Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA)
Abstract
:1. Introduction
2. Proposed Method
2.1. Principle of the Digital Holographic Microscopy (DHM)
2.2. Windowed Sideband Array (WiSA) in DHM
2.3. Comparison Method Using Ideal Depth Profile in DHM
3. Experimental Setup
4. Experimental Result
4.1. Image Processing of the WiSA
4.2. Comparison with Conventional Filters
4.3. Comparison between the Data Processing Time and Filtering Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Son, J.Y.; Venkel, T.; Chernyshov, A.; Lee, H.; Kim, H.W. Characterization of distortions in electro-holographic image by a Shack-Hartmann wavefront sensor. In Proceedings of the International Society for Optics and Photonics, Chernivtsi, Ukraine, 9–12 February 2020; Volume 113690U. [Google Scholar]
- Wang, H.; Lyu, M.; Situ, G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express 2018, 26, 22603–22614. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Xu, Z.; Lam, E.Y. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics 2019, 1, 016004. [Google Scholar] [CrossRef]
- Shevkunov, I.; Katkovnik, V.; Claus, D.; Pedrini, G.; Petrov, N.V.; Egiazarian, K. Spectral object recognition in hyperspectral holography with complex-domain denoising. Sensors 2019, 19, 5188. [Google Scholar] [CrossRef] [Green Version]
- Bordbar, B.; Zhou, H.; Banerjee, P.P. 3D object recognition through processing of 2D holograms. Appl. Opt. 2019, 58, G197–G203. [Google Scholar] [CrossRef]
- Shin, S.; Yu, Y. Lensless Reflection Digital Holographic Microscope with a Fresnel-Bluestein Transform. J. Korean Phys. Soc. 2019, 74, 98–101. [Google Scholar] [CrossRef]
- O’Connor, T.; Doblas, A.; Javidi, B. Structured illumination in compact and field-portable 3D-printed shearing digital holographic microscopy for resolution enhancement. Opt. Lett. 2008, 10, 142–149. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, H.; Cao, L.; Shan, M.; Liu, B.; Lu, W.; Xie, H. Automatic cross filtering for off-axis digital holographic microscopy. Results Phys. 2020, 16, 102910. [Google Scholar] [CrossRef]
- O’Connor, T.; Anand, A.; Javidi, B. Field-portable microsphere-assisted high resolution digital holographic microscopy in compact and 3D-printed Mach-Zehnder Interferometer. OSA Contin. 2020, 3, 1013–1020. [Google Scholar] [CrossRef]
- Dong, J.; Yetisen, A.K.; Dong, X.; Pöller, F.; Jakobi, M.; Liu, Z.; Salazar Bloise, F.; Koch, A.W. Low-pass filtering compensation in common-path digital holographic microscopy. Appl. Phys. Lett. 2008, 10, 142–149. [Google Scholar] [CrossRef]
- Huang, L.; Yan, L.; Chen, B.; Zhou, Y.; Yang, T. Phase aberration compensation of digital holographic microscopy with curve fitting preprocessing and automatic background segmentation for microstructure testing. Opt. Commun. 2020, 462, 125311. [Google Scholar] [CrossRef]
- Kim, H.W.; Inoue, K.; Cho, M.; Lee, M.C. A Study on Real-Time Modification of the Refractive Index of a Surrounding Medium using a Uniform Microsphere in Digital Holographic Microscopy. In Proceedings of the 2020 3rd International Conference on Electronics and Electrical Engineering Technology, Kitakyushu, Japan, 27–29 September 2020; pp. 44–48. [Google Scholar]
- Patel, N.; Rawat, S.; Joglekar, M.; Chhaniwal, V.; Dubey, S.K.; O’Connor, T.; Javidi, B.; Anand, A. Compact and low-cost instrument for digital holographic microscopy of immobilized micro-particles. Opt. Lasers Eng. 2021, 137, 106397. [Google Scholar] [CrossRef]
- Kim, H.W.; Cho, M.; Konishi, N.; Lee, M.C. Digital holographic microscopy (DHM) using a Gaussian weighted sideband to reduce noise from DC spectrum. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 514–518. [Google Scholar]
