On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters
Abstract
:1. Introduction
- Alleviate the power efficiency problem of the approach based on the use of a LPA;
- Preserve the simplicity in terms of hardware and control of the approach based on the use of a LPA;
- Preserve the capability for reproducing any kind of passband modulation scheme.
2. Identifying the Best Class D SMPA Implementation for VLC
2.1. General Description of a Class D SMPA
2.2. Pulse-Width Modulated Class D SMPA
2.3. Radiofrequency Pulse-Width Modulated Class D SMPA
3. Adapting a RF-PWM Class D SMPA for VLC
3.1. Characterizing the HB-LEDs
3.2. Using a Series-Resonant LC Circuit as Output Filter
3.3. Control System
3.3.1. d(t) Calculator
3.3.2. γ(t) Calculator
3.3.3. Edges Calculator
- Situation 1: the pulse to be generated does not try to exceed its switching period. This situation appears if the following condition is satisfied:
- Situation 2: the pulse to be generated tries to invade the previous switching period. This situation appears if the following condition is satisfied:
- Situation 3: the pulse to be generated tries to invade the next switching period. This situation appears if the following condition is satisfied:
3.4. Choke Inductor and Coupling Capacitor of the Bias-T Circuit
4. Experimental Results
4.1. Prototype Description
4.2. Prototype Tests
4.3. VLC Link Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimitrov, S.; Haas, H. Principles of LED Light Communications: Towards Networked Li-Fi, 1st ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Haas, H.; Chen, C.; O’Brien, D. A guide to wireless networking by light. Prog. Quantum Electron. 2017, 55, 88–111. [Google Scholar] [CrossRef]
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Wang, Y.; Alonso, J.M.; Ruan, X. A Review of LED Drivers and Related Technologies. IEEE Trans. Ind. Electron. 2017, 64, 5754–5765. [Google Scholar] [CrossRef]
- Tsiatmas, A.; Willems, F.M.; Linnartz, J.-P.M.; Baggen, S.; Bergmans, J.W. Joint illumination and visible-Light Communication systems: Data rates and extra power consumption. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015. [Google Scholar]
- Sebastián, J.; Lamar, D.G.; Aller, D.G.; Rodríguez, J.; Miaja, P.F. On the Role of Power Electronics in Visible Light Communication. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1210–1223. [Google Scholar] [CrossRef]
- Teixeira, L.; Loose, F.; Alonso, J.M.; Barriquello, C.H.; Reguera, V.A.; Costa, M.A.D. A Review of Visible Light Communication LED Drivers. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 919–933. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Lightwave Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H.; Pricope, B. OFDM Visible Light Wireless Communication Based on White LEDs. In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, Dublin, Ireland, 22–25 April 2007. [Google Scholar]
- Kazimierczuk, M. Class A RF Power Amplifier. In RF Power Amplifiers, 1st ed.; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Vucic, J.; Kottke, C.; Nerreter, S.; Langer, K.D.; Walewski, J.W. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightwave Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Guo, J.; Gao, Z.; Chen, H. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation. IEEE Wirel. Commun. 2015, 22, 68–73. [Google Scholar] [CrossRef]
- Aller, D.G.; Lamar, D.G.; Rodriguez, J.; Miaja, P.F.; Romero, V.F.; Mendiolagoitia, J.; Sebastian, J. Adapting Techniques to Improve Efficiency in Radio Frequency Power Amplifiers for Visible Light Communications. Electronics 2020, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Aller, D.G.; Lamar, D.G.; Miaja, P.F.; Rodriguez, J.; Sebastian, J. Taking Advantage of the Sum of the Light in Outphasing Technique for Visible Light Communication Transmitter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, L.; Loose, F.; Barriquello, C.H.; Reguera, V.A.; Costa, M.A.D.; Alonso, J.M. On Energy Efficiency of Visible Light Communication Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6396–6407. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, J.; Trescases, O. Burst-Mode Resonant LLC Converter for an LED Luminaire With Integrated Visible Light Communication for Smart Buildings. IEEE Trans. Power Electron. 2014, 29, 4392–4402. [Google Scholar] [CrossRef]
- Modepalli, K.; Parsa, L. Dual-Purpose Offline LED Driver for Illumination and Visible Light Communication. IEEE Trans. Ind. Appl. 2015, 51, 406–419. [Google Scholar] [CrossRef]
- Loose, F.; Teixeira, L.; Duarte, R.R.; Costa, M.A.D.; Barriquello, C.H. On the Use of the Intrinsic Ripple of a Buck Converter for Visible Light Communication in LED Drivers. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1235–1245. [Google Scholar] [CrossRef]
