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Abstract: Due to the limited computing capacity of onboard devices, they can no longer meet a
large number of computing requirements. Therefore, mobile edge computing (MEC) provides more
computing and storage capabilities for vehicles. Inspired by a large number of roadside parking
vehicles, this paper takes the roadside parking vehicles with idle computing resources as the task
offloading platform and proposes a mobile edge computing task offloading strategy based on roadside
parking cooperation. The resource sharing and mutual utilization among roadside vehicles, roadside
units (RSU), and cloud servers (cloud servers) were established, and the collaborative offloading
problem of computing tasks was transformed into a constraint problem. The hybrid genetic algorithm
(HHGA) with a mountain-climbing operator was used to solve the multi-constraint problem, to
reduce the delay and energy consumption of computing tasks. The simulation results show that when
the number of tasks is 25, the delay and energy consumption of the HHGA algorithm is improved by
24.1% and 11.9%, respectively, compared with Tradition. When the task size is 1.0 MB, the HHGA
algorithm reduces the system overhead by 7.9% compared with Tradition. Therefore, the proposed
scheme can effectively reduce the total system cost during task offloading.

Keywords: Internet of vehicles; moving edge calculation; task collaborative offloading; genetic
algorithm; roadside parking; mountain climbing algorithm

1. Introduction

In recent years, with the increase in the number of cars on the road and the progress of
science and technology, cars are also moving in the direction of intelligence. The Internet
of vehicles (IOV) is the application of the Internet of Things in the field of intelligent
transportation and is also an important organic part of intelligent transportation systems [1].
However, intelligent vehicles on the Internet of vehicles have a large number of mobile
applications, such as vehicle-mounted information communication systems and ABS. These
mobile applications present some challenges for intelligent vehicles that require real-time
information collection and a large number of computing resources. Due to the limited
computing resources on the current intelligent vehicles, they cannot meet the requirements
of low latency and high Quality of Service (QoS) [2–4] and may have problems in real-
time and accuracy provided by mobile applications, thus increasing the potential hidden
dangers in the process of driving [5,6].

In order to solve the above problems, researchers put forward the concept of mobile
edge computing (MEC) [7]. Mobile edge computing provides cloud-like functionality to
the end-user by equipping the edge of the network with computing and storage resources.
Mobile edge computing can significantly improve the computing capacity of users, but
due to the limited hardware resources of edge servers, it is still difficult to develop a better
method of computing offloading [8]. When many users try to offload a task at the same
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time, the edge server and wireless channel take up too many resources, resulting in a long
task response time [9,10]. Therefore, it is critical to design an effective offload strategy to
determine which tasks to offload, which tasks to edge servers or other platforms, and how
those tasks offload platforms allocate computing resources.

The composition of this article is as follows. Section 2 introduces the existing research
related to offloading of mobile edge computing tasks. Section 3 introduces the system model
used in this paper in detail. Section 4 introduces the algorithm used in detail. Section 5
compares its performance with existing methods. Section 6 discusses the conclusion of this
paper and the future research direction.

2. Related Works

As a key technology in edge computing, computational offloading has been widely
studied. Zhang et al. [11] proposed an offloading framework of vehicular edge computing
based on a layered cloud to solve the problem of limited computing resources of MEC
servers by introducing backup servers in the neighborhood. T. X. Tran et al. [12] studied
joint task offloading and resource allocation in order to maximize user offloading gain.
There is a need for the literature [11,12] to address the lack of computing resources for user
terminals and how to optimize the resource allocation algorithm to ensure the maximum
benefit of user terminals. However, there are few studies on task-specific offloading
strategies.

