Democratization of PV Micro-Generation System Monitoring Based on Narrowband-IoT
Abstract
:1. Introduction
- A novel monitoring solution for the operation and maintenance of self-consumption PV systems is proposed and assessed.
- The solution is based on Internet of Things (IoT) applications by using Narrowband IoT (NB-IoT).
- The new design uses the Pycom IoT platform with NB-IoT as data transmission technology.
2. Communications: NB-IoT
3. IoT Monitoring Solution
3.1. General Architecture
3.2. Hardware
3.2.1. DC-Output Current: Acs758 Hall-Based Effect Sensor
3.2.2. DC-Output Voltage: Yhdc Hv25 Sensor
3.2.3. Solar PV Module Temperature: Ds18b20 Digital
3.2.4. Environmental Variables: Sht3x Sensor
3.3. Economic Evaluation: Cost-Effectiveness
4. Use Case Description
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNC | Computer numerical control |
DSO | Distribution System Operator |
IEC | International Electrotechnical Commission |
IoT | Internet-of-Things |
NB | Narrow band |
LPWAN | Low-power wireless area network |
LTE | Long-Term Evolution |
MAC | Media Access Control |
PCB | Printed circuit board |
PV | Photovoltaic |
Quality of service | QoS |
RES | Renewable Energy Sources |
SET Plan | Strategic Energy Technology Plan |
TSO | Transmission System Operator |
Appendix A. Sensor DS18X20: Python Code
- from onewire import DS18X20, OneWire
- # Inicialization
- ow = OneWire(Pin(’P11’))
- temp = DS18X20(ow)
- # Reading
- Tmod = temp.read_temp_async()
- temp.start_conversion()
Appendix B. Sensor SHT3X: Python Code
- from machine import I2C
- import SHT3X
- # FiPy - I2C - Pin assignment
- i2c = I2C(0, pins=(’P9’,’P10’))
- i2c.init(I2C.MASTER, baudrate=20000)
- # SHT3X
- sht3x = SHT3X.SHT3X(bus_obj=i2c, address=0x44)
- # Temp and Hum reading
- measurements = sht3x.get_measurement()
References
- Di Silvestre, M.L.; Favuzza, S.; Sanseverino, E.R.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; Lund, H.; Thellufsen, J.Z. Large-scale optimal integration of wind and solar photovoltaic power in water-energy systems on islands. Energy Convers. Manag. 2021, 235, 113982. [Google Scholar] [CrossRef]
- Heras-Saizarbitoria, I.; SÃąez, L.; Allur, E.; Morandeira, J. The emergence of renewable energy cooperatives in Spain: A review. Renew. Sustain. Energy Rev. 2018, 94, 1036–1043. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; de Simón-Martín, M.; Borge-Diez, D.; Pérez-Hoyos, A.; Comenar Santos, A. An expert judgement approach to determine measures to remove institutional barriers and economic non-market failures that restrict photovoltaic self-consumption deployment in Spain. Sol. Energy 2019, 180, 307–323. [Google Scholar] [CrossRef]
- Mateo, C.; Cossent, R.; Gómez, T.; Prettico, G.; Frías, P.; Fulli, G.; Meletiou, A.; Postigo, F. Impact of solar PV self-consumption policies on distribution networks and regulatory implications. Sol. Energy 2018, 176, 62–72. [Google Scholar] [CrossRef]
- Infield, D.; Freris, L. Renewable Energy in Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Eikeland, P.O.; Skjærseth, J.B. The Politics of Low-Carbon Innovation; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Repo, S.; Ponci, F.; Dede, A.; Della Giustina, D.; Cruz-Zambrano, M.; Al-Jassim, Z.; Amaris, H. Real-time distributed monitoring and control system of MV and LV distribution network with large-scale distributed energy resources. In Proceedings of the 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, Slovenia, 9–12 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Paiho, S.; Kiljander, J.; Sarala, R.; Siikavirta, H.; Kilkki, O.; Bajpai, A.; Duchon, M.; Pahl, M.O.; Wüstrich, L.; Lübben, C.; et al. Towards cross-commodity energy-sharing communities—A review of the market, regulatory, and technical situation. Renew. Sustain. Energy Rev. 2021, 151, 111568. [Google Scholar] [CrossRef]