- Shin, S.; Yu, Y. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope. J. Korean Phys. Soc. 2018, 72, 863–867. [Google Scholar] [CrossRef]
- Huang, L.; Yan, L.; Chen, B. Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing. Opt. Lasers Eng. 2021, 138, 106416. [Google Scholar] [CrossRef]
- Roitshtain, D.; Turko, N.A.; Javidi, B.; Shaked, N.T. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel. Opt. Lett. 2016, 41, 2354–2357. [Google Scholar] [CrossRef]
- Bedrossian, M.; Lindensmith, C.; Nadeau, J.L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from Enceladus and other icy worlds. Astrobiology 2017, 17, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Solís, S.M.; Hernández-Montes, M.; Santoyo, F.M. Identification of microorganisms using digital holographic microscopy. In Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), Guanajuato, Mexico, 17–21 August 2015; pp. 71–74. [Google Scholar]
- Li, J.; Li, B.; Zhang, X. Digital holographic microscopy measures underwater microorganism. In Proceedings of the Second Target Recognition and Artificial Intelligence Summit Forum, Shenyang, China, 28–30 August 2019; 114273J. [Google Scholar]
- Yi, F.; Moon, I.; Lee, Y.H. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy. J. Biomed. Opt. 2015, 20, 016005. [Google Scholar] [CrossRef]
- Palacios-Ortega, N.; del Socorro Hernández-Montes, M.; Mendoza-Santoyo, F.; Flores-Moreno, J.M. Measurement of morphology thickness and refractive index in a melanoma A375 cell line using digital holog raphic microscopy. Appl. Opt. 2021, 60, 815–822. [Google Scholar] [CrossRef]
- Kim, H.W.; Cho, M.; Lee, M.C. Noise reduction method using a variance map of the phase differences in digital holographic microscopy. ETRI J. 2022, 1–7. [Google Scholar] [CrossRef]
- Goodman, J.W.; Lawrence, R.W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967, 11, 77–79. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
NF | , = 3 | , = 5 | , = 7 | Gaussian | Median | Average | Wiener | Bilateral | |
---|---|---|---|---|---|---|---|---|---|
MSE | 14.223 | 13.687 | 13.586 | 13.374 | 13.809 | 13.983 | 13.859 | 13.880 | 14.211 |
SNR | 36.601 | 36.768 | 36.800 | 36.868 | 36.729 | 36.675 | 36.714 | 36.707 | 36.605 |
PSNR | 6.423 | 6.590 | 6.622 | 6.690 | 6.552 | 6.497 | 6.536 | 6.529 | 6.427 |
MSE | PSNR | |||||||
---|---|---|---|---|---|---|---|---|
SN | ,=1(NF) | 3 | 5 | 7 | 1(NF) | 3 | 5 | 7 |
S1 | 13.924 | 13.567 | 13.298 | 13.247 | 36.693 | 36.806 | 36.893 | 36.910 |
S2 | 39.762 | 38.215 | 37.774 | 37.250 | 32.136 | 32.309 | 32.359 | 32.420 |
S3 | 39.977 | 38.580 | 38.456 | 38.393 | 32.113 | 32.267 | 32.281 | 32.288 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
S14 | 59.092 | 58.930 | 58.903 | 58.898 | 30.416 | 30.427 | 30.429 | 30.430 |
S15 | 61.618 | 60.722 | 60.290 | 60.414 | 30.234 | 30.297 | 30.328 | 30.319 |
avg | 56.424 | 45.572 | 44.853 | 44.742 | 31.610 | 32.129 | 32.205 | 32.215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-W.; Cho, M.; Lee, M.-C. Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA). Sensors 2022, 22, 4844. https://doi.org/10.3390/s22134844
Kim H-W, Cho M, Lee M-C. Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA). Sensors. 2022; 22(13):4844. https://doi.org/10.3390/s22134844
Chicago/Turabian StyleKim, Hyun-Woo, Myungjin Cho, and Min-Chul Lee. 2022. "Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA)" Sensors 22, no. 13: 4844. https://doi.org/10.3390/s22134844
APA StyleKim, H. -W., Cho, M., & Lee, M. -C. (2022). Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA). Sensors, 22(13), 4844. https://doi.org/10.3390/s22134844