Regarding the related research on the platform of task offloading, Mahenge et al. [13]
proposed a MEC-assisted offloading scheme for energy-saving tasks, which mainly utilized
the framework of cooperation between multiple MECs. This was conducted to achieve the
goal of energy-saving and then propose a new wolf optimization algorithm based on the
particle swarm optimization algorithm and the hybrid method to solve the optimization
problems; the proposed method takes into account the effective allocation of resources, such
as those for offloading subcarrier and power and bandwidth, to ensure the minimum energy
consumption and latency requirements. Elham Karimi et al. [14] studied the response time
required by resource allocation to ensure task offloading. However, MEC resources are
limited and cannot handle the high mobility of many different applications. Therefore, the
cooperation between MEC and central cloud decisions is proposed for offloading different
onboard applications. Deep reinforcement learning, an appropriate computational model,
is used to automatically learn the dynamics of the network state and quickly capture the
best solution. Kuang et al. [15] proposed the calculation of offloading decision, cooperative
selection, power allocation, and CPU cycle frequency allocation to solve the problem of
minimization delay optimization while ensuring transmission power, energy consumption,
and CPU cycle frequency constraints. Ni Zhang et al. [16] conceived and implemented an
algorithm for calculating the combination of offloading and data cache for the MEC network
cooperative system. The queuing theory was used to analyze the processing delay and
transmission delay. In addition, an efficient online algorithm based on a genetic algorithm
is proposed, which can customize the data cache decision according to the Spatio-temporal
task popular pattern.

Regarding the research on time delay and energy consumption, L. T. Tan et al. [17]
proposed a multi-time scale framework to jointly allocate cache and computing resources
on the Internet of vehicles to minimize energy consumption, considering the time delay
requirements of vehicle applications. Yang et al. [18] modeled the energy consumption of
computational offloading from the aspects of computational task and communication and
used artificial fish swarm algorithm to solve the problem of minimizing the energy con-
sumption of computational offloading. Ning et al. [19] proposed that a cloud server collab-
orates with several edge servers to perform computationally intensive tasks. Qiao et al. [20]
introduced the vehicle edge multi-access network to combine resource-rich vehicles with
cloud servers to build a collaborative computing architecture.



Sensors 2022, 22, 4959 3 of 14

C. Ma et al. [21] organized parked vehicles outside into parking clusters as virtual
edge servers to assist edge servers in processing tasks. Additionally, a new task scheduling
algorithm was designed to jointly determine the resource allocation of edge servers.

The offloading strategy in the literature [13] only considers offloading tasks to edge
servers, and the platform of offloading tasks is single. Although collaborative offloading
has been studied in the literature [14–16], the communication range of RSU is limited at
present, leading to the failure of moving vehicles in some sections to communicate in time,
and the main goal is only to reduce computational delay. Refs. [17,18] only studied the
energy consumption of task unloading and Refs. [19,20] only studied the delay of task
unloading. Ref. [21] proposed a new framework but mainly studied the task scheduling and
task completion rate between parked vehicles and moving vehicles and took the reduction
in total delay as the goal. At present, there are few studies on the time delay and energy
consumption of mobile edge computing task offloading on the Internet of vehicles.

According to the investigation [22], there are always parked vehicles on both sides
of urban roads, and the parking time is more than 18 h on average. Inspired by this,
roadside parked vehicles have idle computing resources, which can be used as a platform
for offloading mobile edge computing tasks.

The contributions of this paper are as follows:

• A moving edge computing framework based on roadside parking cooperation is
proposed. In the case of no RSU or insufficient vehicle local computing resources,
roadside parking was added as an offloading platform;

• After the global optimal solution was generated by the crossover and variation in the
traditional genetic algorithm, a mountain-climbing algorithm was added to search for
the local optimal solution, which improves the convergence speed and reduces the
system overhead;

• In order to evaluate the proposed task offloading scheme based on a hybrid genetic al-
gorithm, it was compared and analyzed with Local, ATM, Random, and Tradition task
offloading methods in aspects of system overhead, delay, and energy consumption;

• Finally, we evaluated our method in detail from two aspects: task number and task
size. Our scheme is superior to the other four offloading schemes in system overhead,
delay, and energy consumption. In other words, our method produces less system
cost for the same task guarantee, or equivalently, it provides a higher quality of service
guarantee for the same system cost.

