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Abstract: Blockchain has become one of the key techniques for the security of the industrial internet.
However, the blockchain is vulnerable to FAW (Fork after Withholding) attacks. To protect the
industrial internet from FAW attacks, this paper proposes a novel FAW attack protection algorithm
(FAWPA) based on the behavior of blockchain miners. Firstly, FAWPA performs miner data pre-
processing based on the behavior of the miners. Then, FAWPA proposes a behavioral reward and
punishment mechanism and a credit scoring model to obtain cumulative credit value with the pro-
cessed data. Moreover, we propose a miner’s credit classification mechanism based on fuzzy C-means
(FCM), which combines the improved Aquila optimizer (AO) with strong solving ability. That is,
FAWPA combines the miner’s accumulated credit value and multiple attack features as the basis for
classification, and optimizes cluster center selection by simulating Aquila’s predation behavior. It
can improve the solution update mechanism in different optimization stages. FAWPA can realize the
rapid classification of miners’ credit levels by improving the speed of identifying malicious miners. To
evaluate the protective effect of the target mining pool, FAWPA finally establishes a mining pool and
miner revenue model under FAW attack. The simulation results show that FAWPA can thoroughly
and efficiently detect malicious miners in the target mining pool. FAWPA also improves the recall
rate and precision rate of malicious miner detection, and it improves the cumulative revenue of the
target mining pool. The proposed algorithm performs better than ND, RSCM, AWRS, and ICRDS.

Keywords: blockchain; FAW attack; proof of work; malicious miner detection; industrial internet

1. Introduction

The industrial internet applies intelligent terminals with sensing capabilities, ubiqui-
tous mobile computing models and real-time information communication to all aspects of
industrial production, and realizes the digital, networked, and intelligent transformation
of intelligent industry [1]. In recent years, the industrial internet has grown exponentially.
According to data from the Ministry of Industry and Information Technology Research
Institute, the scale of China’s industrial internet industry has exceeded the trillion yuan
mark. The industrial internet is still in a critical period of development. The industrial
internet systems should have the characteristics of solid real-time performance, a high
degree of automation, high security, and information interconnection. However, the current
systems are often traditional centralized systems that face challenges such as the poor
computing power of conventional centralized architecture and weak security protection
capabilities. As an emerging internet technology, blockchain is showing an explosive
growth trend. Due to the decentralized, collective maintenance and tamper resistance of
the blockchain, it can meet the characteristics of security storage, privacy protection, and
efficient information updating for the industrial internet. Blockchain is also considered
the fifth disruptive innovation in the computing paradigm after mainframes [2], personal
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computers, the internet, mobile networks, and social networks. The blockchain is widely
used in finance, the internet of things, data services and other fields and has broad value
prospects [3]. Therefore, it has become a trend of applying blockchain technology to the in-
dustrial internet. However, in building the industrial internet blockchain system, malicious
miners will attack the blockchain system through illegal behaviors, posing a challenge to
the security of the industrial internet.

Most consensus algorithms based on Proof of Work (PoW) are used in blockchain
applications to achieve block consensus among different miners [4,5]. The PoW consen-
sus algorithm determines the block by calculating the difficulty value and obtaining the
revenues. The greater the computing power of miners, the more likely they are to obtain
coin rewards and bookkeeping rights. Considering the limitation of computing power
and other factors, most of the miners in the network cannot obtain a stable revenue. Then,
miners will choose to join the mining pool for cooperative mining [6]. However, in the
actual process, there have been many attack methods against mining pools, such as the
block withholding attack (BWH), the selfish mining attack, and the Fork after Withholding
(FAW) attack [7]. A block withholding attack means that the attacker only sends partial
proof of work (PPoW) to the mining pool manager and discards it when the full proof of
work (FpoW) is generated [8,9]. A selfish mining attack means that the attacker causes
network forks by continuously publishing multiple FPoWs [10]. A FAW attack means that
the attacker “throws away” the previously discovered FPoW like BWH. When other miners
outside the pool discover new blocks, the attacker will use selfish mining to submit the
previously discovered FPoW to cause a fork [11]. Therefore, the FAW attack is a new attack
method that combines the block withholding attack and the selfish mining attack. Under
a FAW attack, there are malicious mining pools, target mining pools, and other mining
pools in the blockchain network. Among them, the malicious mining pool assigns not
only malicious miners to attack the target mining pool, but also retains honest miners for
honest mining. If a malicious mining pool successfully mines an FPoW through honest
miners, it will broadcast the PoW immediately to obtain block revenue. If the malicious
miners assigned by malicious mining pool successfully mine the FPoW in the target mining
pool, it is necessary to further judge whether other mining pools have found the FPoW. If
other mining pools have not mined the FPoW, the malicious miner will continue to retain
the FPoW and not submit it. Otherwise, the malicious miner will immediately submit the
FPoW to the target mining pool manager. Then, it competes for the current block revenue,
resulting in a network fork. In a word, FAW attack not only help attackers to obtain the
revenue of block withholding attacks, but also to obtain the revenue from network forks.
Thus, FAW attack is a more threatening attack method for mining pools compared with
BWH and selfish mining attacks.

