR) is demon-
strated in [7], and Ref. [8] using nirscene and SEN12MS datasets respectively.
Aslahishahri et al. [34] showed aerial crop monitoring with synthetic NIR generation using
a software package from [29]. Although they disclosed their dataset, its scale (only 12 pairs)
is too marginal to use for model training effectively.

There were interesting studies that transformed from thermal range to visual
spectrum [9,35]. The objective was the estimation of nonlinear mapping between visi-
ble spectrum (450∼750 nm) to long wave infrared (8∼12 µm) range. The large gap in
the spectrum causes severe appearance differences, hence the task is more difficult than
the NIR–RGB mapping case. In order to achieve a good generalised model and stable
performance, a large-scale dataset and precise thermal calibration (e.g., fluid field correction
and temperature calibration) are required.

Instead of separately treating each image, there were attempts to fuse only distinct
features. The studies of [36,37] proposed a fusion approach of multimodal data and the
goal of their work was to fuse visible texture from an RGB image and thermal radiation
from an infrared image by forcing a discriminator to have more details.

As we can see from the above literature, it is key to choose proximal spectrum ranges
to learn a nonlinear mapping successfully. Ma et al. [38] exemplified this by demonstrating
transformation from NIR-I (900∼1300 nm) to NIR-IIb (1500∼1700 nm) in vivo fluores-
cence (an imaging technique applying glow substances to cells to record responses of live



Sensors 2022, 22, 4721 6 of 29

organisms). According to their results, they achieved unprecedented signal-to-background
ratio and light-sheet microscopy resolution. A similar approach was applied to medical
imagery [39]: generating magnetic resonance images (MRI) from computed tomography
image (CTI) using CycleGAN [32] and unsupervised image-to-image translation network
(UNIT) [40].

We have introduced the most fundamental studies and outstanding applications in our
perspectives on image-to-image translation using GAN techniques. However this research
field is active and developing at a fast pace, so we would like to refer to a more solid and
recent survey paper [41,42].

2.3. Object-Based Fruit Localisation

Synthetically generated images from the previous section can be used as auxiliary
information for various computer vision tasks such as object classification, recognition,
bounding box-level detection, and semantic segmentation in order to improve performance.
In this paper, we are interested in the fruit object detection (i.e., bounding box localisation)
task following our previous studies presented in deepFruits [15] where we demonstrated
seven fruits/crops detection using a two-stage object detector [43]. On top of the work,
we share four additional novel fruit annotations and their split. We evaluated our 3- and
4-channel datasets using a single-stage detector [44].

The object detection problem is one of the most important tasks in remote sensing,
computer vision, machine learning and robotics communities. Recent advances in large-
scale datasets and machine learning algorithms accelerated by GPU computing have
unlocked potential and achieved super human-level performance. In this research area,
there are two main streams: single and two-stage detection.

The first is to formulate the problem as a single regression optimisation problem
gaining faster inference speed with the cost of inferior performance [44,45]. Whereas the
latter, two-stage detector employs a region proposal network (RPN), which suggests a
number of candidates (e.g., rectangles or circle [46] primitives) for the subsequent object
classification and bounding-box regression heads [43,47,48]. Generally, this approach
achieved superior performance at the cost of processing speed. According to the recent
trends in object detection, it is worth mentioning that the detection performance gap
between these paradigms has been significantly reduced with the aid of intensive optimised
image augmentation techniques and more efficient network architecture design [49]. We
will discuss this more in Section 3.2.

Even though we presented the most remarkable achievements in the area, we would
like to point out another object detection survey paper [50] that covers more concrete
summaries and research directions.

3. Methodologies

In this section, we present synthetic near-infrared image generation and its application,
object detection, by using the generated 4 channels (i.e., 3 × visible + 1 × infrared spectra)
of data.

3.1. Synthetic Near-Infrared Image Generation

Abundant and high-quality training data is one of the essential driving factors, es-
pecially for data-driven approaches such as deep neural networks (DNN). Securing such
data often requires a lot of resources (e.g., manual annotations). Therefore, researchers
and communities have devoted tremendous efforts to this, which leads to impressive and
brilliant ideas such as data augmentation [51,52], pseudo labelling [53], and generative
adversarial models [29,30,33]. In this paper, we are interested in exploiting a generative
model for the following reasons. First, it is straightforward to re-formulate the problem by
adopting ideas from previous studies such as style-transfer [29] and fake image generation
[54]. For the training phase, we only need to feed image pairs (RGB, NIR) as input and
target. Second, there exist well-established resources that demonstrate outstanding per-
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formance in non-agricultural domains such as fake face image generation or style transfer
from hand drawings to masterpieces.

Figure 3 illustrates one of the generative adversarial networks (GAN) for synthetic
image generation [30]. Our goal is to find the optimal generator and classifier given
real image pairs at the training phase. As shown in the figure, the role of the generator
and classifier is to create a synthetic image pair and distinguish real or synthetic pairs,
respectively. The inference stage simply performs forward prediction using the trained
generator model and input RGB image, creating synthetic image output. It is worth
mentioning that the generator may have abilities to generate small obscured scenes if train
and test datasets share a similar context. For instance, there is a passing car in the real NIR
image but not in the RGB image in Figure 3. This happened because NIR and RGB images
were asynchronously captured in the public dataset [13]. Despite this, our generator is
able to recover the small portion of the image (red dashed box) because it learned how to
transfer from RGB spectrum (380–740 nm) to NIR (∼750 nm).

Figure 3. Synthetic image train (top) and inference (bottom) pipeline. This is one of typical type of
conditional generative adversarial network (cGAN) [29]. Image redrawn from [30].

More formally, the objective of GAN (conditional GAN [28] more precisely) can
be expressed as:

LGAN(GθG , DθD ) = Ex∼pdata(x),y[logDθD (x|y)] +Ez∼pz(z)[log(1− DθD (GθG (z|y))] (1)

where GθG and DθD) are generator, G : {x, z} 7→ y and classifier (or discriminator) parame-
terised θG and θD, respectively. x ∈ RW×H×C, y ∈ RW×H×C and z ∈ R1 are input image,
target image and a random noise in this case. Intuitively the first term indicates the expecta-
tion of classifier given data sample x (i.e., RGB image) drawn from input data distribution
and target y, which is an NIR image. Maximising this term implies we successfully fool
the classifier even though the generator produces synthetic images. The second term is
what we want to minimise the difference between the output of generator (∈ RW×H×C)
given random noise z drawn from noise distribution, pz(z), given target image y and target
image y as close as possible.

