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Abstract: The deployment of a client–server-based distributed intelligent system involves application
development in both the network domain and the device domain. In the network domain, an
application server (typically in the cloud) is deployed to execute the network applications. In the
device domain, several Internet of Things (IoT) devices may be configured as, for example, wireless
sensor networks (WSNs), and interact with each other through the application server. Developing
the network and the device applications are tedious tasks that are the major costs for building a
distributed intelligent system. To resolve this issue, a low-code or no-code (LCNC) approach has been
purposed to automate code generation. As traditional LCNC solutions are highly generic, they tend
to generate excess code and instructions, which will lack efficiency in terms of storage and processing.
Fortunately, optimization of automated code generation can be achieved for IoT by taking advantage
of the IoT characteristics. An IoT-based distributed intelligent system consists of the device domain
(IoT devices) and the network domain (IoT server). The software of an IoT device in the device
domain consists of the Device Application (DA) and the Sensor Application (SA). Most IoT LCNC
approaches provide code generation in the network domain. Very few approaches automatically
generate the DA code. To our knowledge, no approach supports the SA code generation. In this
paper, we propose DeviceTalk, an LCNC environment for the DA and the SA code development.
DeviceTalk automatically generates the code for IoT devices to speed up the software development in
the device domain for a distributed intelligent system. We propose the DeviceTalk architecture, design
and implementation of the code generation mechanism for the IoT devices. Then, we show how a
developer can use the DeviceTalk Graphical User Interface (GUI) to exercise LCNC development of
the device software.

Keywords: no-code; low-code; code generator; IoT; actuator

1. Introduction

Internet of Things (IoT) development platforms for distributed intelligent systems
have exponentially grown in industry-specific applications involving sensor tracking and
monitoring. In such systems, IoT devices are an essential component. The IoT development
platform examples of such distributed intelligent systems are oneM2M [1], IoTtalk [2] and
so on. In these platforms, wireless sensor networks (WSNs) [3–5] are accommodated for
communications, and the programs of a distributed intelligent application are developed
in both the network domain and the device domain. In the network domain, a network
application is created to be executed in the server (typically located in the cloud) follow-
ing the oneM2M or IoTtalk network Application Programming Interface (API). In the
device domain, the WSN nodes implement the device applications, which are equipped
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with specific oneM2M or IoTtalk drivers (software modules) to connect to the distributed
intelligent system.

Developing the network applications and the device applications are tedious tasks
that are the major costs for building a distributed intelligent system. Chris Wanstrath, the
former CEO of GitHub, said that the mainstream trend for the design of future programs is
“no-code”. The purpose of using low-code or no-code (LCNC) programming is to automate
code generation during application development and to reduce the effort of developing
and putting applications into production. According to the Gartner survey, more than 65%
of enterprises will adopt no-code technology for digital transformation in 2024; at the same
time, Global Newswire also believe that by 2030, the compound growth rate of the no-code
platform will reach 31%, and the revenue will reach as much as 180 billion USD.

LCNC is particularly useful for the development of IoT-based smart applications that
require information technology (IT) knowledge for integrating the IoT devices, the IoT
servers, the communication gateways, databases, etc. Regular development for IoT setup
may be difficult, but can be accelerated by LCNC tools. As traditional LCNC solutions are
highly generic, they may not be able to directly address the intricacies of IoT infrastructure.
In particular, automated code generation tends to generate excess code and instructions,
which will lack efficiency in terms of storage and processing. Fortunately, optimization
of automated code generation can be achieved for IoT by taking advantage of the IoT
characteristics. Take IoTtalk, for example [2]; in this IoT application development platform,
LCNC tools are provisioned for rapidly developing summary reports with drill down
capability. Specifically, it automatically generates maps [6] and dashboards that can become
the components of an integrated operations center (IOC) for IoT applications.

Furthermore, since LCNC programs are automatically generated, we can take advan-
tage of the code generation rules to provide the mechanisms that guarantee these programs
are made safe from failure. For example, IoTtalk offers the VerificationTalk mechanism [7]
to assist in bulletproofing developers from inadvertently creating errors or vulnerabilities
in their IoT applications.

Therefore, an LCNC IoT development environment is essential for people to create
innovative IoT applications without much IT knowledge or any coding ability. Such an IoT
platform automatically connects remote devices and enables the developers to track and
manage smart applications with the utmost ease. In [8], the languages and tools supporting
the development of IoT systems were surveyed to understand the state of the art of existing
low-code platforms. By analyzing sixteen platforms, a corresponding set of features has
been identified to represent the functionalities and the services that each analyzed platform
can support. These features are described below.

Through a graphical user interface (GUI), a no-code approach enables non-programmers
to build IoT applications by dragging and dropping graphical icons. These solutions provide a
simple application development environment at the cost of less flexible features. An example
is a smart agriculture application created by the IoTtalk GUI [2], illustrated in Figure 1. In
this application, a micro weather station (WeatherSTA; Figure 1(1a)) and a soil sensor set
(SoilSensor; Figure 1(2a)) are used to control the irrigation system (Figure 1(3a)), which is
created by dragging lines between the WeatherSTA/SoilSensor icons (Figure 1(1b,2b)) and the
Irrigation icon (Figure 1(3b)).

Figure 1(4) illustrates the Bao Farm application project developed through the “Project”
GUI window, where the IoTtalk supports the developer to assemble pre-configured soft-
ware modules to build the applications easily. Such modules can be accessed through the
“Model” drop-down list (Figure 1(5)). The selected device models are shown in the project
window as the icons (Figure 1(1b,2b,3b)).