In response to FAW attacks by malicious miners in the blockchain network, a FAW
attack protection algorithm is needed to ensure the revenue of honest mining. Through the
analysis of related work, some scholars currently propose protection algorithms based on
the FAW attack’s block withholding feature or selfish mining feature [12–16], but they still
have the following three problems:

• The current protection algorithms only set a simple protection strategy based on a
single attack feature. They do not consider the multi-dimensional behavior charac-
teristics of FAW attacks such as block withholding attacks and selfish mining attacks,
and do not conduct reasonable miner credit evaluation.

• The current protection algorithms difficultly detect malicious miners who carry out
FAW attacks effectively, and the detection precision rate is low.

• The current protection algorithms lack a mining revenue model and difficultly evaluate
the effect of protection revenues.

In response to the above problems, we propose a FAW attack protection algorithm
(FAWPA) based on the behavior of blockchain miners. The contributions of the paper are
as follows:
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• We propose a behavioral reward and punishment mechanism and credit value scoring
model. Namely, according to honest mining or FAW attacks on target mining pools
by the tasks of malicious mining pools, we extract mining behavior characteristics
such as offline times, delay time, and current network forks, and propose reward and
punishment mechanisms, including PoW reward and block mining failure punishment.
Then, by calculating the cumulative performance value of a miner in block mining, we
propose the miner’s credit value scoring model to calculate the current credit value.
It can mobilize the enthusiasm of miners to participate in mining as the basis for
credit ratings.

• We propose a miner’s credit classification mechanism based on fuzzy C-means (FCM),
which combines the improved Aquila optimizer (AO). Namely, according to the evalu-
ation elements of credit rating classification in miner behavior data, the mechanism
considers the distance inside and outside of the cluster, and improves the fitness
calculation method. It also introduces multiple weight parameters to improve the
distance calculation method. It optimizes cluster center selection by simulating Aquila
predation behavior, and improves the solution update mechanism in different opti-
mization stages. Then, mining pool administrators obtain the distribution of malicious
miners in the mining pool and give the corresponding revenues distribution weights
to the detected malicious miners to improve detection speed.

• We propose the revenue model of the mining pool under FAW attack and the revenue
model of each miner. Namely, we extract mathematical formulas such as the effective
computing power, mining cost, and revenue of malicious mining pools. Then. the
model calculates the revenue of the target mining pool, and quickly evaluates the
malicious miner protection effect of the target mining pool. It is conducive to the rapid
simulation verification of the algorithm.

The remainder of the paper is organized as follows. Section 2 details the current attack
strategies and corresponding protection methods against FAW attacks. Section 3 details
the scene description, principles, and processes of the algorithm. Section 4 describes the
implementation process and logic code of the algorithm. Section 5 conducts experimental
simulations to compare and analyze algorithms, and Section 6 presents the conclusions.

2. Related Work

At present, related references mainly focus on improving the revenue of FAW attacks [17,18]
and cannot provide corresponding protection algorithms for the target mining pool under
FAW attacks. However, there are a few study results on the protection algorithm for FAW
attacks. Some scholars proposed a protection algorithm based on the FAW attack’s block
withholding feature or selfish mining feature. For example, Chang et al. [12] proposed a
protection algorithm based on silent timestamps. Miners send the randomly generated
silent timestamp and PoW to the mining pool manager. The mining pool manager sorts the
PoWs of miners according to the received silent timestamps, so that the PoWs submitted
are time-sensitive. Therefore, it is difficult for a FAW attacker to cause a network fork,
and only the block withholding attack is carried out. Ke et al. [13] proposed a reputation
system based on the miner credit mechanism (RSCM). RSCM evaluates the miner’s credit
value according to the network fork number caused by the miner. Then, RSCM assists
the mining pool manager to eliminate malicious miners who initiate FAW attacks, and
ensure the revenue of honest mining in the mining pool. Sarker et al. [14] proposed an anti-
withholding reward system (AWRS). AWRS removes the incentive for attackers to carry
out FAW attacks by giving more enormous rewards to miners with FPoW. Bag et al. [15]
deters attackers by providing additional incentives to miners who actually find blocks,
and reduces the reward of BWH attackers who never submit valid blocks to the mining
pool. BWH attackers’ revenue is lower than expected, which can achieve a defensive effect.
Schrijvers et al. [16] proposed an incentive-compatible revenue distribution on scheme
(ICRDS). ICRDS reduces the submitted PPoW by setting a threshold for the number of
miners’ PPoW submissions. The deducted reward is given as a special reward to miners
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who complete the FPOW. However, the above scholars [13–16] only detect malicious miners
based on a single attack feature, but do not consider both the features of block withholding
and selfish mining. Therefore, it is impossible to comprehensively and efficiently detect
malicious miners who carry out FAW attacks and reduce the revenue of malicious miners.