Concretely we can also add the L1 loss function in order to minimise blurring
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LL1(GθG ) = Ex,y,z[||z− GθG (x|y)||1] (2)

Therefore, the final objective is a min-max optimisation problem

arg min
GθG

max
DθD

LGAN(GθG , DθD ) + λLL1(GθG ). (3)

Other than conditional GAN, there are many GAN variants in formulating loss func-
tions such as convolutional GAN [55] or cycle GAN [32] which also can be utilised for
synthetic image generation tasks.

Among many possible approaches, we selected the Pix2pixHD framework [30] as
our baseline study for the following reasons. It has been widely used among synthetic
data generation tasks, so there are many comparable resources. It can handle higher
resolution images than its ancestor [29] and is easy to use with many available options such
as hyperparameter searching and model evaluation. We made datasets used in this paper
for training and testing available for the public. One can reproduce or evaluate model
performance using different state-of-the-art GAN frameworks.

Datasets Used for Generating Synthetic Image

We made minor modifications in the use of our baseline synthetic image generation
framework (i.e., Pix2pixHD) to be able to evaluate model performance while varying
datasets, as shown in Table 2. With these datasets, one will be able to reproduce similar
results to those we achieved or use other frameworks for superior outcomes.

Table 2. Summary of datasets used for generating synthetic images.

Name Desc. # Train # Valid # Test Total Img Size
(wxh)

Random
Cropping

Over
Sampling

Spectral Range
(nm)

nirscene1

2880 320 320 3520 256 × 256 Yes ×10

400–850
14,400 1600 1700 17,700 256 × 256 Yes ×100
28,800 3200 3400 35,400 256 × 256 Yes ×200
57,600 6400 6800 70,800 256 × 256 Yes ×400

SEN12MS All seasons 144,528 18,067 18,067 180,662 256 × 256 No N/A 450–842Summer 36,601 4576 4576 45,753 256 × 256 No N/A

capsicum 1291 162 162 1615 1280 × 960 No N/A 400–790

The data consist of three public [13,14,19] datasets. The first dataset namely, nirscene1 ,
contains 477 RGB+NIR images (1024 × 679) that were captured with commercial high-end
cameras with a 750 nm band-cutoff filter. The colour images were white-balanced, and
the channel-wise average was applied to the infrared images. Two image alignment (or
registration) was done through feature matching in RGB and NIR domains. These are
only critical characteristics, but more technical detail can be found from [13]. Figure 4
shows sample images from the dataset. This dataset is useful but only has 477 pairs
which may hinder a good visible-infrared domain mapping. Although more experimental
results will be presented in the following Section 4, we performed hard-cropping and over-
sampling to resolve this issue. Hard-cropping is one of the augmentation techniques which
generates cropped datasets, whereas soft-cropping generates cropped samples during the
training/testing phase. Over-sampling refers to randomly sampling more redundant data.
It is a fact that the maximum amount of information we can get from the over-sampling
is the original data. However, we found that over-sampling helped stabilise training and
improved performance by a large margin. Regarding this, we will discuss and analyse
more in Section 4.
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Figure 4. RGB (top row) and NIR (bottom row) samples drawn from our nirscene1 dataset
(256 × 256). This dataset was mostly taken in outdoor environments with band-cutoff filter equipped
two digital single-lens reflex (DSLR) cameras. Note that there also exists noticeable temporal gap
between NIR and RGB images (middle column).

The second dataset, SEN12MS, is publicly available satellite imagery from Sentinel-1
and Sentinel-2. No image processing is applied to this dataset, we only selected two subsets
(Summer and All seasons) followed by a train/valid/test split. Figure 5 shows geolocations
where the authors sampled multispectral imagery. A multispectral image covers spectral
range from 450 nm–842 nm (i.e., band2, band3, band4, band8 of Sentinel-2) and captured at
768 km. This leads to having 10 m ground sample distance (GSD)/pixel. Radiometric cali-
bration was properly performed by the satellite system organisation. Figure 6 demonstrates
a couple of samples in this dataset.

Figure 5. Green indicates 65 sampled locations from the SEN12MS Summer dataset and blue covers
All seasons and 256 globally distributed locations in total.
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Figure 6. RGB (top row) and NIR (bottom row) samples (each column) from our SEN12MS dataset
(random samples in winter and spring). Note that left RGB image’s brightness is adjusted for better
visualisation. The original RGB image is darker.

The last dataset, capsicum, is one of our previous studies presented in [15,19]. The
dataset was collected from sweet pepper farms in Australia, Gatton and Stanthorpe, with
a multispectral camera, JAI AD-130GE. This camera has two charges coupled device
(1280 × 960) prism mechanisms for each RGB and NIR spectrum. Unlike other datasets,
we use the larger original image to train our model because this simplifies the subsequent
procedures (e.g., object detection). Data collection campaigns were mostly performed at
night with controlled visible and infrared light sources to mitigate external interference.
White balance was properly performed with a grey chart, and radiometric calibration was
omitted. Figure 7 shows samples from this dataset.

Figure 7. RGB (top row) and NIR (bottom row) samples (each column) from our capsicum dataset.
It is one of the most challenging datasets, containing very cluttered and complex scenes in close
proximity. Note that right RGB image’s brightness is adjusted for better visualisation. The original
RGB image is darker.
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3.2. Fruit Detection Using Synthetic Images

In this section, we present one of the applications for which we can take advantage of
synthetically generated images from the previous step. Object detection or semantic image
segmentation is one of the important downstream tasks in many research and commercial
areas. Especially, precise object detection in agriculture can be considered a pivotal stepping
stone because it can be used for many other subsequent tasks such as crop counting, yield
estimation, harvesting and disease detection with bounding-box level segmentation or its
classification.