3. System Model
3.1. Network Model

As shown in Figure 1, in the scenario of ordinary roads, there are N mobile vehicles V,
M RSUs, roadside parked vehicles, and cloud servers in total. MEC servers are deployed
in each RSU to provide computing resources for vehicles. Computing resources between
vehicles, RSUs, and cloud servers can be shared and used with each other. Roadside parked
vehicles with no computing tasks, RSUs, and cloud servers can assist vehicles that need
computing. Tasks on a moving vehicle can be calculated locally, offloaded to off-road
parking, migrated to an RSU, or loaded into a cloud server over a cellular network for
processing.

3.2. Communication Model

Assume that all vehicles are traveling at a constant speed S. Each car has a com-
putational task; define the task as Ti =

{
di, bi, fi, tmax

i
}

, i ∈ N = {1, 2, 3, · · · , N}. Here,
di represents the size of the input data used in the calculation, and bi indicates the comput-
ing resources required to complete the task Ti. fi indicates the computing resource i of the
vehicle, tmax

i indicates the maximum delay constraint Ti of the task, the computing resource
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of MEC is f mec. Assuming that all vehicles have the same transmitting power, the data
transmission rate between moving vehicles, roadside vehicles, and RSU is as follows:

R1
i = B log2(1 +

QW2

N0
) (1)

where B represents the channel bandwidth, Q represents the transmitting power of vehicles
on the channel, W represents the channel gain of moving vehicles on the channel to RSU,
and N0 represents the white noise power.
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Figure 1. Collaborative mobile edge computing task offloading model for roadside parking.

Since tasks can be calculated locally, on MEC servers, on cloud servers, and on roadside
parked vehicles, it is necessary to divide tasks and determine which platforms to offload to.
This paper defines S =

{
si

∣∣∣si ∈
{

sc
i , smec

i , scloud
i , sside

i

}
, i ∈ N

}
as the offloading decision of

the vehicle. sc
i , smec

i , scloud
i , and sside

i indicates that the task is offloaded to the local server,
MEC server, cloud server, and parked vehicle, respectively.

3.3. Calculation Model
3.3.1. Local Computing Model

When the task of moving the vehicle is calculated locally, let tc
i represent the local

execution delay of the moving vehicle. tc
i indicates the local processing delay, and ec

i
indicates the local processing power consumption.

tc
i =

bi
fi

(2)

ec
i = tc

i pi (3)

where pi represents the equipment power of moving vehicle i.

3.3.2. MEC Calculation Model

When a vehicle chooses to offload its tasks onto the MEC server, the delay can be
divided into three parts. The first part is the transmission delay tm1

i required by the task
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offloaded by the moving vehicle to reach the MEC server. Since the MEC server is equipped
on the RSU, this part of the time is equal to the delay of the task to reach the RSU.

tm1
i =

di

R1
i

(4)

The second part is the execution delay tm2
i of this task on the MEC server.

tm2
i =

bi
f mec
i

(5)

where f mec
i represents the number of resources allocated from the MEC server to the vehicle

to offload the task.
The third part is the return delay tm3

i of the task file from RSU to the moving vehicle.

tm3
i =

λdi

R1
i

(6)

where λ is the coefficient of output data quantity, representing the relationship between
output data quantity and input data quantity.

The total delay tmec
i and total energy consumption emec

i of offloading tasks from mobile
vehicles to MEC servers are as follows:

tmec
i = tm1

i + tm2
i + tm3

i (7)

emec
i = tm1

i pup
i + (tm2

i + tm3
i )pmec (8)

where pup
i represents the power of moving vehicles to upload tasks, and pmec represents

the power of moving edge computing servers.