In conclusion, for FAW attacks on other mining pools or miners, the current algorithms
focus on maximizing the attacker’s revenue by optimizing the existing attack strategies.
There are a few studies on protection algorithms. Moreover, the current algorithms only
set a simple protection algorithm based on a single attack feature, and they do not com-
prehensively and efficiently detect malicious miners and effectively reduce the revenue of
malicious miners from FAW attacks.

3. Algorithm Principle
3.1. Algorithmic Assumptions and Problem Solving

To address the above problem, we analyze the blockchain network scenario and give
the assumptions as follows.

Assumption 1. There are three types of mining pools in the network. Malicious mining pools send
not only malicious miners to attack target mining pools, but also retain honest miners for honest
mining. The target mining pool and other mining pools only assign honest miners for honest mining.

Assumption 2. Honest miners can mine by themselves and obtain the mining revenue distributed
by their mining pools. Malicious miners carry out FAW attacks on the target mining pool according
to the tasks of the malicious mining pool. At the same time, the malicious miners obtain the attack
reward distributed by the malicious mining pool and the mining revenue distributed by the target
mining pool.

Assumption 3. Miners in the mining pool use the PoW consensus algorithm to mine.

As shown in Figure 1, some miners in blockchain join a malicious mining pool for
honest mining or FAW attacks on another mining pool to obtain mining revenue or FAW
attack revenue and reduce the revenue of the target mining pool. During the mining
process, the mining pool manager can receive PoW data reported by miners and know the
number of network forks caused by the miners, the communication delay, and the current
accumulated time of joining the mining pool.
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Based on the behavior information of a large number of miners, the mining pool
manager detects malicious miners, but the following four problems need to be solved:
firstly, how to propose a miner data preprocessing method. The method needs to perform
data cleaning and initial verification to quickly correct erroneous values in the data and
initially screen out some malicious miners; secondly, how to propose a behavioral reward
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and punishment mechanism and a credit scoring model: they need to provide reward and
punishment according to the PoW completed by miners, and comprehensively evaluate the
block mining behavior of miners; thirdly, how to study the classification of credit levels, and
divide miners into different credit levels by information such as mining behavior and credit
value of miners, which can obtain the distribution of malicious miners in the mining pool,
and reduces the revenue distribution of malicious miners; fourthly, how to quickly evaluate
the effect of malicious miner protection by the target mining pool, which is convenient for
the rapid simulation verification of the algorithm.

3.2. Basic Principles

Malicious miners are challenging to detect initially, but malicious miners carry out
FAW attacks and show different behaviors as time goes on. Therefore, the mining pool
manager can use the information to detect malicious miners after learning the behavior
information of miners. As shown in Figure 2, when the network runs for a period of
time, according to the miners’ behavior information, we propose a FAW attack protection
algorithm (FAWPA) based on miners’ mining behavior in the blockchain. It mainly includes
miner data preprocessing and malicious miner detection. The implementation scheme is
as follows.
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3.2.1. Miner Data Preprocessing

After receiving the miners’ PoW, the number of network forks, communication delay,
and offline times, the mining pool manager cleans and normalizes the information. Then it
uses the boxplot analysis algorithm to detect the received data [19]. When the mining pool
manager finds the wrong value, it replaces the incorrect value with the mean of the normal
value. According to the processed information, the mining pool manager uses various
verification methods such as data format, time validity, and data validity to complete the
initial malicious detection of miners. Namely, it analyzes the data format, the chronological
sequence of reported data and the number of error values, and counts the number of errors
in the data. Then it carries out single-dimensional data preprocessing of miner data. If any
of the detected miner’s error times and offline times is greater than threshold th1, or the
communication delay is higher than threshold th2, then the mining pool manager gives the
miner an inferior credit rating and the revenue weight µ2.

3.2.2. Malicious Miner Detection
Behavioral Reward and Punishment Mechanism and Credit Value Scoring Model

Considering the specific behavior of miners, we propose a reward and punishment
mechanism for miners’ behavior, and calculate the cumulative performance value of miners
in block mining. Among them, the reward and punishment mechanism is mainly composed
of two aspects, such as PoW reward and block mining failure punishment. PoW rewards
are divided into two categories. In the first category, the miner successfully obtains the full
PoW certificate, and its cumulative performance value increases by performance point α.
In the second category, when the miner obtains a PpoW, its cumulative performance value
increases by performance point β. The block mining failure punishment is divided into
two categories. In the first category, when another mining pool successfully obtains the
FPoW certificate, the cumulative performance value of all miners in this mining pool is
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deducted by performance point χ. In the second category, when the block submitted by the
miner causes a network fork, the miner’s cumulative performance value is deducted by
performance point ε. Then, FAWPA calculates the performance value δi of each miner i in
the block mining.

δi = φiβ + ϕiα− γχ− ηε (1)

where φi represents the number of POW certificates of miner i, ϕi represents the flag
whether miner i has a FPOW certificate, γ represents the flag whether the mining pool with
miner i has a FPOW certificate, η represents the flag whether the block submitted by miner
i causes a network fork. Then, FAWPA calculates the cumulative performance value of
miner i.

ιi = κι′ i + δi (2)

where ιi represents the updated cumulative performance value of miner i at the current
moment, ι′ i represents the cumulative performance value of miner i at the previous moment,
and κ represents the update factor of the performance value.