For objection detection, we chose Yolov5 [44] mainly due to its fast inference time
(i.e., single-stage detection), the fact that it is easy to train and its intuitive visualisation
advantages over other frameworks. However, there exist other powerful frameworks
such SAHI [56], Detectron2 [57] or MMDetection [49] that can also be exploited. These
frameworks are very flexible in adapting new modules or datasets and support many
pretrained weights which can improve object detection performance by a large margin.

The network architecture and implementation details of Yolov5 can be found from [44],
and we present only a concise high-level view in order to help readers in understanding
object detection.

It consists of four sub-parts, namely input, backbone, neck and head layers. The first
input layer adopts mosaic data augmentation that is an aggregation of cropped images,
adaptive anchor, and many other augmentation techniques [51]. Backbone and neck
networks are in charge of feature extraction by making use of focus (i.e., image slicing),
convolution-batch-normalisation, and leaky ReLU (CBL), cross-stage-partial (CSP) [58]
and spatial pyramid pooling (SPP) [59], feature pyramid networks (FPN) [60] and path
aggregation network (PAN) [61] modules. Intuitively, the output of the neck network
is feature pyramids that incorporate varying object scales, which may lead to superior
performance than other single-stage-detectors (SSD). The last head layer is an application-
specific layer, and most object detection tasks predict bounding box (4), confidence (4), and
class (1) from the head layer. More concretely, the bounding box loss Lbox used in the object
detection is expressed

Lbox =
s×s

∑
i=0

N

∑
j=0

Iobj

i,j (1−GIoU) (4)

Iobj

i,j =

{
1 if prediction exists within annotation
0 otherwise.

(5)

where GIoU =IoU− C−U
C

(6)

IoU =
I
U , U = B̂ + B− I (7)

where s is the number of a grid, N is the number of bounding boxes in each grid. GIoU
is generalised intersection over union [62] which has [−1, 1] scalar value. B̂, B are area
of prediction and annotation bounding boxes (i.e., two arbitrary convex shapes) and C is
the area of the smallest enclosing convex shape. I and U are the intersection and union
of B̂ and B respectively. IoU indicates intersection over union of B̂ and B. Intuition of
the loss function is that the loss will keep increasing with smaller GIoU implying smaller
overlap between B̂ and B, on the other hand the loss decreases with larger GIoU when two
bounding boxes are largely overlapped.

There are two more losses for confidence score (Lscore) and class probability (Lclass) and
they are modelled by logistic regression and binary cross entropy as follows:
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Lscore = −
s×s

∑
i=0

N

∑
j=0

Iobj

i,j

(
Sj

i log(Ŝj
i) + (1− Sj

i)log(1− Ŝj
i)

)

−λempty

s×s

∑
i=0

N

∑
j=0

Iempty

i,j

(
Sj

i log(Ŝj
i) + (1− Sj

i)log(1− Ŝj
i)

)

Iempty

i,j =

{
1 if there is no prediction
0 otherwise.

where Ŝj
i and Sj

i indicate the prediction and annotation scores (usually = 1.0) of the j-th
bounding box in the i-th grid. λempty is the weight when there is no predicted object within
the j-th bounding box.

Similarly, class probability Lcls is defined as

Lcls = −
s×s

∑
i=0

N

∑
j=0

Iobj

i,j

(
Pj

i log(P̂j
i ) + (1− Pj

i )log(1− P̂j
i )

)
(8)

−λempty

s×s

∑
i=0

N

∑
j=0

Iempty

i,j

(
Pj

i log(P̂j
i ) + (1− Pj

i )log(1− P̂j
i )

)
(9)

The total loss can be calculated

Ltotal = Lbox + Lscore + Lcls (10)

and we seek parameters that minimise the total loss in the training phase.
Figure 8 illustrates the object detection pipeline we proposed in this paper. Among

various visual fusion approaches, we follow ‘early fusion’ in order to maintain a similar
inference processing time as of 3 channel inference (‘late fusion’ requires O(N) complexity
where N is the number of input). Moreover, it is easier to implement and straightforward to
extend from 3 channel baseline. Firstly, input image ∈ RW×H×3 is fed into the generator that
learnt mapping from visible-to-infrared domain and outputs a synthetic image ∈ RW×H×1.
These two data are concatenated to form the shape of input data ∈ RW×H×4 prior to the
input convolution layer (i.e., early fusion). After forward computation, the network predicts
bounding boxes with the corresponding confidence (see red boxes in the figure). Here ‘4ch
inference’ and ‘3ch inference’ indicate this prediction with synthetic image and without
it, respectively. From this cherry-picked experiment, we observed interesting aspects: (1)
there is an instance that only the 4-channel model can detect. Marked in yellow from
manual annotation, the 3-channel model missed (false negative) capsicum obscured by
leaves and severe shadow. In comparison, the 4-channel model correctly detected it, and
we believe this is the impact of introducing synthetic images; (2) Both models failed in very
challenging instances (marked in magenta); (3) Both models successfully detect the object
despite manual annotation error (marked in cyan).
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Figure 8. The 4-channel(ch) early fusion object detection inference pipeline (top) and 3-channel
ordinary inference (bottom). Brighter areas in manual annotation on the right image indicate manual
labeled bounding boxes. One can compare them with model predictions (i.e., red boxes in ‘4ch
prediction’ and ‘3ch prediction’). This image best viewed zoomed-in.

Datasets Used for Fruit Detection (4ch)

In order to see the impact of synthetically generated images, we created a dataset that
includes 4 channels and 11 fruits built upon our previous study [15] which presented 7 fruit
for detection as shown in Table 3. Blueberry, cherry, kiwi, and wheat are newly introduced
in this dataset. Even though the total number of images is far less than other publicly
available datasets such as ImageNet and COCO (except wheat), this may be useful for mode
pre-training for another downstream task. Each image contains multiple instances because
fruits usually form a cluster. In addition to this, each fruit image was taken in various
camera views, scale and lighting conditions which are very helpful for model generalisation.
We made this dataset publicly available in a cloud annotation framework so that one
can download them in many different formats (https://tiny.one/deepNIR (accessed
on 17 June 2022)). Note that we manually generated and fixed errors in our previous
dataset [15] except the wheat dataset obtained from a machine learning competition (https:
//www.kaggle.com/c/global-wheat-detection (accessed on 17 June 2022)). The dataset
split followed the 8:1:1 rule for train/validation/test and final object detection results were
reported using the test set. Detailed experiment results and dataset samples are presented
in the following experiments section.