3.3.3. Cloud Server Computing Model

Mobile vehicles offload their computing tasks to cloud servers thousands of miles
away via fiber optics and core networks [23]. Therefore, the upload time for transferring
input data from the RSU to the cloud server must be considered. In addition, although
the amount of output data is much smaller than the amount of input data, the download
time to send the results from the cloud server back to the RSU is not negligible. In this
case, let ty1

i represent the execution time of the task in the cloud server, ty2
i represent the

transmission delay of the task to RSU, ty3
i represent the return delay of the calculation result

from RSU to the mobile vehicle. On the optical fiber line, the average transmission wait
delay of tasks is calculated as tcloud, tcloud

i represents the total delay of offloading tasks from
the moving vehicle to the cloud server, and ecloud

i represents the total energy consumption
of offloading tasks from the moving vehicle to the cloud server.

ty1
i =

bi

f cloud
i

(9)

ty2
i =

di

R1
i

(10)

ty2
i =

λdi

R1
i

(11)

tcloud
i = ty1

i + (ty2
i + tcloud) + (ty3

i + tcloud) (12)

ecloud
i = ty1

i pcloud + ty2
i pup

i + ty3
i pRSU (13)
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where f cloud
i represents computing resources provided by the cloud server for mobile

vehicles, pcloud represents device power of the cloud server, and pRSU represents RSU
transmitting power.

3.3.4. Calculation Model of Roadside Parking

When a moving vehicle chooses to offload its task onto a roadside stop, the delay can
be divided into three parts.

The first part is the task execution delay of roadside parking.

ts1
i =

bi

f side (14)

where f side represents the computing resources provided by roadside parking.
The second part is the transmission delay ts2

i of the task from moving vehicles to
roadside parking.

ts2
i =

di

R1
i

(15)

The third part is the delay ts3
i of sending the result to the moving vehicle after the task

is processed.

ts3
i =

λdi

R1
i

(16)

The total time delay tside
i and total energy consumption eside

i of offloading tasks from
moving vehicles to roadside parking are as follows:

tside
i = ts1

i + ts2
i + ts3

i (17)

eside
i = (ts1

i + ts3
i )pside + ts2

i pup
i (18)

where pside represents the power of roadside parking equipment.
In summary, the total delay T for processing the whole task in this strategy can be

given by the following formula:

T =
n

∑
i=1

(tc
i + tmec

i + tcloud
i + tside

i ) (19)

Similarly, calculating the total energy consumption E of a task can be given by the
following formula:

E =
n

∑
i=1

(ec
i + emec

i + ecloud
i + eside

i ) (20)

3.4. Problem Expression

This paper attempted to minimize the delay and energy consumption of the entire
system and analyze the impact of task T and task E offloading to find a solution that makes
the total cost more suitable for the real scenario. The linear combination of time delay and
energy consumption provides a flexible method for system cost measurement by adaptively
adjusting the linear weight factor when performing complex calculation tasks. Specifically,
when the weighting factor is 0 or 1, only delay or energy consumption is considered. In
this paper, the weighted sum of delay and energy consumption of the whole system was
considered, and a weight factor: α ∈ [0, 1] was introduced, so different weights can be
given according to specific needs.

W = αT + (1− α)E (21)

where W represents the cost of the collaborative offloading system.
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In this paper, task offloading and resource allocation were formulated as optimization
problems to minimize W. The optimization problem is expressed as:

max
S,F

n
∑

i=1
W

s.t.
C1 : sc

i , smec
i , scloud

i , sside
i ∈ [0, 1]

sc
i + smec

i + scloud
i + sside

i = 1, ∀i ∈ [1, n]

C2 : max(tc
i , tmec

i , tcloud
i , tside

i ) ≤ tmax
i ,∀i ∈ [1, n]

C3 :
N
∑

i=1
f mec
i ≤ f mec, i ∈ [1, n]

(22)

where S indicates the offloading decision of the vehicle, and F indicates the allocation
of computing resources, that is, F =

{
f mec
1 , f mec

2 , · · · f mec
N
}

. C1 indicates that only one
uninstallation platform can be selected for each task. C2 indicates that the time to complete
the task of each vehicle shall not exceed the maximum allowable delay; C3 indicates the
constraint on the total computing resources of the MEC server.