After updating the cumulative performance value of miners, we propose the credit
value scoring model of miners. The model mobilizes the enthusiasm of miners to participate
in mining and serve as the basis for credit ratings.

oi =
λ1 × (ιi/λ2)

1 + |ιi/λ2|
(3)

where oi represents the accumulated credit value of miner I, which is used as the evaluation
factor for credit rating division, and λ1 and λ2 represent the model parameters.

Credit Rating Classification

According to the information collected in the data preprocessing stage, FAWPA obtains
evaluation elements of the miner credit rating classification in Table 1, including current
credit value, cumulative credit value, offline times, delay time, current network forks, and
other information. Then we propose the miner credit rating classification according to
the above evaluation elements. As shown in Formula (4), the miner credit rating value is
defined as follows:

QR = {superior, in f erior} (4)

where QR represents the credit rating set.

Table 1. Evaluation element table of miner credit rating classification.

Name Explanation

Current credit value Miner’s current credit value for working in the block
Cumulative credit value Miner’s cumulative credit value before credit rating classification

Offline times Number of miner’s offline in the current mining pool
Delay time Delay time of miner in communication process

Current number of network forks Number of network forks caused by miner before credit rating classification

The traditional clustering algorithm has the following problems in the actual cluster-
ing process:

(1) The clustering algorithm based on sample membership represented by FCM (Fuzzy
C-Means) focuses on optimizing the least square error. Namely, it optimizes the distance
between the object in the cluster and the center of the cluster. However, it ignores the
distance between different clusters, and partial clusters of discrete samples cannot be
divided [20].

(2) The clustering algorithm based on sample distance represented by HC (Hierarchical
Clustering) assigns the same weight to all features in the process of distance calculation. It
does not consider that there are certain differences in the importance of different features.
Therefore, the adaptability in different scene environments is poor [21].



Sensors 2022, 22, 5032 7 of 20

(3) The clustering algorithm based on cluster center selection represented by K-means
is easily affected by the initial cluster center selection. It results in unstable clustering
results and makes it easy to fall into the optimal local solution [22].

Therefore, the clustering effect of existing algorithms is not ideal, and the running
time of existing algorithms is too long. They cannot meet the precision rate and real-time
requirements of credit rating classification [23]. The Aquila Optimizer (AO) algorithm [24]
has a good search ability for global optimal solutions. The AO algorithm simulates Aquila’s
high soar flight and contour flight to quickly determine the scope of the global optimal
solution, and simulates the low flight and swoop by walk capture of Aquila to accurately
search for the global optimal solution. However, in the optimization process, the AO
algorithm mainly realizes different optimization links according to the value of random
numbers, and cannot reach a convergence state in a short time. Therefore, we propose a
miner credit rating classification mechanism (MCCM) based on AO in view of the above
problems. MCCM considers the distance inside and outside the cluster, and improves
the fitness calculation method. It also introduces multiple weight parameters to improve
the distance calculation method. It simulates Aquila’s predation behavior to optimize
the cluster center selection, and improves the solution update mechanism in different
optimization stages. Then, it improves convergence speed and finally realizes the rapid
classification of miners’ credit ratings. The details are as follows.

MCCM determines the maximum and minimum values of different dimensions based
on the miners’ credit rating classification and evaluation elements, and constructs a search
space. Then, it randomly generates K cluster center positions in the search space as a
solution x, and groups the ζ solutions into a solution matrix X. Since the purpose of the
clustering effect is to maximize the distance between different clusters while minimizing
the distance within the cluster, we assume that all samples are clustered according to
their distances from the centers of the cluster. When the position of the cluster center is
reasonable, it can effectively reduce the distance within cluster and increase the distance be-
tween different clusters to a certain extent, and achieve a better clustering effect. Therefore,
MCCM proposes the fitness of different solutions according to Formula (5), and selects the
solution with the largest fitness as the best solution xb.

Fz =

K
∑

l=1

K
∑

j=1
B(Cl , Cj)

K
∑

l=1

SN
∑

k=1
D(xk,l , Cl)

(5)

where Fz represents the fitness value of the zth solution, K represents the number of clusters,
SN represents the number of samples in the cluster, and Cl and Cj respectively represent
the cluster center positions of the ith cluster and jth cluster obtained from the zth solution.
xk,l represents the kth sample in the lth cluster. D(xk,l , Cl) represents the distance between
the kth sample and the cluster center of the lth cluster. B(Cl , Cj) represents the distance
between the cluster center position of the lth cluster and the cluster center position of
the jth cluster. In terms of calculating distance, MCCM considers the important degree
of different evaluation elements and sets different weight parameters to clear differences
between malicious miners and honest miners. The formula is as follows:

D(xk,l , Cl) = v1 ×
√
(ε1

k,l − ε1
l )

2
+ v2 ×

√
(ε2

k,l − ε2
l )

2

+v3 ×
√
(ε3

k,l − ε3
l )

2
+ v4 ×

√
(ε4

k,l − ε4
l )