With the drag-and-drop mechanism, the developer can conveniently create the func-
tions needed and connect them (e.g., the join links in Figure 1(6)) into a logical chain to
build the IoT applications. The visual modeling mechanism allows the developer to graphi-
cally convert innovation into workflows by dragging, dropping and assembling the icons
without scripting code. The LCNC platform provides a basic user interface for connecting
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to a preferred database and seamlessly converts data models into relational tables. Also,
as a GUI-based low-code integration approach, IoTtalk minimizes the coding complexity.
The developers are not required to have the IoT technical knowledge, and only need to
write a small number of codes to create their IoT applications. In the Bao Farm project,
the developer wants to intelligently control the irrigation system based on the relationship
between the electric conductivity (EC) value σb and the Nitrogen value fN(σb) for the Bao
farm [9], which is expressed as

fN(σb) = 63.2526σb
2 + 14.2131σb + 0.1797 (1)
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To control the Nitrogen dripper based on the EC sensor, we connect their icons by
the link Join 2 (Figure 1(6)). Then, we click the circle in the middle of the link to pop
up the “Function Manager” window (Figure 1(7)) and implement Equation (1) through a
Python function (Figure 1(8)) where args[0] is the EC values received from the soil sensor
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(Figure 1(1b)). This function can be saved in IoTtalk as a software module (Figure 1(9)) to
be used by other applications.

Most LCNC IoT approaches have focused on code generation in the network domain,
which connects the IoT devices and manipulates the data/messages delivered among these
devices [10–15]. These approaches assume that the software installed in an IoT device (the
sensor logic and the driver for communications to the IoT server) already exists. Very few
LCNC approaches have focused on software development for IoT devices [16]. In this paper,
we propose DeviceTalk, an LCNC environment for IoT device software development. The
paper is organized as follows. Section 2 surveys the related work. Section 3 proposes the
DeviceTalk architecture. Section 4 designs and implements the code generation mechanism
for the IoT devices. We show how a developer can use the DeviceTalk GUI to exercise
LCNC development of the device software.

2. Related Studies

It is a tedious task to develop an IoT application and configure the sensor and the actu-
ator devices. It becomes more imperative for the developers to create their IoT applications
with minimal programming skills. As we mentioned, the software of an IoT application is
developed in two domains. In the network domain, a network application is required to
connect the IoT devices and manipulate the data transmitted among them. The network
application is typically executed by an IoT server in the cloud. In the device domain, two
software modules, i.e., sensor and actuator application (SA) and device application (DA),
should be installed in an IoT device. The SA implements the logic for sensors, controls
and/or actuators. The DA implements the driver to connect to the IoT server in the network
domain. LCNC solutions in the network domain have been developed in the past, includ-
ing the IoTtalk mechanisms described in Figure 1. Most IoT LCNC approaches provide
code generation in the network domain. Very few approaches automatically generate the
DA code. To our knowledge, no approach supports SA code generation. In this paper, we
propose DeviceTalk, an LCNC environment for the DA and the SA code development.

In [17], the authors proposed a language called BIoTA (Buildout IoT Application
Language) to assist and streamline the building of software architectures for IoT. BIoTA
designs and implements a grammar and a compiler for syntax and semantic analysis,
as well as code generation for IoT network applications. An integrated development
environment (IDE) was implemented using the BIoTA language for reading and creating
software architectures. With the BIoTA IDE, the authors demonstrated three examples of
software architectures for public buildings, irrigation and parking.

In [18], the authors developed IoT network applications based on the formalism
transformation graph (FTG) process model (PM) approach and described the model-driven
engineering (MDE) process of developing applications for different platforms or operating
systems. FTG + PM tackles the complexity of multi-paradigm systems using MDE to
improve the usability, precision and automation of these systems. A platform-independent
IoT model example of the irrigation system was given to demonstrate how FTG + PM
works. The solution did not provide a friendly GUI like the one in Figure 1.

The study in [19] integrated the data analytics capabilities of Spark in IoT mashup
tools with a wide range of data interfaces and application programming interfaces (APIs).
The authors proposed aFlux, a graphical flow-based programming paradigm to analyze
the Spark ecosystem with appropriate data interfaces. aFlux is a generic Spark program-
ming approach based on graphical flows, which supports early-stage validation and code
generation of Java Spark programs. aFlux was implemented as a Java Virtual Machine
(JVM)-based mashup tool and was evaluated in three use cases to demonstrate the machine
learning and stream analytics capabilities of Spark.

By using attribute-driven design and MDE, the study in [20] proposed an IoT appli-
cation development framework called IADev. This framework first develops an iterative
architecture using attribute-driven design. Specifically, it transforms the requirements into
a solution architecture by considering the concerns of all stakeholders involved. Then, it
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uses MDE for generating models to guide the transformation. Specifically, the generated
MDE metamodels hierarchically transform the design components into software artifacts.
IADev was used to generate an executable implementation code for a smart vehicle scenario
in an intelligent transportation system, and was used with the Siemens IoT cloud platform
to perform service orchestration in industrial IoT.

In [21], the authors developed an MDE approach to generate code and develop IoT
systems simulation. This no-code approach including a domain metamodel, a graphical
concrete syntax, and a model-to-text transformation has been developed. The simulated
sensors, actuators, fog nodes, cloud nodes and analytical characteristics are created as
microservices and docker containers where elements are connected by using a publish–
subscribe communication protocol. Two examples for smart building and agriculture IoT
environments are presented to show how the simulation system works.