4. A Hybrid Algorithm Based on Hill-Climbing Algorithm and Genetic
Algorithm (HHGA)

The Genetic Algorithm (GA) [24] is an Evolutionary Algorithm. In nature, individuals
who can adapt to changing conditions can survive, while others cannot, and individual
characteristics are written on genes stored on chromosomes. Compared with individuals
with poor environmental adaptability, individuals with good environmental adaptability
are more likely to survive. Hill-climbing algorithm [25] is a local search method. It is an
iterative algorithm, and the hill-climbing algorithm is suitable for finding local optimal
values, but it cannot guarantee to find global optimal values outside the search space,
especially when there are multiple local optimal values.

However, a mountain-climbing algorithm can be used as an assistant to find local
optimal when the genetic algorithm is dealing with complex problems. The mountain-
climbing algorithm is regarded as an operator and placed in a genetic algorithm to increase
the local search ability of the genetic algorithm and to improve the convergence and stability
of the algorithm. Therefore, in this paper, a hybrid algorithm based on a hill-climbing
algorithm and genetic algorithm HHGA (a hybrid algorithm based on a hill-climbing
algorithm and genetic algorithm) was introduced to solve the multi-constraint problem.
Figure out the best strategy.

4.1. Integer Coding and Initial Population

In this paper, each offloading strategy was regarded as a chromosome by integer
coding, and each chromosome has N genes. The genes on the chromosome have three
possible values −1, 0, 1, and 2, corresponding to local calculation, MEC server calculation,
cloud server calculation, and roadside parking calculation, respectively. The encoding is
shown in Figure 2.
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M individuals were randomly generated as the initial population P(m).

4.2. Fitness Function

In searching for an optimal solution, a fitness function was used to evaluate a possible
solution (individual). The fitness function determines the strongest individuals with high
fitness values, and these strongest individuals are selected as the parents of the next
generation. Let the reciprocal of Equation (21) be the fitness function. When the value of
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Equation (23) is higher, it means that the delay and energy consumption of this offloading
scheme is smaller; that is, the offloading scheme is better.

Fitness =
1

W
=

1
αT + (1− α)E

(23)

4.3. Select Operations

The selection operation is the basic method of genetic algorithm to achieve good gene
transfer. In this paper, the roulette selection method was used [26]. In this selection, the
fitness of each chromosome was assessed by the fitness function described above. The steps
to solve the maximization problem with this selection method are as follows:

(1) The fitness value of individuals in the population is superimposed on the total fitness
value of 1;

(2) The fitness value of each divided by the total fitness is worth the probability Pi of
individual selection;

pi =
fi

M
∑

j=1
f j

(24)

where M is population size.
(3) Calculate the cumulative probability qi of individuals to construct a roulette wheel;

qi =
i

∑
j=1

pi (25)

(4) Generate a random number within the interval of [0, 1]. If the random number is
less than or equal to the cumulative probability of the individual and greater than
the cumulative probability of individual 1, select the individual to enter the offspring
population.

Repeat step (4) times and the obtained individuals constitute a new-generation
population.

4.4. Cross Operations

This paper chose a method of uniform crossover [27]. For each gene of the first
offspring, a number u ∈ [0, 1] is uniformly generated in order to determine which parent it
will inherit the gene from according to the following conditions.{

g[i]← pr1[i], i f u ≥ h
g[i]← pr2[i], otherwise

(26)

where g[i] represents the ith position of the offspring chromosome, ∈ {1, 2} of Prj[i] is the
ith position on the paternal chromosome j. h ∈ [1, 2] is named crossover rate, indicating the
threshold selected. Normally, each gene of the first progeny is selected with probability h
from either parent, and each gene of the second progeny is selected from the corresponding
parent selected by the first progeny gene. The uniform crossover process is shown in
Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15 
 

probability ℎ from either parent, and each gene of the second progeny is selected from the 
corresponding parent selected by the first progeny gene. The uniform crossover process 
is shown in Figure 3. 