Table 3. Dataset for object detection summary table.

Name # Images # Instances Median Image RatioTrain (80%) Valid (10%) Test (10%) Total (wxh)

apple 49 7 7 63 354 852 × 666
avocado 67 7 10 84 508 500 × 500

blueberry 63 8 7 78 3176 650 × 600
capsicum 98 12 12 122 724 1290 × 960

cherry 123 15 16 154 4137 750 × 600
kiwi 100 12 13 125 3716 710 × 506

mango 136 17 17 170 1145 500 × 375
orange 52 6 8 66 359 500 × 459

rockmelon 77 9 11 97 395 1290 × 960
strawberry 63 7 9 79 882 800 × 655

wheat 2699 337 337 3373 147,793 1024 × 1024

https://tiny.one/deepNIR
https://www.kaggle.com/c/global-wheat-detection
https://www.kaggle.com/c/global-wheat-detection
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4. Experiments and Results

In this section, we first define evaluation metrics used for synthetically generated
images and object detection tasks. Based on these, quantitative and qualitative results are
presented for both synthetic NIR image generation and object detection tasks.

4.1. Evaluation Metrics

For synthetic image generation, it is relatively difficult to accurately gauge performance
because the generator model often produces imaginary images (e.g., fake faces). Fortunately,
in our task, we can utilise either traditional image similarity metrics or feature space image
distribution comparisons because our objective is to generate a synthetic NIR image with
a small residual error compared to the original NIR. For the object detection task, we
adopt mean average precision with IoU sweeping range from [0.5:0.95] (mAP[0.5:0.95]) with a
0.05 step.

4.1.1. Synthetic Image Evaluation Metrics

As mentioned with inherent challenges in evaluating synthetic images, communities
widely have used various performance metrics [63] such as Frechet inception distance (FID)
or generative adversarial metric (GAM). Each of them has its particular advantages and
disadvantages. Among them, we choose FID which reports image similarity between two
images in high-dimensional feature space. It implies the metric finds the distance between
two multivariate Gaussian distributions, XA∼N (µA, ΣA) and XB ∼ N (µB, ΣB) that are
fitted to data embedded into a feature space (e.g., extracted features using InceptionNet or
VGG16 backbone).

dFID(A, B) = ||µA − µB||22 + Tr(ΣA + ΣB − 2
√

µAµB) (11)

4.1.2. Object Detection Evaluation Metric

There are also many metrics for object detection tasks such as IoU, GIoU, mAP and
F-α [64]. Among them, mAP[0.5:0.95] is a widely utilised and acceptable metric [65] and it is
defined as follows

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

AP =
∫ 1

0
P(R)δR (14)

mAP =
1
M

M

∑
i=1

APi (15)

where TP, FP and FN denote true-positive, false-positive and false-negative, respectively.
True positive implies our prediction is correct as of annotation bounding box (hit), false
positive is when we wrongly make a prediction (false-alarm), and false-negative occurs
when we miss a bounding box (miss). Note that true negative TN is not considered in
object detection task because this implies correct rejection (e.g., there should not be an
bounding box and a model does not predict at that location) and there exist infinite cases
that satisfy the condition. P and R are precision and recall, and AP and mAP refers to
average precision, and mean average precision that is the mean of all class’s AP. In our case,
AP and mAP are treated equally because we only have one class (M = 1) in our training
dataset. As shown, AP is equal to the area of the precision–recall curve and mAP[0.5:0.95] is the
mean average precision of all classes while varying IoU threshold range from 0.5 to 0.95
with 0.05 steps (i.e., mean of total 20 samples).

In terms of train/inference processing time per dataset and GPU devices used for each
task, Table 4.
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Table 4. Train/inference summary table.

Type Name Desc. GPU Epoch Train
(h)

Test
(ms/Image)

Img
Size # Samples

Synthetic
image

generation

nirscene

10×

P100

300 8

500 w:256
h:256

2880
100× 300 72 14,400
200× 300 144 28,800
400× 164 113 57,600

SEN12MS All RTX
3090

112 58 250 w:256
h:256

144,528
Summer 300 140 36,601

Capsicum RTX
3090 300 29 780 w:1280

h:960 129

Fruit
detection

10 Fruits Yolov5s RTX
3090

600 min: 4 min,
max: 36 min

4.2–10.3 w:640
h:640 <5000

Yolov5x

Wheat Yolov5s RTX
3090

1 h 16 min 4.2–10.3 w:640
h:640 147,793

Yolov5x 2 h 16 min

4.2. Quantitative Results for Synthetic NIR Image Generation

In this section, we present three quantitative synthetic image generation results for
nirscene1, SEN12MS and capsicum datasets.

An et al. demonstrated impressive results by making use of the multi-channel attention
selection module [7]. They cropped 3691 images with 256 × 256 resolution for model
training and testing. Unfortunately, the dataset used in this study is unavailable and
technical details are insufficient for fair comparisons (e.g., train/test samples and their split
is not disclosed).

As a rule of thumb, we split our dataset 8:1:1 for train/validation/test as described
in Table 2 and proceeded with experiments. We achieved comparable results as shown
in Table 5. It can be observed that FID keeps improving (lower is better), corresponding
to oversampling rate. It is a fact that the maximum amount of information from the
oversampled samples should be less than or equal to the original dataset. This redundancy
may introduce system overhead as mentioned in [66] and make a marginal impact on
image segmentation or object detection tasks. However, training the GAN-style model
often demonstrates distinct characteristics. Speaking of convergence, it is often difficult
to find the optimal point for GAN models because of its naturally inherent min-max
game framework. Even with stable convergence, it is commonly difficult to guarantee
the performance of the trained GAN model due to mode-collapse or diminished gradient
issues [67]. If the number of samples is small (e.g., <10 k), it is very challenging to train
a stable model. By oversampling, we hypothesise that GAN models can learn stable
parameters significantly affected by the number of samples, especially batch-normalisation
layers. This operation, namely hard-cropping, can also be done during the training phase
by utilising augmentation approaches (soft-cropping). However, this soft cropping often
is performed based on user-defined probability and may introduce more instability. The
hard-cropping effect can be achieved with the maximum probability and a large number of
epochs.
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Table 5. Synthetic image generation quantitative results.