2
+ v5 ×

√
(ε5

k,l − ε5
l )

2

B(Cl , Cj) = v1 ×
√
(ε1

l − ε1
j )

2
+ v2 ×

√
(ε2

l − ε2
j )

2

+v3 ×
√
(ε3

l − ε3
j )

2
+ v4 ×

√
(ε4

l − ε4
j )

2
+ v5 ×

√
(ε5

l − ε5
j )

2

(6)

where ε1
k,l represents the current cumulative credit value of the kth sample in the lth

cluster, ε2
k,l represents the historical rating value of the kth sample in the lth cluster, ε3

k,l
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represents the offline times of the kth sample in the lth cluster, ε4
k,l represents the delay time

of the kth sample in the lth cluster, ε5
k,l represents the current number of network forks of

the kth sample in the lth cluster, ε1
l and ε1

j respectively represent the current cumulative

credit values of the cluster center positions in the lth cluster and the jth cluster, ε2
l and ε2

j
respectively represent the historical level values of the cluster center positions in the lth
cluster and the jth cluster, ε3

l and ε3
j respectively represent the offline times of the cluster

center positions in the lth cluster and the jth cluster, ε4
l and ε4

j respectively represent the

delay time of the cluster center position in the lth cluster and the jth cluster, ε5
l and ε5

j
respectively represent the current number of network forks at the cluster center positions in
the lth cluster and the jth cluster, v1 represents the weight value of the current accumulated
credit value, v2 represents the weight value of the historical rating value, v3 represents
the weight value of offline times, v4 represents the weight value of delay time, and v5
represents the weight value of the current number of network forks.

In different iterative processes, the solution needs to be adjusted appropriately, and
the similarity ratio τk of the kth solution is calculated by the Formula (7).

τk =

√√√√ ξ

∑
j=1

(xk,j − x′k,j)
2 (7)

where τk represents the similarity ratio between the kth solution in the current iteration
process and its previous iteration process, which is used to switch among different op-
timization stages, xk,j represents the jth miner credit rating evaluation element for the
kth solution in the current iteration process, x′k,j represents the jth miner credit rating
evaluation element for the kth solution in the previous iteration process, ξ represents the
dimension of a single solution. Maxit represents the maximum number of iterations, it
represents the current iteration number, and υ1 and υ2 represent similarity thresholds for
solution updates. The specific update of the solution is as follows:

(1) When it ≤ 2×Maxit/3 and τk ≥ υ1, since the current solution is far away from
the optimal solution, it is necessary to quickly determine the search range of the optimal
solution by simulating the Aquila’s high soar flight by Formula (8). It can find the optimal
cluster center position later.

x′′ = xb × (1− it/Maxit) + (xc − xb)× r1 (8)

where x′′ represents the updated solution, xc represents a ξ × 1 vector composed of the
average values of solution x, xb represents the best solution in the current iteration process,
and r1 represents a random number in the range from zero to one.

(2) When it ≤ 2×Maxit/3 and τk < υ1, since the search range of the optimal solution
is relatively wide, it is necessary to further narrow the current search range by simulating
the Aquila’s outline flight by Formula (9). It can facilitate the rapid approach to the global
optimal solution in the later stage.

x′′ = xb × L + xd + (e2 − e1)× r1 (9)

where L represents the random value of Lévy flight, xd represents a randomly selected
solution in the solution matrix X, and e1 and e2 represent random value vectors that
simulate Aquila spiral search.

(3) When it > 2×Maxit/3 and τk ≥ υ2, the solution needs transit from large-scale
search to small-scale optimization. Therefore, the solution uses Formula (10) to simulate
the low flight of Aquila. Then it achieves a fast approach to the global optimal solution. It
is convenient for the next step to accurately search for the optimal cluster center position.

x′′ = (xb − xe)×ω1 − r2 + ((up− lp)× r1 + lp)×ω2 (10)
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where xe represents the mean vector of solution matrix X in different dimensions, ω1 and
ω2 represent solution search parameters in the range zero to one, r2 represents a vector
composed of random numbers in the range zero to one, up represents a ξ × 1 vector
composed of maximum values in different dimensions, and lp represents a ξ × 1 vector
composed of the minimum values in different dimensions.

(4) When it > 2× Maxit/3 and τk < υ2, the solution is close to the optimal solu-
tion. Therefore, the solution calculates the mass function to ensure an accurate search by
Formula (11). Then, it combines Formula (12) to simulate the flight capture of Aquila. It
can accurately search for the optimal cluster center position.

f = it
2×r1−1

(1−Maxit)2 (11)

x′′ = f × xb − (g1 × x× r1)− g2 × L + r2 × g1 (12)

where g1 represents a random value in the process of simulating Aquila capturing prey and
g2 represents the flight slope of the simulated Aquila during prey capture. On the basis of
obtaining the optimal solution of radius, MCCM calculates the evaluation value of each
cluster by Formula (13), and divides the miners into superior and inferior levels. After rating
classification is completed, the mining pool manager assigns revenue distribution weight
µ1 to the miners with superior credit and assigns weight µ2 to the miners with inferior credit.