- Pawlikowski, W.; Barmaki, A.; Narimani, M.; Hranilovic, S. LightEmitting Commutating Diodes for Optical Wireless Communications Within LED Drivers. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- de Albuquerque, V.M.; Soares, G.M.; Alonso, J.M.; Almeida, P.S. A Simple Resonant Switched-Capacitor LED Driver Employed as a Fast Pulse-Based Transmitter for VLC Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 111–122. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Wang, R.; Zhang, R.; He, X. Coded PWM Based Switching Ripple Communication Applied in Visible Light Communication. IEEE Trans. Power Electron. 2021, 36, 9659–9667. [Google Scholar] [CrossRef]
- Rodríguez, J.; Lamar, D.G.; Miaja, P.F.; Sebastián, J. Reproducing Single-Carrier Digital Modulation Schemes for VLC by Controlling the First Switching Harmonic of the DC–DC Power Converter Output Voltage Ripple. IEEE Trans. Power Electron. 2018, 33, 7994–8010. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Lamar, D.G.; Aller, D.G.; Miaja, P.F.; Sebastián, J. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters. Sensors 2018, 18, 1127. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Lamar, D.G.; Miaja, P.F.; Aller, D.G.; Sebastián, J. Power-Efficient VLC Transmitter Based on Pulse-Width Modulated DC–DC Converters and the Split of the Power. IEEE Trans. Power Electron. 2019, 34, 1726–1743. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.R.; Lamar, D.G.; Aller, D.G.; Miaja, P.F.; Sebastián, J. Reproducing Multicarrier Modulation Schemes for Visible Light Communication With the Ripple Modulation Technique. IEEE Trans. Ind. Electron. 2020, 67, 1532–1543. [Google Scholar] [CrossRef] [Green Version]
- Albulet, M. Class D RF Power Amplifiers. In RF Power Amplifiers, 1st ed.; SciTech Publishing Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Grebennikov, A.; Sokal, N.O. Switchmode RF and Microwave Power Amplifiers, 1st ed.; Newnes: Oxford, UK, 2007. [Google Scholar]
- Berkhout, M. An integrated 200-W class-D audio amplifier. IEEE Solid-State Circuits Mag. 2003, 38, 1198–1206. [Google Scholar] [CrossRef]
- Jiang, X. Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures. IEEE Solid-State Circuits Mag. 2017, 9, 14–25. [Google Scholar] [CrossRef]
- HØyerby, M.C.W.; Andersen, M.A.E. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power Amplifiers: Analysis and Optimization. IEEE Trans. Power Electron. 2009, 24, 714–729. [Google Scholar] [CrossRef] [Green Version]
- Raab, F. Radio Frequency Pulsewidth Modulation. IEEE Trans. Commun. 1973, 21, 958–966. [Google Scholar] [CrossRef]
- Wagh, P.; Hidya, P. High-efficiency switched-mode RF power amplifier. In Proceedings of the 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356), Las Cruces, NM, USA, 8–11 August 1999. [Google Scholar]
- Nielsen, M.; Larsen, T. A 2-GHz GaAs HBT RF Pulsewidth Modulator. IEEE Trans. Microw. Theory Tech. 2008, 56, 300–304. [Google Scholar] [CrossRef]
- Seebacher, D.; Singerl, P.; Schuberth, C.; Dielacher, F.; Reynaert, P.; Bösch, W. Reduction of Aliasing Effects of RF PWM Modulated Signals by Cross Point Estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3184–3192. [Google Scholar] [CrossRef]
- Cho, K.; Gharpurey, R. A Digitally Intensive Transmitter/PA Using RF-PWM With Carrier Switching in 130 nm CMOS. IEEE J. Solid-State Circuits 2016, 51, 1188–1199. [Google Scholar] [CrossRef]
- Yao, F.; Zhou, Q.; Wei, Z. A Novel Multilevel RF-PWM Method With Active-Harmonic Elimination for All-Digital Transmitters. IEEE Trans. Microw. Theory Tech. 2018, 66, 3360–3373. [Google Scholar] [CrossRef]
- McCune, E. Practical Digital Wireless Signals, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
Component | Product Number | Manufacturer |
---|---|---|
HB-LEDs | XLAMP MX-3 LEDs | Cree |
MOSFETs | SSM3K336R | Toshiba |
Drivers | EL7156 | Renesas |
Digital isolators | ISO7220M | Texas Instruments |
Isolated dc-dc converter | ISF1212A | XP Power |
Linear regulator | MC7805 | On Semiconductor |
AND gate | SN74LVC1G08 | Texas Instruments |
NAND gate | SN74LVC1G00 | Texas Instruments |
Diodes | DB3X313F | Panasonic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Meré, J.R.; Rodríguez, J.; Lamar, D.G.; Sebastián, J. On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters. Sensors 2022, 22, 4858. https://doi.org/10.3390/s22134858
García-Meré JR, Rodríguez J, Lamar DG, Sebastián J. On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters. Sensors. 2022; 22(13):4858. https://doi.org/10.3390/s22134858
Chicago/Turabian StyleGarcía-Meré, Juan R., Juan Rodríguez, Diego G. Lamar, and Javier Sebastián. 2022. "On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters" Sensors 22, no. 13: 4858. https://doi.org/10.3390/s22134858
APA StyleGarcía-Meré, J. R., Rodríguez, J., Lamar, D. G., & Sebastián, J. (2022). On the Use of Class D Switching-Mode Power Amplifiers in Visible Light Communication Transmitters. Sensors, 22(13), 4858. https://doi.org/10.3390/s22134858