- Haegermark, M.; Kovacs, P.; Dalenbäck, J.O. Economic feasibility of solar photovoltaic rooftop systems in a complex setting: A Swedish case study. Energy 2017, 127, 18–29. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S. Monitoring system for photovoltaic plants: A review. Renew. Sustain. Energy Rev. 2017, 67, 1180–1207. [Google Scholar] [CrossRef]
- Rahman, M.; Selvaraj, J.; Rahim, N.; Hasanuzzaman, M. Global modern monitoring systems for PV based power generation: A review. Renew. Sustain. Energy Rev. 2018, 82, 4142–4158. [Google Scholar] [CrossRef]
- Triki-Lahiani, A.; Bennani-Ben Abdelghani, A.; Slama-Belkhodja, I. Fault detection and monitoring systems for photovoltaic installations: A review. Renew. Sustain. Energy Rev. 2018, 82, 2680–2692. [Google Scholar] [CrossRef]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Saad, M.H.M.; Hussain, A. A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects. Sustainability 2021, 13, 8120. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renew. Sustain. Energy Rev. 2021, 143, 110889. [Google Scholar] [CrossRef]
- Rus-Casas, C.; Jiménez-Castillo, G.; Aguilar-Peña, J.D.; Fernández-Carrasco, J.I.; Muñoz-Rodríguez, F.J. Development of a Prototype for Monitoring Photovoltaic Self-Consumption Systems. Electronics 2020, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Sunarso, A.; Andriani, D.; Iswanda, D.; Nurhaidah, N.; Pratomo, T.; Sihombing, H.; Muharram, Y.; Yuniarto, W.; Rusman, R. Assessment of Pv Potential Using a Low-Cost Monitoring System. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Fuentes, M.; Vivar, M.; Burgos, J.; Aguilera, J.; Vacas, J. Design of an accurate, low-cost autonomous data logger for PV system monitoring using ArduinoTM that complies with IEC standards. Sol. Energy Mater. Sol. Cells 2014, 130, 529–543. [Google Scholar] [CrossRef]
- López-Vargas, A.; Fuentes, M.; García, M.V.; Muñoz-Rodríguez, F.J. Low-Cost Datalogger Intended for Remote Monitoring of Solar Photovoltaic Standalone Systems Based on Arduino. IEEE Sens. J. 2019, 19, 4308–4320. [Google Scholar] [CrossRef]
- López-Vargas, A.; Fuentes, M.; Vivar, M. IoT Application for Real-Time Monitoring of Solar Home Systems Based on Arduino With 3G Connectivity. IEEE Sens. J. 2019, 19, 679–691. [Google Scholar] [CrossRef]
- Zorbas, D.; Caillouet, C.; Abdelfadeel Hassan, K.; Pesch, D. Optimal Data Collection Time in LoRa Networks—A Time-Slotted Approach. Sensors 2021, 21, 1193. [Google Scholar] [CrossRef]
- Paredes-Parra, J.; Mateo-Aroca, A.; Silvente-Niñirola, G.; Bueso, M.; Molina-García, A. PV module monitoring system based on low-cost solutions: Wireless raspberry application and assessment. Energies 2018, 11, 3051. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Parra, J.; García-Sánchez, A.; Mateo-Aroca, A.; Molina-García, Á. An alternative internet-of-things solution based on LOra for PV power plants: Data monitoring and management. Energies 2019, 12, 881. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, A.F.; Tamura, E. LoRa-Based IoT Data Monitoring and Collecting Platform. In Smart Cities; Nesmachnow, S., Hernández Callejo, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 80–92. [Google Scholar]
- Bueso, M.C.; Paredes-Parra, J.M.; Mateo-Aroca, A.; Molina-García, A. Sensitive Parameter Analysis for Solar Irradiance Short-Term Forecasting: Application to LoRa-Based Monitoring Technology. Sensors 2022, 22, 1499. [Google Scholar] [CrossRef] [PubMed]
- Gautier, A.; Hoet, B.; Jacqmin, J.; Van Driessche, S. Self-consumption choice of residential PV owners under net-metering. Energy Policy 2019, 128, 648–653. [Google Scholar] [CrossRef] [Green Version]
- Voisin-Grall, A.; Malaolu, O.O.; Zhu, Y.; Ahmed, T.; Al-Ahmed, S.A.; Shakir, M.Z. Remote Condition Monitoring: A Prototype Based on Pycom Development Board FiPy and Pysense. In Proceedings of the 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRa Alliance, LPWA Technologies Unlock New IoT Market Potential. LoRa Alliance. 2015. Available online: https://docplayer.net/23382599-Lpwa-technologies-unlock-new-iot-market-potential-a-white-paper-prepared-for-the-lora-alliance.html (accessed on 18 May 2022).