The study in [10] discussed the experiences of applying the ThingML to different
domains. ThingML is an open-source tool which provides a family of code generators for
heterogeneous platforms. ThingML consists of a modeling language and tools to support
code generation. In [11], the authors proposed a code generation framework CAPSml
based on the CAPS modeling framework. Through a graphical user interface, the CAPS
framework supports the creation of IoT system architectures. CAPSml transforms the CAPS
model into ThingML, a code generation framework that brings MDE to the late design
and implementation stages. In this way, the CAPS users can generate models without the
knowledge of ThingML.

The study in [12] proposed Orcc-IoT, an open-source dataflow environment with IoT
features. Orcc-IoT facilitates the development of IoT by combining dataflow modeling
language, heterogeneous code generator and the library of ready-made IoT actors. Orcc-
IoT addressed the issues of the inherent heterogeneity of IoT systems with the presence
of short-range and wide-area network links. Orcc-IoT will be published as open-source
software under the original Orcc license (BSD).

With different levels of hardware abstraction, security and programming language,
the study in [13] presented a web application development that reduces the startup time of
a project and the learning curve of a new user. The sensors are configured through a simple
GUI. The combined pattern techniques were used to generate the code for the firmware
to integrate the sensor nodes in an IoT architecture. Based on Xtext and Eclipse Modeling
Framework, a toolset consisting of a domain-specific language was proposed to create
a model of a network of things and an extensible code generator to create the network
artifacts from this model.

The authors in [14] proposed AutoIoT to create IoT applications based on a user-driven
MDE approach. To model an IoT system, AutoIoT allows a developer to use a simple JSON
file to specify internal model-to-model and model-to-text transformations. Then, AutoIoT
generates a ready-to-use IoT application.

The above approaches [10–14,17–20], as well as IFTTT and Samsung SmartThings,
support LCNC code generation in the network domain only. LCNC for the device domain
are not addressed by these approaches.

The study in [16] proposed an API client generator called cpp-tiny-client, which
is developed as a plugin for the OpenAPI Generator project. This approach tailors the
generated code based on the specified IoT platform, which allows the developers to generate
the correct code for API clients of the IoT devices. The cpp-tiny-client mechanism is similar
to the DA mechanism in IoTtalk, where the DA code for a controller of ESP family is
automatically generated to connect to the IoTtalk server. Automatic generation of the DA
code will be described in Appendix A.

3. The DeviceTalk Architecture

DeviceTalk is an extension of our previous work, IoTtalk [2]. Following the MDE
process approach [10,14,15,18,20,21], IoTtalk is an IDE environment similar to [17]. IoTtalk
defines an abstract model, d, for the same type of IoT devices. The IoT device model d



Sensors 2022, 22, 4942 6 of 19

is represented as a set Sd, and an element ed of the set is called a device feature (DF). A
DF is called an input DF (IDF) ed,I if it is a sensor or a control (such as a button). A DF
is called an output DF (ODF) ed,O if it is an actuator (such as a fan). The set Sd,I of all
ed,I in the IoT device model d is called the “input device” of d, and the set Sd,O of all ed,O
is called the “output device”. Therefore, we have Sd = Sd,I ∪ Sd,O. If d is a smartphone,
then Sd,I is a set of sensors for acceleration, gyro and orientation, and controls such as
s keyboard. Similarly, Sd,O is a set of actuators including a display screen, a speaker
and so on. Let D be the set of the IoT devices in a distributed intelligent system. Let
DI = {Sd,I|∀d ∈ D} and DO = {Sd,O|∀d ∈ D}. Then, the network program for the system
is a non-linear mapping from DI to DO. The above abstract network model is created by
the IoTtalk GUI illustrated in Figure 1. In this figure, the SoilSensor device is represented
by an icon (Figure 1(1b)), where SSoilSensor,I = {Moisture-I, EC-I, pH-I} and SSoilSensor,O = Φ.
The mapping is established by the join links in Figure 1, creating the network application
following the LCNC approach described in Section 1.

IoTtalk also provides a simple mechanism to connect the abstract model to the real
device. To do so, the real device must be equipped with the specific software model DA
(Figure 2(1)) to communicate with the IoTtalk server. The IoT device needs another software
module SA (Figure 2(1)) to implement the logic of the device (for example, the acceleration
sensor algorithm). IoTtalk assumes that the application developer already implemented
the SA and the DA programs in the IoT devices before they are accommodated in the
distributed intelligent system, i.e., connected to the IoTtalk engine (Figure 2(3)). With the
developer’s inputs, DeviceTalk will automatically generate the SA/DA codes as follows.
We first create the device icon (for example, Figure 1(1b)) from the IoTtalk GUI (Figure 2(4)).
Note that how the DFs are included in a device icon (e.g., Figure 1(1b,2b)) is not described
in this paper and can be found in [2]. When the device icon is created, Sd is defined and is
stored in the IoTtalk engine. In the “Project” window (Figure 1), there is a “Save & Create
SA Code” button. When this button is pressed, Sd is sent from the IoTtalk engine to the
DeviceTalk engine (Figure 2(5)), and the DeviceTalk GUI window (Figure 2(6)) pops up to
allow the developer to create the SA/DA codes through an LCNC setup procedure using
Sd. In the current implementation, DeviceTalk can generate the SA/DA codes tailored for
Arduino and Raspberry Pi and the general codes for C++ and Python.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 20 
 

 

to the DA mechanism in IoTtalk, where the DA code for a controller of ESP family is au-
tomatically generated to connect to the IoTtalk server. Automatic generation of the DA 
code will be described in Appendix A. 