FID ↓ # Train # Valid # Test Img Size Desc.

[7] 28 3691 N/A N/A 256 × 256
10 layer attentions,
16 pixels, 4 layers,

encoding+decoding

nirscene1

109.25 2880 320 320 256×256 ×10 oversample
42.10 14,400 1600 1700 256 × 256 ×100 oversample
32.10 28,800 3200 3400 256 × 256 ×200 oversample

27.660 57,600 6400 6800 256 × 256 ×400 oversample, epoch 89
26.53 86,400 9600 9600 256 × 256 ×400 oversample, epoch 114

SEN12MS 16.47 36,601 4576 4576 256 × 256 Summer, 153 epoch
11.36 144,528 18,067 18,067 256 × 256 All season, 193 epoch

capsicum 40.15 1102 162 162 1280 × 960 150 epoch

To our best knowledge, An et al. [7] is the only comparable baseline that exploited the
nirscene1 dataset reporting FID score. However, this study inaccurately describes essential
technical details such as how many test images were evaluated and data split. Therefore, it
is difficult to make a fair comparison between our results and [7].

Yuan et al. [8] reported impressive results using the SEN12MS dataset for synthetic
image generation. A total of 30,000/300 images were randomly sampled from the Summer
dataset for training and testing, respectively. They reported quantitative results with image
similarity metrics such as mean absolute error (MAE) or structural similarity (SSIM), which
differ from our evaluation metrics. More importantly, the split strategy is questionable
as only 1% was evaluated. The other 99% of the dataset was utilised for the training.
From our perspective, with such small test samples, it is difficult to evaluate the model
performance properly.

The capsicum data reported a 40.15 FID score. This dataset is the closest range among
all datasets and contains cluttered structures and complex scenes. It is difficult for models
to learn RGB to NIR mapping (or vice-versa) properly.

We summarise from these quantitative results that the number of samples is significant
for the GAN model. Our synthetic NIR generator worked best for SEN12MS which
performed proper radiometric calibration to have access to reflectances rather than raw
pixel value. Accessing these reflectances is critical because they can hold consistent values
despite acceptable changes in camera intrinsic or extrinsic parameters if images were
taken under a similar light source. It is worth mentioning that image resolution is also
one of the interesting aspects to consider, as shown in the higher-resolution result. If an
image has a higher resolution, the more difficult it is for a network to learn the NIR–RGB
relationship. In order to improve this, we are required to design a deeper network with
more training samples.

The final analysis point is that the FID score is unitless and does not have a quality
measure. A low score means high performance, but it is questionable whether 15 FID is
good or bad. We suggest conducting a visual inspection of model prediction to address
this issue, as presented in the following section.

4.3. Qualitative Results for Synthetic NIR Image Generation

We show qualitative results of three datasets, nirscene1, SEN12MS and capsicum. The
nirscene1 dataset has a FID of 26.53 and Figure 9 exemplifies six randomly selected test
samples. The leftmost two columns are the original NIR–RGB pair and synthetic NIR
refers to model prediction (N̂IR) that resulted in the mentioned FID score. Original NDVI
indicates extracted NDVI NIR−RED

NIR+RED using original NIR–RGB pair and synthetic NDVI is

output by calculating N̂IR−RED
N̂IR+RED

. These two NDVI images’ histograms are presented in
the rightmost column (blue = original NDVI, red = synthetic). Generally speaking, the
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network learnt good nonlinear mapping. However, it shows limitations especially varying
intensities and blurred edges. These are clearly noted from the histogram. The nirscene1
dataset contains many images taken outdoors where the light condition is inconsistent.
This poses challenging conditions for the model to learn the mapping given a small dataset.

Figure 9. Six samples of nirscene1 dataset (1st and 2nd columns) and their corresponding synthetic
NIR image (3rd) and NDVI images generated from original and synthetic NIR images (4th and 5th).
The right most column shows pixel distribution for each NDVI images (red: synthetic, blue: original).

The SEN12MS dataset was taken/calibrated in more stable conditions than nirscene1.
This clearly can be observed from Figure 10. Prediction nicely fits the original NDVI except
for a couple of under-estimated points. We achieved an FID of 16.47 for the Summer and
11.36 for All season subsets in these experiments. Qualitatively speaking, it can be said that
less than 15 FID is an excellent approximation of the original data. We are still investigating
the reason for the underestimation. However, it is maybe a valid hypothesis that the
network requires to see more images containing water as it mostly causes an error at very
low NDVI, which is close to the normalised difference water index (NDWI) wavelength.
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Figure 10. Six samples of SEN12MS dataset (1st and 2nd columns) and their corresponding synthetic
NIR image (3rd) and NDVI images generated from original and synthetic NIR images (4th and 5th).
The right most column shows pixel distribution for each NDVI images (red: synthetic, blue: original).

The last dataset is capsicum, as shown in Figure 11. This dataset holds consistent
illumination and white balance, but some samples are severely under-exposed (see the
bottom row in the figure). In addition, this dataset was taken in the closest range, causing
very cluttered and complex scenes. Although our model worked surprisingly well, it still
could not recover sharp detail that led to a relatively higher FID of 40.15, but it is still
impressive, and we can use this result to see if we can improve the object detection task.
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Figure 11. Six samples of capsicum dataset (1st and 2nd columns) and their corresponding synthetic
NIR image (3rd) and NDVI images generated from original and synthetic NIR images (4th and 5th).
The right most column shows pixel distribution for each NDVI images (red: synthetic, blue: original).

4.4. Applications for Fruit Detection Using Synthetic NIR and RGB Images

Synthetic NIR images (700–800 nm wavelength) can provide useful information
that visible-range RGB images can not cover. One of the prominent properties is high
reflectance in this particular bandwidth from vegetation due to chlorophyll in cells of leaves.
Combining NIR with RED channel (i.e., normalised difference vegetation index (NDVI) [6])
enables the measurement of vegetated areas and their condition easily. Therefore, additional
NIR information can significantly improve the performance of plant segmentation tasks as
demonstrated in our previous studies [17,18].