- Sultania, A.K.; Mahfoudhi, F.; Famaey, J. Real-Time Demand Response Using NB-IoT. IEEE Internet Things J. 2020, 7, 11863–11872. [Google Scholar] [CrossRef]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Lombardo, A.; Parrino, S.; Peruzzi, G.; Pozzebon, A. LoRaWAN Versus NB-IoT: Transmission Performance Analysis within Critical Environments. IEEE Internet Things J. 2022, 9, 1068–1081. [Google Scholar] [CrossRef]
- Leenders, G.; Callebaut, G.; Ottoy, G.; Van der Perre, L.; De Strycker, L. Multi-RAT for IoT: The Potential in Combining LoRaWAN and NB-IoT. IEEE Commun. Mag. 2021, 59, 98–104. [Google Scholar] [CrossRef]
- Peruzzi, G.; Pozzebon, A. Combining LoRaWAN and NB-IoT for Edge-to-Cloud Low Power Connectivity Leveraging on Fog Computing. Appl. Sci. 2022, 12, 1497. [Google Scholar] [CrossRef]
- Coman, F.L.; Malarski, K.M.; Petersen, M.N.; Ruepp, S. Security Issues in Internet of Things: Vulnerability Analysis of LoRaWAN, Sigfox and NB-IoT. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dangana, M.; Ansari, S.; Abbasi, Q.H.; Hussain, S.; Imran, M.A. Suitability of NB-IoT for Indoor Industrial Environment: A Survey and Insights. Sensors 2021, 21, 5284. [Google Scholar] [CrossRef]
- Al-Sarawi, S.; Anbar, M.; Abdullah, R.; Al Hawari, A.B. Internet of Things Market Analysis Forecasts, 2020–2030. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 449–453. [Google Scholar] [CrossRef]
- Andrade, R.O.; Yoo, S.G. A Comprehensive Study of the Use of LoRa in the Development of Smart Cities. Appl. Sci. 2019, 9, 4753. [Google Scholar] [CrossRef] [Green Version]
- Lalle, Y.; Fourati, L.C.; Fourati, M.; Barraca, J.P. A Comparative Study of LoRaWAN, SigFox, and NB-IoT for Smart Water Grid. In Proceedings of the 2019 Global Information Infrastructure and Networking Symposium (GIIS), Paris, France, 18–20 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Huan, J.; Li, H.; Wu, F.; Cao, W. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac. Eng. 2020, 90, 102088. [Google Scholar] [CrossRef]
- Cardoso, J.; Gloria, A.; Sebastiao, P. A Methodology for Sustainable Farming Irrigation using WSN, NB-IoT and Machine Learning. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.; Cao, Y.; Wang, D.; Yang, L. Smart Choice for the Smart Grid: Narrowband Internet of Things (NB-IoT). IEEE Internet Things J. 2018, 5, 1505–1515. [Google Scholar] [CrossRef]
- Petrenko, A.S.; Petrenko, S.A.; Makoveichuk, K.A.; Chetyrbok, P.V. The IIoT/IoT device control model based on narrow-band IoT (NB-IoT). In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg, Russia, 29 January–1 February 2018; pp. 950–953. [Google Scholar] [CrossRef]
- Ballerini, M.; Polonelli, T.; Brunelli, D.; Magno, M.; Benini, L. NB-IoT Versus LoRaWAN: An Experimental Evaluation for Industrial Applications. IEEE Trans. Ind. Inform. 2020, 16, 7802–7811. [Google Scholar] [CrossRef]
- Tiwari, A.; Pindoriya, N.M. Automated Demand Response in Smart Distribution Grid: A Review on Metering Infrastructure, Communication Technology and Optimization Models. Electr. Power Syst. Res. 2022, 206, 107835. [Google Scholar] [CrossRef]
- Pereira, R.I.; Jucá, S.C.; Carvalho, P.C. IoT embedded systems network and sensors signal conditioning applied to decentralized photovoltaic plants. Measurement 2019, 142, 195–212. [Google Scholar] [CrossRef]
- Ma, D.; Xie, X.; Chang, Y. Low Voltage Distributed Photovoltaic Power Station Connected Estimation Model Based on Dispatch Automation System. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 032028. [Google Scholar] [CrossRef]
- Emamian, M.; Eskandari, A.; Aghaei, M.; Nedaei, A.; Sizkouhi, A.M.; Milimonfared, J. Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques. Energies 2022, 15, 3014. [Google Scholar] [CrossRef]
- Ciocia, A.; Amato, A.; Di Leo, P.; Fichera, S.; Malgaroli, G.; Spertino, F.; Tzanova, S. Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation. Energies 2021, 14, 1591. [Google Scholar] [CrossRef]
- Pycom Ltd. FiPy 1.0 Datasheet; Guildford: Surrey, UK, 2017; pp. 1–3. Available online: https://pycom.io/wp-content/uploads/2018/08/fipySpecsheetAugust2017n2-1.pdf (accessed on 18 May 2022).