3. The DeviceTalk Architecture 
DeviceTalk is an extension of our previous work, IoTtalk [2]. Following the MDE 

process approach [10,14,15,18,20,21], IoTtalk is an IDE environment similar to [17]. IoTtalk 
defines an abstract model, 𝑑, for the same type of IoT devices. The IoT device model 𝑑 is 
represented as a set 𝑺𝒅, and an element 𝑒ௗ  of the set is called a device feature (DF). A DF 
is called an input DF (IDF) 𝑒ௗ,ூ if it is a sensor or a control (such as a button). A DF is 
called an output DF (ODF) 𝑒ௗ,ை if it is an actuator (such as a fan). The set 𝑺𝒅,𝑰  of all 𝑒ௗ,ூ  
in the IoT device model 𝑑 is called the “input device” of 𝑑, and the set 𝑺𝒅,𝑶  of all 𝑒ௗ,ை  
is called the “output device”. Therefore, we have 𝑺𝒅 = 𝑺𝒅,𝑰 ∪ 𝑺𝒅,𝑶. If 𝑑 is a smartphone, 
then 𝑺𝒅,𝑰  is a set of sensors for acceleration, gyro and orientation, and controls such as s 
keyboard. Similarly, 𝑺𝒅,𝑶 is a set of actuators including a display screen, a speaker and so 
on. Let 𝑫  be the set of the IoT devices in a distributed intelligent system. Let 𝑫𝑰 =൛𝑺𝒅,𝑰|∀𝑑 ∈ 𝑫ൟ and 𝑫𝑶 = ൛𝑺𝒅,𝑶|∀𝑑 ∈ 𝑫ൟ. Then, the network program for the system is a 
non-linear mapping from 𝑫𝑰 to 𝑫𝑶. The above abstract network model is created by the 
IoTtalk GUI illustrated in Figure 1. In this figure, the SoilSensor device is represented by 
an icon (Figure 1(1b)), where 𝑺𝑺𝒐𝒊𝒍𝑺𝒆𝒏𝒔𝒐𝒓,𝑰 = {Moisture-I, EC-I, pH-I} and 𝑺𝑺𝒐𝒊𝒍𝑺𝒆𝒏𝒔𝒐𝒓,𝑶 = 𝚽. 
The mapping is established by the join links in Figure 1, creating the network application 
following the LCNC approach described in Section 1. 

IoTtalk also provides a simple mechanism to connect the abstract model to the real 
device. To do so, the real device must be equipped with the specific software model DA 
(Figure 2(1)) to communicate with the IoTtalk server. The IoT device needs another soft-
ware module SA (Figure 2(1)) to implement the logic of the device (for example, the ac-
celeration sensor algorithm). IoTtalk assumes that the application developer already im-
plemented the SA and the DA programs in the IoT devices before they are accommodated 
in the distributed intelligent system, i.e., connected to the IoTtalk engine (Figure 2(3)). 
With the developer’s inputs, DeviceTalk will automatically generate the SA/DA codes as 
follows. We first create the device icon (for example, Figure 1(1b)) from the IoTtalk GUI 
(Figure 2(4)). Note that how the DFs are included in a device icon (e.g., Figure 1(1b,2b)) is 
not described in this paper and can be found in [2]. When the device icon is created, 𝑺𝒅 is 
defined and is stored in the IoTtalk engine. In the “Project” window (Figure 1), there is a 
“Save & Create SA Code” button. When this button is pressed, 𝑺𝒅  is sent from the IoTtalk 
engine to the DeviceTalk engine (Figure 2(5)), and the DeviceTalk GUI window (Figure 
2(6)) pops up to allow the developer to create the SA/DA codes through an LCNC setup 
procedure using 𝑺𝒅. In the current implementation, DeviceTalk can generate the SA/DA 
codes tailored for Arduino and Raspberry Pi and the general codes for C++ and Python. 

 
Figure 2. The DeviceTalk architecture for client–server-based intelligent distributed system. 

DA

DeviceTalk GUI

DeviceTalk  Engine

IoTtalk
GUI

SA

Device
Domain

IoTtalk Engine

Network Domain (IoTtalk Server)

1

Device
2

3

45

6

Figure 2. The DeviceTalk architecture for client–server-based intelligent distributed system.

As an example, consider the SoilSensor device model written in Python. When the
“Save & Create SA Code” button is pressed, the IoTtalk Engine instructs the DeviceTalk
Engine (through the path (3)→ (5) in Figure 2) to use Sd to generate the template SA/DA
code C∗SoilSensor for SSoilSensor, which is listed below:

01. import time
02. import DA
03. import ‘to-be-filled_0’
04. ServerURL = ‘to-be-filled_1’
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05. Reg_addr = ‘to-be-filled_2’
06. DA.profile[‘dm_name’] = ‘SoilSensor’
07. DA.profile[‘df_list’] = [‘Moisture-I’, ‘EC-I’, ‘pH-I’,]
08. DA.profile[‘d_name’] = ‘to-be-filled_3’
09. DA.register(ServerURL, Reg_addr)
10. while True:
11. try:
12. Moisture_data = to-be-filled_4
13. DA.push (‘Moisture-I’, Moisture_data)
14. EC_data = to-be-filled_5
15. DA.push (‘EC-I’, EC_data)
16. pH_data = to-be-filled_6
17. DA.push (‘pH-I’, pH_data)
18. except Exception as e:
19. print(e)
20. if str(e).find(‘mac_addr not found:’) != −1:
21. print(‘Reg_addr is not found. Try to re-register.’)
22. DA.register (ServerURL, Reg_addr)
23. else:
24. print(‘Connection fails.’)
25. time.sleep(1)
26. time.sleep(to-be-filled_7)

Lines 1 and 2 of C∗SoilSensor import the libraries to be used for the SA code. We will
elaborate on the details of the DA library in Appendix A.