 
Figure 3. Uniform crossing. 

4.5. Mutation Operation 
Adaptive variation is adopted in this paper [28], and the formula is as follows: 





=

=

+

+

−

−
= m

i

n
i

n

m

i

m
i

n

m
n
m

ff

ff
pp

1

2)()(
max

1

2)()1(
max

0)1(

)(

)(
η  (27)

where 0
mp  represents the first-generation variation rate, n

mp  represents the variation rate 
of the 𝑛 generation, 1n

mp
+  represents the variation rate of the 𝑛 +  1  generation, 𝑓() rep-

resents the fitness value of the 𝑛 generation individual, 𝑓௫ାଵ represents the highest fitness 
value of the 𝑛 + 1 generation, and 𝜂 is the adjustment coefficient. 

4.6. Climbing Operation and Termination Rules 
Mountain climbing is a search algorithm with a good local optimization effect. First, 

add random point in the search space as the initial iteration point, then randomly generate 
within their neighborhood, calculating the function value; if the function value is superior 
to the point at which the current point, the initial points are replaced with the current 
point as a new initial point continue to search in the neighborhood, or continue to another 
point in the neighborhood randomly generated comparing with the initial point. The 
search process terminates until it finds a point that is better than it or fails to find a point 
that is better than it for several consecutive times. The mountain climbing method can 
quickly converge to the local optimal point when dealing with problems, but the multi-
peak problem has multiple peak points, and the mountain climbing method can only find 
one of the local optimal points, not necessarily the global optimal point, so the global op-
timal point cannot be determined. Although global optimization cannot be a mountain-
climbing method, the climbing method has the advantage that traditional optimization 
algorithm does not have, which is that the climbing method can handle non-micro uni-
modal functions because the climbing method by random individual optimization in the 
neighborhood does not need to use gradient, so the climbing method can deal with com-
plex problems in the genetic algorithm (ga) that play a role of local optimization. 

The new generation population selected after mutation is optimized by a mountain-
climbing algorithm so that individuals can achieve a better local optimal. 

The condition of ending the algorithm is that the value of the fitness function remains 
unchanged or reaches the specified number of iterations. Otherwise, the algorithm starts 
to search for a new population and starts a new iteration until the algorithm terminates.  
The process of Algorithm 1 is shown below. 

Figure 3. Uniform crossing.



Sensors 2022, 22, 4959 9 of 14

4.5. Mutation Operation

Adaptive variation is adopted in this paper [28], and the formula is as follows:

p(n+1)
m = ηp0

m

√√√√√√√
m
∑

i=1
( f (n+1)

max − f (m)
i )

2

m
∑

i=1
( f (n)max − f (n)i )

2 (27)

where p0
m represents the first-generation variation rate, pn

m represents the variation rate of
the n generation, pn+1

m represents the variation rate of the n + 1 generation, f (n)i represents
the fitness value of the n generation individual, f n+1

max represents the highest fitness value of
the n + 1 generation, and η is the adjustment coefficient.

4.6. Climbing Operation and Termination Rules

Mountain climbing is a search algorithm with a good local optimization effect. First,
add random point in the search space as the initial iteration point, then randomly generate
within their neighborhood, calculating the function value; if the function value is superior
to the point at which the current point, the initial points are replaced with the current point
as a new initial point continue to search in the neighborhood, or continue to another point in
the neighborhood randomly generated comparing with the initial point. The search process
terminates until it finds a point that is better than it or fails to find a point that is better
than it for several consecutive times. The mountain climbing method can quickly converge
to the local optimal point when dealing with problems, but the multi-peak problem has
multiple peak points, and the mountain climbing method can only find one of the local
optimal points, not necessarily the global optimal point, so the global optimal point cannot
be determined. Although global optimization cannot be a mountain-climbing method, the
climbing method has the advantage that traditional optimization algorithm does not have,
which is that the climbing method can handle non-micro unimodal functions because the
climbing method by random individual optimization in the neighborhood does not need
to use gradient, so the climbing method can deal with complex problems in the genetic
algorithm (ga) that play a role of local optimization.