- Bell, C. MicroPython for the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dias, J.P.; Restivo, A.; Ferreira, H.S. Designing and constructing internet-of-Things systems: An overview of the ecosystem. Internet Things 2022, 19, 100529. [Google Scholar] [CrossRef]
- Pietrosemoli, E.; Rainone, M.; Zennaro, M. On extending the wireless communications range of weather stations using LoRaWAN. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; pp. 78–83. [Google Scholar]
- Klise, K.A.; Stein, J.S.; Cunningham, J. Application of IEC 61724 Standards to Analyze PV System Performance in Different Climates. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 3161–3166. [Google Scholar] [CrossRef]
- Karsenty, A. A Comprehensive Review of Integrated Hall Effects in Macro–, Micro–, Nanoscales, and Quantum Devices. Sensors 2020, 15, 4163. [Google Scholar] [CrossRef]
- Nurazizah, E.; Ramdhani, M.; Rizal, A. Rancang Bangun Termometer Digital Berbasis Sensor DS18B20 Untuk Penyandang Tunanetra. eProc. Eng. 2017, 4, 3294–3301. [Google Scholar]
- Jovanovic, U.; Jovanovic, I.; Mancic, D. Overview of Temperature Sensors for Temperature Measurement of PV Modules. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Pycom-Open Source Libraries. Available online: https://github.com/pycom/pycom-libraries/blob/master/examples/DS18X20/onewire.py (accessed on 27 April 2022).
- Frei, M.; Deb, C.; Stadler, R.; Nagy, Z.; Schlueter, A. Wireless sensor network for estimating building performance. Autom. Constr. 2020, 111, 103043. [Google Scholar] [CrossRef]
- Kuzmenkov, A.; Kuvshinov, D.; Buryachenko, S.Y.; Kaychenov, A.; Karachentseva, I.; Voronin, Z. Monitoring system for temperature and relative humidity of the experimental building. J. Phys. Conf. Ser. 2021, 2131, 052070. [Google Scholar] [CrossRef]
- SHT3X.py-Open Source Libraries. Available online: https://github.com/dvsu/Sensirion-SHT3X-MicroPython/blob/main/sht3x.py (accessed on 27 April 2022).