The DeviceTalk GUI (Figure 2(6)) enables the developer to complete the “to-be-filled”
parts, including the target device name in “to-be-fill_3” (e.g., snsr1). Then, DeviceTalk
translates C∗SoilSensor to the SA code Csnsr1. Finally, the developer uploads Csnsr1 and installs
it into the real IoT device snsr1.

4. The DeviceTalk Procedures

This section describes how the “to-be-filled” parts of C∗SoilSensor are complete through
the procedures executed in the DeviceTalk Engine. Figure 3 provides the DeviceTalk Engine
details of Figure 2(5), and Figure 4a shows the main structure of the DeviceTalk GUI
(Figure 2(6)).
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Suppose that the developer wants to create the SA/DA code for a device called snsr1,
which is derived from the device model SoilSensor. The developer selects SoilSensor from
the “Model” list of IoTtalk GUI (Figure 1(5)). If the developer presses the “Save & Create
SA Code” button after he/she has set up the device model (Figure 1(1b)), then the GUI
(Figure 2(4)) instructs the IoTtalk Engine (Figure 2(3)) to provide the SoilSensor’s Sd to
the DeviceTalk Engine (Figure 2(5)). Then, Procedure “GUI Initialization” (Figure 3(1)) is
executed to instruct the DeviceTalk GUI (Figure 3(2)) to show the webpage layout following
the structure defined in Figure 4. The root of GUI has two branches—the SA and the
DA tabs—and its layout is illustrated in Figure 5. The title bar (Figure 5(1)) specifies the
device model name “SoilSensor”. Before the actual device name is given, the title bar
indicates “NIL”.
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In the SA tab (Figure 5(2)), when the developer selects “snsr1” in the “Device Name”
pulldown list (Figure 5(3)), “NIL” is replaced by “snsr1” in the title bar, and Procedure
“device-get” (Figure 3(3)) is executed to retrieve the metadata Msnsr1 of this device from the
DeviceTalk DB (Figure 3(10)). The metadata Msnsr1 listed in m01–m20 is sent to DeviceTalk
GUI and maintained by the “Vue.js” front-end framework.

m01. {
m02. SA: {
m03. dm_name: “SoilSensor”,
m04. d_name: “snsr1”,
m05. language: “Python”,
m06. lib_selection: [<library>, . . . ],
m07. idfs: [
m08. {
m09. name: “Moisture-I”,
m10. function: <SA function>
m11. },
m12. . . .
m13. ],
m14. odfs: [],
m15. global_variable: “ . . . ”
m16. },
m17. DA: {
m18. //to be elaborated in d01–d06 later
m19. }
m20. }
Note that “snsr1” can be an existing device or a new device to be created. When

the developer selects the language (e.g., Python in Figure 5(4)), the selected language is
assigned to the “language” variable in Line m05, and DeviceTalk GUI will update the
language information in Msnsr1.

The developer needs to create the functions for the DFs (i.e., Moisture_data, EC_data
and pH_data in Lines 12, 14 and 16 of C∗SoilSensor). He/she can write new functions or select
the functions from existing libraries. The latter case is achieved by pressing the “Library
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Selection” button (Figure 5(5)). When this button is pressed, the “Library Selection” window
(Figure 6) pops up. Figure 4b illustrates the GUI layout structure of the “Library Selection”
window. Procedure “library-list” (Figure 3(4)) is executed to retrieve the library list of
the DF to be shown in the “Library List” box (Figure 6(1)). Note that many off-the-shelf
sensor/actuator products provide the driver codes that can be downloaded to drive the
IoT hardware in the control boards such as Arduino and Raspberry Pi. DeviceTalk allows
the developer to upload such driver code as a library (Figure 6(2)) by executing Procedure
“library-upload” (Figure 3(5)). This procedure enables the developer to select a directory
from his/her local computer. Then, all functions of the files under the directory are stored
in the DeviceTalk DB (Figure 6(1)). When the potential libraries to be used by the DF
are chosen, they are listed in the “Selected Libraries” box (Figure 6(3)), and Procedure
“function-list” (Figure 3(6)) is executed to list all functions in these libraries in the “Selected
Functions” box (Figure 6(4)) for readability. When the “Save” button is pressed, Line 6 of
Msnsr1 is updated and the selected libraries are stored.
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After the libraries for snsr1 have been selected, the developer assigns the functions to
the DFs through the “Function Selection” box (Figure 5(6)). When a function for Moisture-I
is selected from its function list (Figure 5(7)), Moisture-I “Function Manager” window
(Figure 7) pops up. The layout of this window is illustrated in Figure 4c. DeviceTalk
provides a template for function code creation in the code area (Figure 7(6)), and the parts
that should not be modified are marked gray. The details are given in Appendix B.