Not only for the image segmentation task, but it can boost object detection performance
as depicted in our previous experiments [15]. The provided information helps to enhance
distinguishing power by providing quality features. For example, texture and objects under
shallow shadow appear clearer in the infrared range than visible.

Thus, in this section, we aim at improving object detection performance by injecting
additional synthetic data that we generated in the previous section. All experiments are
conducted using the dataset mentioned in Table 3. We adopt the Yolov5 single-stage
detector for the experiments and made minor modifications in order to take 4-channel
input. Any other object detectors such as Detectron2, MMDetection or other Yolo-series
can be easily utilised.

4.5. Quantitative Fruit Detection Results

As mentioned in Section 4.1, mAP[0.5:0.95] is the key performance metric in this quantita-
tive evaluation. A total of 11 fruits and crops are considered, as shown in Table 6. Note
that seven fruits such as apple, avocado, capsicum, mango, orange rockmelon and straw-
berry were adopted from our previous work [15] when a two-stage detector (faster-RCNN
[43]) was utilised as the main object detector. Although the samples for these seven fruits
remain almost identical, we re-annotated wrongly annotated samples and made all of
them available via cloud service with the four newly added fruit. This allows users to
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export the dataset in various formats suitable for seamlessly using various object detection
frameworks with minimal effort.

Table 6. Eleven fruits/crops object detection quantitative results table. Up-arrow indicates a higher
score is better performance. Bold denotes the best performance in the corresponding metric within
each fruit.

Name Model Input mAP0.5↑ mAP[0.5:0.95]↑ Precision↑ Recall↑ F1↑

apple
yolov5s RGB 0.9584 0.7725 0.9989 0.913 0.9540

RGB+NIR 0.9742 0.7772 0.9167 0.9565 0.9362

yolov5x RGB 0.9688 0.7734 0.9989 0.9130 0.9540
RGB+NIR 0.9702 0.7167 0.8518 0.9999 0.9199

avocado
yolov5s RGB 0.8419 0.4873 0.9545 0.8077 0.8750

RGB+NIR 0.8627 0.4975 0.8749 0.8071 0.8396

yolov5x RGB 0.9109 0.6925 1.0000 0.8461 0.9166
RGB+NIR 0.8981 0.6957 0.9583 0.8846 0.9200

blueberry
yolov5s RGB 0.9179 0.5352 0.8941 0.9018 0.8979

RGB+NIR 0.8998 0.5319 0.9224 0.8354 0.8767

yolov5x RGB 0.9093 0.5039 0.9345 0.8494 0.8899
RGB+NIR 0.8971 0.4657 0.9063 0.8476 0.8760

capsicum
yolov5s RGB 0.8503 0.4735 0.8159 0.8473 0.8313

RGB+NIR 0.8218 0.4485 0.848 0.8091 0.8281

yolov5x RGB 0.8532 0.4909 0.8666 0.8429 0.8546
RGB+NIR 0.8642 0.4812 0.8926 0.8244 0.8571

cherry
yolov5s RGB 0.9305 0.6045 0.9300 0.8586 0.8929

RGB+NIR 0.9034 0.5655 0.8994 0.8505 0.8743

yolov5x RGB 0.9415 0.6633 0.929 0.8747 0.9010
RGB+NIR 0.9300 0.6325 0.9129 0.8687 0.8903

kiwi
yolov5s RGB 0.8642 0.5651 0.9196 0.7831 0.8459

RGB+NIR 0.8154 0.5195 0.9039 0.7188 0.8008

yolov5x RGB 0.8935 0.6010 0.9056 0.8326 0.8676
RGB+NIR 0.8240 0.5139 0.8625 0.7643 0.8104

mango
yolov5s RGB 0.9431 0.6679 0.9516 0.879 0.9139

RGB+NIR 0.9032 0.6033 0.9347 0.8217 0.8746

yolov5x RGB 0.9690 0.6993 0.9333 0.8917 0.9120
RGB+NIR 0.9339 0.6681 0.9221 0.9044 0.9132

orange
yolov5s RGB 0.9647 0.707 0.9409 0.9697 0.9551

RGB+NIR 0.9488 0.7669 0.9655 0.8482 0.9031

yolov5x RGB 0.9662 0.8484 0.9998 0.9091 0.9523
RGB+NIR 0.9584 0.8277 1.0000 0.9091 0.9524

rockmelon
yolov5s RGB 0.9588 0.6321 0.9198 0.8846 0.9019

RGB+NIR 0.9205 0.6701 0.9999 0.8462 0.9167

yolov5x RGB 0.9612 0.7161 0.9259 0.9615 0.9434
RGB+NIR 0.9444 0.7018 0.8926 0.9615 0.9258

strawberry
yolov5s RGB 0.9553 0.6995 0.9559 0.8784 0.9155

RGB+NIR 0.8913 0.6210 0.9000 0.8513 0.8750

yolov5x RGB 0.8899 0.5237 0.8954 0.8108 0.8510
RGB+NIR 0.9071 0.4882 0.9375 0.8106 0.8694

wheat
yolov5s RGB 0.9467 0.5585 0.929 0.9054 0.9170

RGB+NIR 0.9412 0.5485 0.9258 0.8926 0.9089

yolov5x RGB 0.9472 0.5606 0.9275 0.9035 0.9153
RGB+NIR 0.9294 0.5329 0.9163 0.9005 0.9083
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We considered two models for each fruit, yolov5s (7.2 M parameters) and yolov5x
(86.7 M), and each model is trained with/without synthetic NIR images. Therefore each
fruit holds four performance results. All hyperparameters used are default from the latest
repository, only the number of the epoch is set as 600 except for wheat, mainly due to
being an order of magnitude larger in dataset size. Bolder indicates each fruit’s best score
corresponding to the metric. During the training phase, we assume only one class exists in
a dataset which is a valid assumption considering mono-species fruit farm scenarios. In
generating synthetic NIR images, we deployed the generator trained with the capsicum
dataset mentioned in Table 2. It is worth mentioning that the two capsicum datasets used
for synthetic NIR generation and object detection are different in various aspects such as
data collection campaign location, time and lighting condition. This is because we can only
obtain capsicum annotations from our previous work [15] for object detection, whereas we
have abundant un-annotated RGB+NIR pairs collected from trial collections for synthetic
NIR generation.