- Orsetti, C.; Muttillo, M.; Parente, F.; Pantoli, L.; Stornelli, V.; Ferri, G. Reliable and Inexpensive Solar Irradiance Measurement System Design. Procedia Eng. 2016, 168, 1767–1770. [Google Scholar] [CrossRef]
- Knörig, A.; Wettach, R.; Cohen, J. Fritzing—A tool for advancing electronic prototyping for designers. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction 2009, Cambridge, UK, 16–18 February 2019. [Google Scholar]
- Cunis, T.; Bronz, M. EDURA: An Evolvable Demonstrator for Upset Recovery Approaches with a 3D-printed Launcher. In Proceedings of the 9th International Micro Air Vehicle Conference and Competition, Toulouse, France, 18–21 September 2017. [Google Scholar]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Eke, R.; Kavasoglu, A.S.; Kavasoglu, N. Design and implementation of a low-cost multi-channel temperature measurement system for photovoltaic modules. Measurement 2012, 45, 1499–1509. [Google Scholar] [CrossRef]
Network Schemes | Technologies | Data Transfer Rate | Typical Coverage Range | Latency |
---|---|---|---|---|
HAN | Ethernet, PLC, Zigbee, WLAN, Z-Wave | 10–100 kbps | up to 500 m | 10 ms–1 s |
BAN/IAN | Ethernet, PLC, Wimax, WLAN | 100 kbps–1 Mbps | up to 1 km | 10 ms–2 s |
NAN | Ethernet, PLC, DSL, Fiber–Optics, WiMax, NB–IoT, LoRa | 100 kbps–10 Mbps | 0.1–10 km | 10–50 ms |
WAN | PLC, Ethernet, Fiber–Optics, LoRa, WiMax | 10 Mbps–1 Gbps | 10–100 km | 10 s–20 ms |
CPU |
---|
- Xtensa© dual–core 32–bit LX6 microprocessor(s), up to 600 DMIPS |
- Hardware floating point acceleration |
- Python multi–threading |
- An extra ULP–coprocessor that can monitor GPIOs, the ADC channels and control most of |
the internal peripherals during deep–sleep mode while only consuming 25 A. |
Networks |
- WiFi (1 km range) |
- BLE |
- Cellular LTE-CAT M1/NB1 (Total world–wide support) |
- LoRa |
- Sigfox |
Memory |
- RAM: 520 kB + 4 MB |
- External flash: 8 MB |
- GPIO: Up to 22 |
- Hardware floating point acceleration |
- Python multi–threading |
Interfaces |
- 2 ×UART, 2 × SPI, I2C, micro SD card |
- Analog channels: 8 (12–bit ADC), 2 (8–bit DAC) |
- Timers: 2 of 64 bit with PWM with up to 16 channels |
- DMA on all peripherals |
- GPIO: up to 22 |
Hash/Encryption |
- SHA, MD5, DES, AES |
RTC |
- Running at 32 kHz |
Range |
- Node range: up to 50 km |
Power |
- Voltage Input: 3.3 V–5.5 V |
- 3v3 output capable of sourcing up to 400 mA |
Size |
- 55 mm × 20 mm × 3.5 mm (excluding headers) |
Range (V) | Board 1 | Board 2 | Board 3 |
---|---|---|---|
50–950 | 2.93% | 2.66% | 2.83% |
150–1000 | 2.51% | 2.57% | 1.49% |
Description | Unit Price (Euro) |
---|---|
Mainboard: FiPy | 59.4 |
Sensor: Irradiance | 2.45 |
Sensor: PV DS1820 temperature sensor | 1.5 |
Sensor: DHT temperature and humidity sensor | 0.18 |
Sensor: Voltage sensors (DC) | 18.4 |
Sensor: Current (DC) | 17.5 |
Supply: PV module | 9.95 |
Supply: Battery | 6.9 |
Supply: DC/DC converter | 7.9 |
Supply: DC Booster (24 V) | 0.18 |
Outdoor enclosure and wiring | 12 |
Total cost | 136.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Parra, J.M.; Jiménez-Segura, R.; Campos-Peñalver, D.; Mateo-Aroca, A.; Ramallo-González, A.P.; Molina-García, A. Democratization of PV Micro-Generation System Monitoring Based on Narrowband-IoT. Sensors 2022, 22, 4966. https://doi.org/10.3390/s22134966
Paredes-Parra JM, Jiménez-Segura R, Campos-Peñalver D, Mateo-Aroca A, Ramallo-González AP, Molina-García A. Democratization of PV Micro-Generation System Monitoring Based on Narrowband-IoT. Sensors. 2022; 22(13):4966. https://doi.org/10.3390/s22134966
Chicago/Turabian StyleParedes-Parra, José Miguel, Raquel Jiménez-Segura, David Campos-Peñalver, Antonio Mateo-Aroca, Alfonso P. Ramallo-González, and Angel Molina-García. 2022. "Democratization of PV Micro-Generation System Monitoring Based on Narrowband-IoT" Sensors 22, no. 13: 4966. https://doi.org/10.3390/s22134966
APA StyleParedes-Parra, J. M., Jiménez-Segura, R., Campos-Peñalver, D., Mateo-Aroca, A., Ramallo-González, A. P., & Molina-García, A. (2022). Democratization of PV Micro-Generation System Monitoring Based on Narrowband-IoT. Sensors, 22(13), 4966. https://doi.org/10.3390/s22134966