If the “Add new function” item is selected in Figure 5(7), then the developer fills the
“Function Name” field (Figure 7(1)) to create a new function. On the other hand, if an
existing function is selected, the name of the selected function is shown in Figure 7(1).
The “Library Function List” (Figure 7(2)) is the same as the “Selected Functions” list in
Figure 6(4). Through the function selector (Figure 7(8)), the developer can select the func-
tions (e.g., “read_humidity_DHT11”) from this list and include them in the “SA Function
List” for the DF (Figure 7(3)). To do so, Procedure “function-list” (Figure 3(6)) is executed
to update the Moisture-I function list when the “read_humidity” SA function is included.
When a function is selected in Figure 7(3), Procedure “function-get” (Figure 3(7)) is executed
to retrieve the related information from DeviceTalk DB and show them in the variable
windows (Figure 7(4,5)) and the code window (Figure 7(6)). Typically, the developer only
modifies the global or the DF’s variables (Figure 7(4,5)) if needed. The existing function
code (Figure 7(6)) is seldom modified, which is often reviewed by the developer to con-
firm that the correct function is selected. DeviceTalk provides a template for creating the
program in the code area. The details for manipulating the function code are given in
Appendix B. After the “Save” button (Figure 7(7)) is clicked, Procedure “function-save”
(Figure 3(8)) is executed to update the function content (variables and function code) in
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DeviceTalk DB, and the function name will be stored in the metadata Msnsr1; for example,
in Line m10, Moisture_data is assigned the “read_humidity” function.
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After all DFs have assigned their SA functions and the SA setup is completed, the
developer can flip from the SA tab (Figure 5(2)) to the DA tab (Figure 8). In this tab, the
“IoTtalk Server” field (Figure 8(1)) specifies the URL for the IoTtalk server to be connected
by this device, “Device Address” field (Figure 8(2)) is automatically generated, and the
“Push Interval” (in seconds; Figure 8(3)) specifies the data sampling frequency for snsr1.
Procedure “device-get” (Figure 3(3)) stores the above DA information in Lines m17–m19 of
Msnsr1, where the details are given in Lines d01–d05 below:
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d01. DA: {
d02. iottalk_server: “the IoTtalk server URL”,
d03. device_address: “7940600b4d6 . . . ”,
d04. push_interval: 10
d05. }
The above code is used to create the DA code described in Appendix A.
After both SA and DA setups are completed, the developer clicks the “Download

SA/DA Code” button (Figure 8(4)), and Procedure “device-save” (Figure 3(9)) is executed to
retrieve the device information in DeviceTalk DB to fill the “to-be-filled” parts of C∗SoilSensor.
This procedure also uses the DA template D∗SoilSensor (see Appendix A) and the DA parts of
Msnsr1 to produce the DA code Dsnsr1. At the same time, a new library is created; this is the
collection of the global variables (listed in Line m15) and all SA functions used by the DFs
of the device. This new library is named “<device_name>_library” (e.g., “snsr1_library”
in our example), and is stored in DeviceTalk DB for future usage. Finally, a zip file which
is the collection of Csnsr1, DA file Dsnsr1 and all the required libraries will be downloaded
automatically, and DeviceTalk pops up the “SA Code Installation Guide” window (Figure 9)
to show how to install Csnsr1 and Dsnsr1 into the IoT device.
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Note that for a sensor (e.g., humidity), there are a diverse set of hardware models, and
their corresponding functionalities are different. The user must select the correct function
for the sensor hardware he/she uses. The creation of these functionalities is achieved
through the GUI operations in Figure 5(7), Figures 6 and 7(6). In IoTtalk, for example,
we use the humidity hardware model DHT 11 and the CO2 hardware model T6603 (see
Figure 6(3)). Therefore, the function library for a hardware sensor must be named by its
model number when the library is included in DeviceTalk. When a no-code user creates
the SA for DHT11 humidity sensor, he/she will select DHT11_library using operation (8)
in Figure 6.

5. Discussion and Conclusions

The LCNC approaches for IoT application development are very advantageous in
improving the speed of production; they have gained a lot of momentum in recent years
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and are even close to replacing traditional programming approaches. Most of the LCNC
approaches target code development in the network domain. In this paper, we proposed
DeviceTalk for code generation in the device domain. We showed how the specification of
a real IoT device is generated from the IoTtalk GUI, and how DeviceTalk creates the SA and
the DA codes for the device. We showed that the DA code can be automatically generated
by DeviceTalk without manual involvement, and can be set up through a no-code approach.
In summary, the code generation process is illustrated in Figure 10. The SA/DA code
for the snsr1 device is generated from the SoilSensor device model as follows: Ssoilsensor
is abstracted from the device model icon specified by the developer through the IoTtalk
GUI. The IoTtalk Engine automatically generates the C∗Soilsensor and the D∗Soilsensor codes
from Ssoilsensor. The Msnsr1 code is generated from Ssoilsensor with the developer’s setup
through the DeviceTalk GUI. Then, the DeviceTalk Engine automatically generates the
Csnsr1 code from Msnsr1 and C∗Soilsensor. Similarly, the Dsnsr1 code is automatically generated
from Msnsr1 and D∗Soilsensor.
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Figure 10. The SA/DA code generation for the snsr1 device from the SoilSensor device model.