The new generation population selected after mutation is optimized by a mountain-
climbing algorithm so that individuals can achieve a better local optimal.

The condition of ending the algorithm is that the value of the fitness function remains
unchanged or reaches the specified number of iterations. Otherwise, the algorithm starts to
search for a new population and starts a new iteration until the algorithm terminates. The
process of Algorithm 1 is shown below.

Algorithm 1: HHGA algorithm

Input: Population size, M
Selection probability, Pi
Crossover probability, h
Mutation probability, P0

m
Number of iterations, gen

Output: W

1.t = 0;
2.Initialize P(m);
3.Repair P(m);

4.Calculate Fitness = 1
W =

1
αT + (1− α)E

;

5.Store best solutions of P(m) in old B(m);
6.while t < gen do
7. Selection operation pi,qi to P(m);
8. Crossover operation g[i] to P(m);
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9. Mutation operation P(n+1)
m to P(m);

10. hill-climbing operation to P(m);
11. Store the best fitness individuals of P(m) in new B(m);
12. if Fitness(old B(m)) > Fitness(new B(m))then

new B(m) = old B(m)
13. end if
14. old B(m) = new B(m)
15. find the worst fitness value in P(m) and replace it with new B(m);
16. t = t + 1;
17.end while

5. Simulation Verification and Analysis
5.1. Simulation Parameter Setting

The simulation scene of this paper was on the highway, which is 2100 m long and has
two lanes. Each lane was 3.75 m wide. Vehicles were randomly distributed on the road,
traveling at speeds of 30 to 50 kilometers per hour. By default, there were 30 vehicles on the
road and the task size di ranged from 0 to 2 MB, the maximum delay constraint tmax

i was
5 s. This paper carried out the simulation through MATLAB. The relevant parameters in
this paper were set under the constraints of the IEEE 802.11P standard and the mobile edge
computing white paper, and some adjustments were made according to the simulation
environment. In order to simplify the model, we consider that only the Gaussian white
noise N0 value was −100 dBm, and there are no other interference factors. Specific
simulation experiment parameters are shown in Table 1.

Table 1. Simulation experiment parameters.

Experimental Parameters Numerical

The launch rate at which a moving vehicle uploads a task Pup
i 5 W

Computing resources for moving vehicles fi 1G cycles/s
Computing resources for MEC f mec

i 4G cycles/s
Computing resources provided by the cloud server f cloud

i 10G cycles/s
Curbside parking provides computing resources f side 1G cycles/s
Equipment power for moving vehicles/roadside parking Pi pside 8 W
Device power of the MEC server PmecC 30 W
Device power of the cloud server Pcloud 70 W
Populations M 60
Maximum number of iterations 100
Crossover rate 0.85
Mutation rate 0.02

5.2. Comparison Scheme Settings

In order to better evaluate the algorithm, the task offloading strategy based on roadside
parking cooperative moving edge computing was compared with other the four task
offloading strategies:

Strategy 1: Moving Vehicle Local Execution Policy (Local): all tasks need to be executed
only on the moving vehicle;

Strategy 2: MEC Server Policy (ATM): all tasks need to be offloaded and executed on the
MEC server;

Strategy 3: Random Offloading Policy (Random): tasks are randomly offloaded on moving
vehicles, MEC servers, roadside vehicles, and cloud servers;

Strategy 4: Traditional Genetic scheme (Tradition) [29,30]: the classical genetic algorithm
was used to realize task offloading processing for the overhead model estab-
lished in this paper.
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5.3. Impact of Number of Tasks on Algorithm Performance