cl =

SN
∑

k=1
ϑ1 × ε1

k,l + ϑ2 × ε2
k,l − ϑ3 × ε3

k,l − ϑ4 × ε4
k,l − ϑ5 × ε5

k,l

SN
(13)

where cl represents the evaluation value of the lth cluster, ϑ1 represents the weight value of
current accumulated credit value, ϑ2 represents the weight value of the historical r value,
ϑ3 represents the weight value of offline times, ϑ4 represents the weight value of the delay
time, and ϑ5 represents the weight value of the current number of network forks. After a
certain period of time, the mining pool manager clears miners’ accumulated performance
values and accumulated credit values, and starts to calculate the accumulated performance
values again, so as to ensure the revenue of high-credit miners and reduce the revenue of
malicious miners.

3.2.3. Mining Pool Revenue Distribution and Evaluation

According to credit rating results, the mining pool manager defines different rev-
enue weights for each different level, and redistributes the revenue of mining pool. CT
represents the total computing power of target mining pool, CO represents the total com-
puting power of other mining pools, CE represents the total computing power of malicious
mining pools and CA represents the total computing power of the entire network, that is,
CE + CO + CT = CA. The total computing power CE of the malicious mining pool consists
of the computing power CH

E used for honest mining and the computing power CB
E used to

carry out FAW attacks.
CH

E = ∑
i

pihiE, CB
E = ∑

i
pidiE (14)

where pi represents the computing power of miner i, hiE represents the indicator that miner
i carries out honest mining according to the assignment of the malicious mining pool, diE
represents the indicator whether miner i carries out a FAW attack on the target mining pool.
The revenue of the malicious mining pool is mainly divided into the following three parts:
First, the malicious mining pool’s own honest mining computing power CH

E carries out
block mining to obtain honest mining revenue; second, the malicious mining pool assigns
computing power CB

E to carry out block withholding attacks without providing full proof
of work to the target mining pool. At that time, the target mining pool assigns its honest
mining revenue to the attack computing power; third, the malicious mining pool assigns
computing power CB

E to carry out selfish mining attacks immediately when other mining
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pools find valid blocks. Namely, it announces the blocks that were discovered before and
achieves a network fork. Then, the probability that the attack computing power allows the
target mining pool to obtain block revenue is v×∑

i
pidiE × CO/(CA −∑

i
pidiE), where v

represents the probability that the block submitted by the malicious miner is successfully
uploaded to the chain. The target mining pool assigns its revenue to the attack computing
power. Therefore, the total revenue of the malicious mining pool is

RE =

∑
i

pihiE

CA −∑
i

pidiE
+

CT
CA −∑

i
pidiE

×
∑
i

pidiE

CT + ∑
i

pidiE
+ v×

∑
i

pidiE

CA
× CO

CA −∑
i

pidiE
×

∑
i

pidiEui

CT + ∑
i

pidiE
(15)

where ui represents the weight factor of miner i in target mining pool. The weight factor ui
of miner i in target mining pool that can detect malicious miners is

ui =

{
µ1, malicious miner i in target mining pool, and the grade is superior
µ2, malicious miner i in target mining pool, and the grade is inferior

(16)

where µ1 and µ2 represent the revenue distribution weight. The revenue distribution
weights µ1 and µ2 of miner i in the target mining pool T, which does not detect the malicious
miners, are both one. The target mining pool can still obtain honest mining revenue and
network fork revenue under the FAW attack of the malicious mining pool, so the total
revenue of the target mining pool is

RT =
CT

CA −∑
i

pidiE
×

∑
i

piTihui

CT + ∑
i

pidiE
+ v×

∑
i
(pidiE)

CA
× CO

CA −∑
i

pidiE
×

∑
i

piTihui

CT + ∑
i

pidiE
(17)

where, Tih represents the flag that miner i carries out honest mining according to the
assignment of the honest mining pool.

Other mining pools always obtain revenue through honest mining, that is,

RO =
CO

CA −∑
i

pidiE
(18)

Since miners in the mining pools need to consume resources such as electricity, water,
and equipment damage when they carry out honest mining and FAW attacks [25], therefore,
tH is the cost of honest mining consumption per unit of computing power, tF is the cost of
FAW attack per unit of computing power. The net revenue in three types of mining pools is
the total revenue minus the cost of computing power. The net revenue models are

R′E =
RE − CH

E × tH − CB
E × tF

NE
, R′T =

RT − CT × tH
NT

, R′O =
RO − CO × tH

NO
(19)

where R′E represents the net revenue of a miner in the malicious mining pool, R′T represents
the net revenue of a miner in the target mining pool, R′O represents the net revenue of a
miner in other mining pools, NE represents the number of miners that malicious mining
pool can assign, NT represents the number of miners that target mining pool can assign,
and NO represents the number of miners that other mining pools can assign.