The SA code is generated by the no-code approach if the code for driving the sen-
sor/actuator hardware already exists in DeviceTalk. Note that many off-the-shelf sen-
sor/actuator products provide the software that can be downloaded to drive the IoT
hardware in the control boards such as Arduino and Raspberry Pi. Therefore, the developer
can download the sensor/actuator software modules and save them in the DeviceTalk
library. Through the off-the-shelf driver code, DeviceTalk supports a LCNC approach
to assist the developer to translate the driver code to the SA function code (for the sen-
sor/actuator) to be executed in the IoT device (e.g., the Arduino control board). After
the SA function code has been created, it can be saved in DeviceTalk, and is used to auto-
matically generate the SA code for the target IoT device. If the developer uses the same
sensor/actuator in another IoT device later, he/she can select the existing SA function
code without writing any code through the DeviceTalk no-code mechanism. Based on the
LCNC paradigm, DeviceTalk speeds up the code development in the device domain for an
intelligent distributed system.

We have tested our approach to ensure that the automatically created SA/DA codes
are correct. The LCNC approach of IoTtalk network applications supports embedded
systems such as MediaTek LinkIt Smart 7688 duo, ROHM IoT kit and ESP8266 (NodeMCU)
with the same DA software [22]. We also support Raspberry Pi. Consider the intelligent
hydroponic plant box as an example [23]. Let CDT

plant be the SA code generated by DeviceTalk
and Cm

plant be the code manually generated by an experienced programmer. The size of
CDT

plant is 193 lines and the size of Cm
plant is 133. DeviceTalk generates 60 more lines because it

generates the SA using Python classes, where declaration and invocation of a library class
incurs extra cost. The advantage is that the library codes of CDT

plant can be reused and are
easy to debug in the modular way. Consider the color light of the plant box. The Color-O
ODF code segment for Cm

plant is (13 lines).

01. red_pin = 19
02. green_pin = 21
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03. blue_pin = 23
04. GPIO.setup(red_pin, GPIO.OUT)
05. GPIO.setup(green_pin, GPIO.OUT)
06. GPIO.setup(blue_pin, GPIO.OUT)
07. def color(value):
08. red_value = 1 if value[0] > 0 else 0
09. green_value = 1 if value[1] > 0 else 0
10. blue_value = 1 if value[2] > 0 else 0
11. GPIO.output(red_pin, red_value)
12. GPIO.output(green_pin, green_value)
13. GPIO.output(blue_pin, blue_value)

The Color-O ODF code segment for CDT
plant is (19 lines).

01. class Color_O(OdfFunction):
02. def __init__(self):
03. # Variable Setup block
04. self.red_pin = 19
05. self.green_pin = 21
06. self.blue_pin = 23
07. # End of Variable Setup block.
08. GPIO.setup(self.red_pin, GPIO.OUT)
09. GPIO.setup(self.green_pin, GPIO.OUT)
10. GPIO.setup(self.blue_pin, GPIO.OUT)
11. return
12. def runs(self, value):
13. red_value = 1 if value[0] > 0 else 0
14. green_value = 1 if value[1] > 0 else 0
15. blue_value = 1 if value[2] > 0 else 0
16. GPIO.output(self.red_pin, red_value)
17. GPIO.output(self.green_pin, green_value)
18. GPIO.output(self.blue_pin, blue_value)
19. return

To compare the performance of CDT
plant and Cm

plant; we execute each of them for 50 times.
For Cm

plant, the average processing time is 1.436 s, the maximum time is 1.505 s and the
minimum time is 1.405 s. For CDT

plant, the average processing time is 1.432 s, the maximum
time is 1.482 s and the minimum time is 1.405 s. For the processing time performance, both
CDT

plant and Cm
plant are about the same. The average memory usage for Cm

plant is 50.883 KB,
the maximum usage is 50.9 KB and the minimum usage is 50.88 KB. The memory usage for
Cm

plant is fixed, which is 50.888 KB. Through the analysis of ANOVA (Analysis of variance),
the p-value for the processing time is 0.421 (>0.05) and the p-value for the memory usage is
0.994 (>0.05).

The IoTtalk/DeviceTalk will become open source tools under the support of the
Ministry of Education, Taiwan.

DeviceTalk does have its limitations. When a hardware sensor is first accommodated
in DeviceTalk, the application developer does need to have some knowledge of the sensor to
create the SA function. For any off-the-shelf sensor product, the manufacturer will provide
the driver code and the example program to use the sensor. As described in Appendix B,
after the SA function has been built following the example program provided by the
manufacturer, the subsequent application developers who use this sensor product can
create the SA/DA code by selecting the SA function with the no-code approach. Therefore,
it would be better that the first developer who creates the SA function has the experience to
find the driver codes for sensor products (through the low-code approach).

In the future, we will perform usability studies among different groups of no-code
or low-code users. We will also use different groups of IoT devices and measure the
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complexity of application development with DeviceTalk. We have also compared the
automated generated SA/DA codes with the codes manually generated by the IoTtalk
experts. The amount of codes generated are the same. In the future, we will continue to
observe the efficiency of code generation.
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Appendix A. The DA Code in Python

This section elaborates on the DA library implementation. In our design, the DA
library is generic and can be reused by all IoT devices. Use snsr1 as an example. Parts of
DA library python code D∗Soilsensor are shown below:

01. import requests
02. profile = {
03. ‘dm_name’: ‘SoilSensor’,
04. ‘d_name’: None,
05. ‘df_list’: [],
06. }

Line 1 imports the requests library, a popular HTTP protocol library in Python. Lines
2–6 declare the device’s metadata profile, which can be filled from the SA of the target IoT
device.