Figure 4 shows the changes in system overhead of five offloading schemes as the
number of iterations increases. As it can be seen from Figure 4, the system overhead of the
HHGA algorithm is lower than that of the GA algorithm. Since the GA algorithm tends to
fall into local optimum, the HHGA algorithm added to a mountain-climbing algorithm can
improve this problem well. Both HHGA genetic algorithm and GA algorithm are superior
to Local, ATM, and Random. Even though the system overhead of the Random algorithm
is lower in rare cases, the overall overhead of the Random algorithm was much higher
than that of the HHGA algorithm in this paper. Because the Random algorithm offloads
tasks to the cloud through Random selection, tasks were randomly offloaded to mobile
vehicles, MEC servers, roadside vehicles, and cloud servers for execution, which has certain
randomness. As the number of iterations increases, the Local algorithm stays the same
because all tasks are executed locally with no transport costs, but the system overhead is
still high. Compared with the other four offloading schemes, the task offloading strategy
proposed in this paper was based on roadside parking cooperative moving edge computing
achieves the minimum system overhead.
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Figure 5 shows the delay changes of five offloading schemes as the number of tasks
increases. It can be seen from Figure 5 that the Local algorithm has the highest latency, which
indicates that the offloading of computational load can reduce the execution time of the task.
When the number of tasks is 20, the delay of the ATM algorithm suddenly increases because
when the number of tasks reaches a certain value, the computing resources allocated by
MEC to vehicles carrying tasks are not as much as the local resources, so the delay of
ATM algorithm is higher than the Local delay. When the number of tasks is 25, the delay
performance of the HHGA algorithm improves by 52.1%, 27.6%, 28.8%, and 24.1%. It can be
seen that with the increase in the number of tasks, the delay of different strategies increases.
Due to the limited computing capacity of terminal devices, channel band resources are
limited. As the number of tasks increases, the load of computing equipment increases, and
the limited wireless resources cannot cope with the increase in the number of tasks. Because
the HHGA algorithm can quickly make offloading decisions and effectively optimize the
system costs, the delay of the HHGA algorithm is minimal, respectively, compared with
Local, ATM, Random, and Tradition. Therefore, the HHGA algorithm in this paper had the
minimum delay compared with other offloading schemes.
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As it can be seen from Figure 6, the energy consumption of the ATM algorithm
increases rapidly as the number of tasks increases. This is because the ATM algorithm
does not consider the computing resources of a cloud server, which brings greater energy
consumption to the moving vehicle. Compared with ATM algorithms, Random, HHGA,
and Tradition algorithms of cloud servers have obvious energy consumption reduction. As
the number of tasks increases, the offloading scheme proposed in this paper has smaller
energy consumption compared with other schemes.
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5.4. Impact of Task Size on Algorithm Performance

Figure 7 shows the system overhead of different task sizes, and it can be seen that
the Random algorithm has fluctuations because it can be randomly offloaded to mobile
vehicles, MEC servers, roadside vehicles, and cloud servers for execution. For the other
four algorithms, when the task input data increases, the system overhead increases with the
task input data. When the task size is 1.0 MB, the system overhead of the HHGA algorithm
is reduced by 42.4%, 41.3%, 39.3%, and 7.9%, respectively, compared with Local, ATM,
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Random, and Tradition. Therefore, the HHGA algorithm proposed in this paper had the
minimum system overhead, and the speed of rising was relatively slow.
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6. Conclusions

This paper proposed an offloading strategy for roadside parking coordinated moving
edge computing tasks. In this scheme, roadside parking was added as the tasks offloading
platform, and three tasks offloading platforms, including local, RSU, and cloud servers,
were combined for task processing. An HHGA algorithm was proposed, and a mountain-
climbing algorithm was introduced based on the GA algorithm to improve the problem that
the GA algorithm falls into local optimal. Experimental results show that compared with
other offloading schemes, the proposed scheme can effectively reduce system overhead,
delay, and energy consumption based on the number of tasks or task size and was superior
to the other four offloading schemes. Therefore, the task offloading strategy scheme of
moving edge computing coordinated with roadside parking can reduce the total system
cost during task offloading more effectively.

In the future, the density of roadside parked vehicles and the moving speed of moving
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