Overall, all detection performances are impressive despite a small number of training
samples. mAP0.5 shows a min-max of 0.85–0.98 and mAP[0.5:0.95] of 0.49–0.81. Four fruits,
apple, capsicum, avocado and orange, outperform by making use of additional NIR infor-
mation, while seven others report the best performance only with RGB information. This
result points against our objective, and we would like to elaborate on its causality deeply.

Stable and consistent reflectance plays a significantly important role in synthetic
image generation. Intuitively, this implies our network is required to learn an RGB to
NIR nonlinear mapping with small variations. If distributions and characteristics in the
dataset significantly vary, our model would require more datasets covering the envelope.
Otherwise, it will be under- or over-fitted, which in turn leads to inferior performance that
occurred in our case. All datasets evaluated in object detection have a marginal correlation
with the capsicum dataset utilised for GAN model learning. Many of them were obtained
from web pages without NIR images. More detailed limitations, failure cases and possible
workarounds are discussed in the next Section 5.

Figure 12 shows a different view of Table 6. It is clear that a model with more
parameters performs better at the cost of longer training time and hardware resources.
At a first glance, the performance gap between only RGB and RGB+NIR is difficult to
distinguish. To our best knowledge, it is sufficient to exploit only RGB images for fruits
bounding box detection.

Figure 12. Object detection results summary. Different colours indicate the corresponding met-
rics. The different type of input data (i.e., RGB or RGB+NIR) are separately grouped for each
yolov5 models.
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Train/validation losses are important measures to see the model’s performance and
behaviours. Figure 13 reports two mAP metrics and losses results for newly added fruits,
blueberry, cherry, kiwi and wheat. An early-stopping mechanism that terminates the train-
ing phase if the model’s evaluation has not improved for N = 10 consecutive epoch/steps
was activated, causing different steps for each fruit. All fruits are nicely converged without
over-fitting and achieve impressive mAP. There are bumps around 100 steps for blueberry
(red), and it is a common effect of image augmentation (e.g., probability-based geometry or
colour transforms) while training.

Figure 13. mAP performance metrics and train/validation bounding box loss plots for 4 newly added
fruits/crops. Due to early-stopping mechanism, each experiment has a varying step length but it
should have the same length for its metric and loss.

4.6. Qualitative Object Detection Results

In this section, we demonstrate qualitative fruit detection performance. All images are
randomly drawn from test sets (i.e., unseen data while training), and the best performing
model, Yolov5x, with RGB images, is utilised for inference. In terms of inference time, it
took 4.2 ms (238 Hz) and 10.3 ms (97 Hz) average inference time/image for Yolov5s and
Yolov5x models given 640 × 640 resized image on NVIDIA RTX 3090 GPU, respectively.
This inference time is matched with what Yolov5 reported [44] and is sufficient for real-time
processing applications.

Despite the fact that we used the same training dataset of seven fruits as used in
our previous study [15] in 2015, we can qualitatively observe performance improvement
in the state-of-the-art object detector. This can clearly be seen from detecting small scale
objects as depicted in Figure 14. Object detection has been actively developed since the
early era of deep learning and achieved outstanding performance enhancement in accuracy
and inference speed by developing strong image augmentations, model architectures, and
hardware and software optimisation. Figure 14 exemplifies the detection results for 11
fruits. Due to length, we refer to the Supplementary Materials for all predictions of the 11
fruits presented in this paper.



Sensors 2022, 22, 4721 23 of 29

Figure 14. Four newly added fruits/crop prediction results using Yolov5x and RGB test images.
Images are obtained from Google Images and Kaggle wheat detection competition (https://www.
kaggle.com/c/global-wheat-detection) (accessed on 17 June 2022).

5. Remaining Challenges and Limitations

While conducting the experiments, we observed interesting points and limitations of
the proposed approach. Firstly, our synthetic NIR generator can recover small defected data.
As shown in Figure 15, there were a couple of corrupted horizontal lines due to camera
hardware issues (e.g., data stream reaches maximum bandwidth of the ethernet interface
or abnormally high camera temperature). These artefacts are slightly recovered in the
Synthetic NIR because the generator learnt how to incorporate adjacent pixel information
to determine the NIR pixel value. Eventually, this creates a blurring effect, filling one
horizontal line with interpolated data. We agree that it is difficult to argue whether this
leads positive or negative impact on the performance. However, if the level of corruption is
small (e.g., one or two-pixel rows) and frequently happens, the generator can effectively
reject the abnormality.

Figure 15. This figure illustrates in-painting capabilities of our generator. The left image shows data
corruption due to hardware issue and the right depicts recovered region of interest (cyan) in synthetic
NIR image.

https://www.kaggle.com/c/global-wheat-detection
https://www.kaggle.com/c/global-wheat-detection
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Another discussion point and limitation is a marginal improvement or even degraded
performance with synthetic NIR images. Only 4 fruits out of 11 demonstrated superior
results with the additional information. The major reason is the large discrepancy between
train and test sets. For example, Figure 16 shows synthetic NIR images given RGB inputs
for apple, cherry and kiwi. Moreover, these test images were obtained from the Internet to
hold high variation properties. Therefore, it is difficult to tell if the generated images are
good or poor due to the lack of original NIR images.

On the other hand, as shown in Figure 17, our generator properly produced synthetic
NIR images given test images sampled from a similar distribution of train set. From this
experiment, we would like to argue that it is very challenging to generalise our generator
model, resulting in faulty and unrealistic samples. However, it should work with samples
drawn from similar environments and conditions. Critical properties are consistent lighting
and radiometric calibration.