4. Algorithm Implementation

The mining pool manager executes FAWPA to detect malicious miners, thereby in-
creasing its revenue. The specific pseudo-code of FAWPA is shown in Algorithm 1: In
line 1, the mining pool manager initializes parameters, such as the number of miners in
the entire network n, the type of mining pools in the entire network pool, the computing
power ratio of malicious mining pool attack κ, the step size control parameter lstep, the
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time threshold T, the credit value of the whole network miners oi, and starts timing. In
lines 3–8, the mining pool manager collects the proof of work, offline times, delay time,
current network forks, and other behavioral information of all miners in the mining pool;
then, it uses the box plot detection algorithm to clean the data reported by miners and finds
the wrong value. Then, it replaces it with the mean value of the normal value. According
to the preprocessed data, the mining pool manager carries out preliminary verification.
Namely, if any of the information, such as the number of errors and the number of offline
times reported by miners, is greater than threshold th1, or the communication delay time is
higher than threshold th2, it determines the credit rating as inferior directly. In lines 9–10,
according to the previous work of miners, the mining pool manager implements a reward
and punishment mechanism, and updates the cumulative performance value of each miner.
At the same time, the mining pool manager converts the cumulative performance value
into cumulative credit value with the credit value scoring model by Formula (3). In line 11,
according to the data reported by miners, the mining pool manager obtains the evaluation
elements shown in Table 1. It uses MCCM to achieve credit rating classification [24], and
calculates the evaluation values of different clusters by Formula (13). Then it divides the
miners into different credit ratings. In line 12, according to miners’ credit rating results,
the mining pool manager sets miners’ revenue distribution weights. In lines 13–15, after
a period of time, the mining pool manager clears the cumulative performance value and
cumulative credit value of all miners, and starts a new round of cumulative performance
value acquisition. In lines 17–18, the mining pool manager judges the status of the mining
pool. If the mining pool successfully mines the block, the mining pool manager will assign
the current round of mining pool revenue with the revenue distribution weight of each
miner. In line 20, if other mining pool blocks are not successfully mined, the algorithm
returns to data reception and preprocessing steps. Otherwise, the algorithm performs min-
ing pool revenue distribution. In line 22, the network synchronizes the block information
and mines the next block. The mining pool manager repeats the above steps (lines 3–23) to
detect malicious miners who carry out FAW attacks. Then it reduces the weights of their
revenue distribution and realizes the security protection of FAW attacks.

Algorithm 1: FAW Attack Protection Algorithm Based on the Behavior of Blockchain Miners (FAWPA)

Input: behavior information of miners in target mining pool
1: pool = 3; n = 1000; lstep = 1.5; T = 30; oi = 60; The mining pool manager starts timing;
2: while(1)
3: The mining pool manager of the target mining pool receives the behavior information of each miner;
4: if the target mining pool knows the number of mines and blocks mined by any mining pool in the network, then
5: The target mining pool selects the behavior data of miners when the block is mined;
6: if miner behavior data exceeds the threshold of the boxplot analysis algorithm, then
7: The target pool managers perform data preprocessing and flag malicious miners;
8: end
9: The target pool manager implements a reward and punishment mechanism;
10: The target pool manager implements the credit value scoring model and updates the cumulative credit value oi of each miner;
11: The target pool manager implements the credit rating mechanism MCCM to classify miners’ credit ratings;
12: The target pool manager sets revenue distribution weight according to credit rating result;
13: if time > T
14: The target pool manager clears cumulative performance value and cumulative credit value for all miners, time = 0;
15: end
16: end
17: if the target pool manager successfully mines blocks, then
18: The target pool manager distributes mining pool revenue according to the revenue distribution weight of each miner;
19: else
20: Return to line 3;
21: end
22: The network synchronizes the block information and starts to mine the next block;
23: end
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5. Experimental Simulation
5.1. Simulation Parameters and Performance Parameters

According to the statistics from the btc.com website on 19 November 2021, the com-
puting power distribution of the mining pool in the Bitcoin network is shown in Table 2.
Referring to the computing power distribution of the mining pool in the Bitcoin network,
we set up the following simulation experiment scenario. We simulate the F2Pool and
SlushPool to carry out a FAW attack on the Foundry USA mining pool, and the remaining
mining pools as other mining pools. The attack mining pool selects a number κ of its own
miners to carry out FAW attacks on all target mining pools, and the remaining miners carry
out honest mining. Target mining pools can implement a protection algorithm. It can detect
malicious miners and distribute the corresponding revenue. The target mining pool and
other mining pools perform honest mining.

Table 2. The computing power of mining pool in the real Bitcoin network.