07. endpoint = None
08. def register(ServerURL, reg_addr):
09. global endpoint
10. endpoint = ServerURL + ‘/’ + reg_addr
11. r = requests.post(
12. endpoint,
13. json = {‘profile’: profile}
14. )
15. if r.status_code != 200:
16. raise Error(r.text)
17. return r.json().get(‘d_name’)

Line 8 defines the register() function, which is used to register the target device (snsr1
in our example) to the IoTtalk Engine. The IoTtalk Engine is designed in RESTful API style
that can perform different operations using different HTTP methods with the same URL.
Additionally, the IoTtalk Engine uses the device address in the endpoint (line 10) to identify
the device. Lines 11–14 use the HTTP POST method to perform the registration procedure
in the IoTtalk Engine with the metadata profile. After the device has been successfully
registered, line 17 returns the registered device name.
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18. def pull(feature_name):
19. r = requests.get(
20. endpoint + ‘/’ + feature_name
21. )
22. if r.status_code ! = 200:
23. raise Error(r.text)
24. return r.json().get(‘data’)

Line 18 defines the pull() function, which is used to obtain the data of a specified ODF
from the IoTtalk Engine. Lines 19–21 invoke an HTTP GET request with the feature_name to
query the corresponding data from the IoTtalk engine. Lines 22 and 23 raise an error if it
fails, otherwise Line 24 returns the data.

25. def push(feature_name, data):
26. r = requests.put(
27. endpoint + ‘/’ + feature_name,
28. json = {‘data’: data}
29. )
30. if r.status_code != 200:
31. raise Error(r.text)
32. return True

Lines 25–32 show the code for the push() function, which allows the IoT device to send
data of a specific IDF to the IoTtalk Engine. In RESTful API style, the HTTP PUT method
is used to update the information. Lines 26–29 pack the data in JSON format and send
the IDF data to the IoTtalk Engine. Line 32 returns True if the push operation is executed
successfully. In the DA tab, DeviceTalk uses D∗Soilsensor and the developer inputs to produce
the DA code Dsnsr1.

Appendix B. The SA Function Code Creation

This appendix describes how the SA function code is developed in the “DF Function
Manager” (Figure 7(5,6)). If the developer selected “Add new function” in Figure 5(7),
DeviceTalk generates the template of SA function code shown in Figure A1(6). The template
lines are marked gray and should not be modified to make sure that the SA function’s
return type is the same as the DF parameter’s type.

Lines 3–8 of Figure A1(6) define the constructor of the SA function. All sensor-based
variables declared in Figure A1(5) (to be filled by the developer) will be inserted in Lines
4–6 automatically. All global variables are declared in Figure A1(4), which are shared by all
DFs in this device. The developer should only modify the DF’s variables in Figure A1(4,5)
when the function is reused later. Lines 10–13 of Figure A1(6) define the runs function,
which is the main part of this SA function.

The areas with the black line numbers in Figure A1(6) are filled by the developer. For
example, Line 1 (or more) is filled if runs needs to import other library functions. Line 7
(or more) is filled if some instructions are executed in the constructor. Line 12 (or more)
must be filled to implement the logic of the runs function. In particular, the variable value
defined in Line 11 must be assigned in the body of runs. Lines 14 onwards are filled if more
functions are included.

For any off-the-shelf sensor product, the manufacturer will provide the driver code
and the example program to use the sensor. Use Moisture-I as an example. Suppose that the
snsr1 device uses the humidity sensor product DHT-11, and we give the SA Function name
“read_humidity_DHT11” (Figure A2(1)). We first download the driver and the example
codes of the sensor in the DHT11_library. When we select the “read_humidity” function
from Figure A2(2) and press the function selector (Figure A2(8)), the “read_humidity”
function is moved to the “SA Function List” (Figure A2(3)) and automatically appends the
library name (e.g., read_humidity_DHT11) to determine which library is used. Since the
device is a Raspberry Pi, the related global variables are automatically filled in Figure A2(4).
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The “read_humidity” function in the DHT-11 library takes one argument, “self.pin”, and
DeviceTalk automatically fill “self.pin =” in Figure A2(5). If the DHT11 sensor is connected
to pin 10 of Raspberry Pi, then the developer set up the variable “self.pin = 10”.
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In the Moisture-I code area, the areas with the black line numbers in Figure A1(6) can
be further filled automatically when “read_humidity” is selected. For example, Lines 1
and 2 import the library DH11_library. When the developer assigns a value to “self.pin” in
Figure A2(5), DeviceTalk automatically fills the value in Line 6 of Figure A2(6). Lines 12–14
are directly copied from the example program of the DH11 sensor device. Line 15 provides
the hint in the comment “the output of the function is result_humidity”. Then, in Line 16,
the developer assigns the value result_humidity to value [0].

After the developer has created “read_humidity_DHT11”, this SA function is saved
in DeviceTalk DB as part of the snsr1 library. DeviceTalk will also create a pointer in
DHT11_library to link “read_humidity” to the SA function “read_humidity_DHT11” in
the snsr1 library. When the next developer attempts to use the DHT11 sensor, he/she
may include DHT11_library. When “read_humidity” is selected, the incomplete code in
Figure A2(6) is not shown. Instead, the complete “read_humidity_DHT11” is shown in the
code area of the “DF Function Manager”. Therefore, the next developer can reuse the code
created for snsr1 directly without any modification.
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