Figure 16. Synthetic NIR generation other than capsicum dataset. Each row shows the results for
apple, cherry and kiwi, respectively. Apple detection performance improved 0.005 mAP[0.5:0.95] with
synthetic NIR. Whereas cherry and kiwi’s performance decreased by 0.03 and 0.09 mAP[0.5:0.95].
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Figure 17. Synthetic NIR generation of capsicum dataset. Each row shows RGB and the corresponding
NIR. Interestingly, capsicum detection performance decreased 0.01 mAP[0.5:0.95] with synthetic NIR but
increased 0.01 mAP[0.5]. This suggests that synthetic NIR contributed to inaccurately detect instances
IoU < 0.5 which can be hidden capsicums under shadow. However, these are rejected in evaluating
the more strict metric, mAP[0.5:0.95].

6. Conclusions and Outlook

In this paper, we presented methodologies for generating synthetic NIR images us-
ing deep neural networks un-supervised (only required NIR–RGB pair). By adopting
three public datasets with oversampling, we demonstrated the importance of the scale
of the training dataset. It turned out that even with redundant information, it helped to
stabilise parameters and led to superior performance. We re-processed these datasets and
made them publicly available. These synthetic NIR images are rigorously evaluated with
11 fruits (seven from our previous study and four newly added dataset). These are also
publicly available in various bounding box formats. This will allow other researchers to use
this dataset easily and in a timely way. Early-fusion manner object detection experiments
are conducted, and detailed analysis and discussion are shared with readers.

Although the scale of object annotation is relatively smaller than other giant datasets
such as ImageNet, COCO or KITTI, these agriculture and horticulture-focused datasets will
be useful in many aspects. It can be used for model in-domain-pretraining, a pre-step prior
to in-task training (or finetune). For instance, if one wants to train a cherry detector with
its own dataset, it makes more sense to pretrain with our dataset rather than ImageNet or
COCO, which contain a lot of non-agricultural contexts (e.g., car, buildings, motorcycle, or
ship). Another use case is that this small dataset can generate pseudo annotations. Given
an unannotated dataset (e.g., 100 k kiwi images), one can obtain predictions (i.e., bounding
boxes with confidences) using a trained model on a small dataset. Recursive iterations can
improve performance by a large margin over a baseline model [53].

To our best knowledge, this paper introduces the most varied type of fruit/crop
bounding box annotation dataset at the moment of writing and we hope this is useful for
other follow-up studies.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3
390/s22134721/s1, Figure S1: Apple prediction results using Yolov5x and RGB test images that
achieved 0.78 mAP[0.5:0.95]. Images are obtained from [15]; Figure S2: Avocado prediction results using
Yolov5x and RGB test images that achieved 0.77 mAP[0.5:0.95]. Images are obtained from [15]; Figure
S3: Blueberry prediction results using Yolov5x and RGB test images that achieved 0.50 mAP[0.5:0.95].
Blueberry images have relatively high instances/image ratio which yields lower mAP. Images are

https://www.mdpi.com/article/10.3390/s22134721/s1
https://www.mdpi.com/article/10.3390/s22134721/s1


Sensors 2022, 22, 4721 26 of 29

obtained from Google Images; Figure S4: Capsicum prediction results using Yolov5x and RGB test
images that achieved 0.49 mAP[0.5:0.95]. This is one of the most challenging dataset that collected
complex and cluttered real farm environments. Lighting condition is severe, level of occlusion is high,
and distance to objects is far. Images are obtained from [15]; Figure S5: Cherry prediction results
using Yolov5x and RGB test images that achieved 0.66 mAP[0.5:0.95]. Images are obtained from Google
Images; Figure S6: Kiwi prediction results using Yolov5x and RGB test images that achieved 0.60
mAP[0.5:0.95]. Images are obtained from Google Images; Figure S7: Mango prediction results using
Yolov5x and RGB test images that achieved 0.69 mAP[0.5:0.95]. Images are obtained from [15]; Figure S8:
Orange prediction results using Yolov5x and RGB test images that achieved 0.73 mAP[0.5:0.95]. Images
are obtained from [15]; Figure S9: Mango prediction results using Yolov5x and RGB test images
that achieved 0.69 mAP[0.5:0.95]. Top row images are obtained from [15] and bottom are from Google
Images; Figure S10: Strawberry prediction results using Yolov5x and RGB test images that achieved
0.67 mAP[0.5:0.95]. Images are obtained from [15]; Figure S11: Wheat prediction results using Yolov5x
and RGB test images that achieved 0.56 mAP[0.5:0.95] Images are obtained from Kaggle wheat detection
competition.
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Abbreviations
The following abbreviations are used in this manuscript:

NIR Near-Infrared
GPU Graphics Processing Unit
DN Digital Number
FID Frechet Inception Distance
mAP Mean Average Precision
AP Average Precision
ML Machine Learning
NLP Natural Language Processing
NDVI Normalised Difference Vegetation Index
NDWI Normalised Difference Water Index
EVI Enhanced Vegetation Index
LiDAR Light Detection and Ranging
RGB-D Red, Green, Blue and Depth
RTK-GPS Real-Time Kinematic Global Positioning System
ESA European Space Agency
GeoTIFF Geostationary Earth Orbit Tagged Image File Format
GAN Generative Adversarial Networks
cGAN Conditional Generative Adversarial Networks
Pix2pix Pixel to pixel
OASIS You Only Need Adversarial Supervision for Semantic Image Synthesis
MRI Magnetic Resonance Image
CTI Computed Tomography Image
UNIT Unsupervised Image-to-Image Translation Network
RPN Region Proposal Network
DNN Deep-Neural Networks
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GDS Ground Sample Distance
YOLOv5 You Only Look Once
BN Batch-Normalisation
ReLU Rectified Linear Unit
CBL Convolution Batch Normalisation and Leaky ReLU
CSP Cross Stage Partial
SPP Spatial Pyramid Pooling
FPN Feature Pyramid Networks
PAN Path Aggregation Network
SSD Single Stage Detectors
GIoU Generalised Intersection Over Union
IoU Intersection Over Union
COCO Common Objects in Context
GAM Generative Adversarial Metric
TP True Positive
TN True Negative
FP False Positive
FN False Negative
P Precision
R Recall
MAE Mean Absolute Error
SSIM Structural Similarity
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