Rankings Mining Pool Computing Power Proportion

1 Foundry USA 48,209.44 PH/s 21.51%
2 F2Pool 32,305.30 PH/s 14.41%
3 Binance Pool 30,814.28 PH/s 13.75%
4 Poolin 30,317.28 PH/s 13.53%
5 AntPool 21,371.20 PH/s 9.53%
6 ViaBTC 20,377.19 PH/s 9.09%
7 SlushPool 10,934.10 PH/s 4.88%
8 btc.com 10,437.10 PH/s 4.66%
9 SBI Crypto 6461.06 PH/s 2.88%
10 Luxor 5467.05 PH/s 2.44%
11 unknown 2982.03 PH/s 1.33%
12 MARA Pool 2982.03 PH/s 1.33%
13 Others 1490.99 PH/s 0.66%

FAWPA detects malicious miners based on the behavior data of miners. Therefore,
FAWPA can work with private chains and public chains based on the POW consensus
mechanism, and can also work with a consortium blockchain. To verify the performance of
FAWPA, according to the above simulation experiment scenario, we selected Ethereum and
built a blockchain prototype system [26,27] to obtain the behavior data set of each miner
i under FAW attack. The system uses Golang language on a server with Intel i7-10700
CPU 2.90GHz and 16G memory. Its operating system is 64-bit Win10. We also used the
simulation parameters in Table 3 and used Matlab R2018b software to analyze the influence
of credit value model parameters, malicious miner detection parameters, and block mining
number on the precision rate of the algorithm. Then, considering the ratio of the number of
mined blocks to malicious computing power, we calculated the following parameters of
the target mining pool, such as cumulative revenue of computing power, and the recall rate
and precision rate of malicious miners.

Finally, when the malicious computing power changes, we compared the revenue of
the target mining pools which use FAWPA, ND (No Detection), RSCM [13], AWRS [14], and
ICRDS [16], where ND represents a target mining pool that does not detect the malicious
miners. The recall rate is defined as the percentage of the number of real detected malicious
miners to the total number of real malicious miners in the network. The precision rate
is defined as the percentage of the number of real detected malicious miners to the total
number of malicious miners deemed by the algorithm.
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Table 3. Simulation parameter table.

Parameter Number Parameter Number

Number of miners 1000 Similarity threshold υ1 0.5
Number of blocks 100 Similarity threshold υ2 0.5

Number of cluster centers K 2 Credit model parameter λ1 50
Initial credit value oi 60 Credit model parameter λ2 500

Weight value of current credit Value v1 5 Weight value of offline times v3 10
Cumulative credit value v2 5 Weight value of delay times v4 10
Network fork punishment ε 50 Weight value of fork times v5 10

Block mining failure punishment χ 30 Proportion of computing power per unit of miners
to the computing power of the entire network 0.1%

Performance value of FPoW reward α 200 Performance value of PPoW reward β 30
Honest mining cost per unit of computing tH 10−3 FAW attack cost per unit of computing power tF 10−4

5.2. Simulation Analysis
5.2.1. Miner Data Preprocessing

First, we selected the credit value model parameter λ1 as 10, 20, 30, 40, 50, and 60,
the model parameter λ2 as 100, 200, 300, 400, 500, 600, and 700, the number of malicious
miners κ as 10, 40, 70, 100, and 130, and other parameters in Table 3. Then, we analyzed
the influence of credit value model parameters on the precision rate of malicious miners
and the average non-malicious computing power revenue of the target mining pool. Then,
we took κ = 100 as an example to illustrate the influence of credit value model parameters
on FAWPA.

As shown in Figure 3, when the model parameter λ1 is 50 and the model parameter
λ2 is 500, the precision rate of malicious miners in the target mining pool reaches the
maximum value. The reason is that when parameter λ1 changes from 10 to 50, the range
of the cumulative credit value of all miners in the model increases. The scattered credit
values of malicious miners and honest miners are more, and the clustering and credit
rating evaluation effect of FAWPA becomes better. Therefore, its precision rate increases
accordingly. When parameter λ2 changes from 100 to 500, the increase rate of miners
in cumulative credit value slows down, and the cumulative credit value can reflect the
situation of participating in block mining. FAWPA distinguishes malicious miners more
accurately, so its precision rate increases accordingly. However, when parameter λ1 reaches
60 or parameter λ2 reaches 600, the cumulative credit value interval in the model is too
large, or the growth rate of miners in the cumulative credit value is too slow. Therefore, the
detection effect of some malicious miners deteriorates, and the precision rate of the target
mining pool does not improve or even decreases slightly.
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As shown in Figure 4, when the model parameter λ1 is 50 and the model parameter
λ2 is 500, the average revenue of the target mining pool reaches the maximum value. The
reason is that when parameter λ1 changes from 10 to 50 or parameter λ2 changes from 100
to 500, the effect of FAWPA in detecting malicious miners becomes better, and its precision
rate increases. As a result, FAWPA gives more malicious miners in the target mining
pools lower revenue distribution weights and distributes more revenue to honest miners.
Their average revenue increases accordingly. However, when parameter λ1 reaches 60 or
parameter λ2 reaches 600, the precision rate of malicious miners in the target mining pool
changes little, but the detection effect of malicious miners worsens. FAWPA mistakes more
honest mining pools for malicious miners, and its recall rate becomes worse. Therefore,
the average revenue of the target mining pool decreases. In summary, FAWPA chooses the
credit model parameters λ1 as 50 and λ2 as 500. It can better distinguish malicious miners
from honest miners and improve the average revenue of the target mining pool.
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We selected the similarity threshold parameter υ1 of the selected solution as 0.3, 0.4,
0.5, 0.6, and 0.7, and the similarity threshold parameter υ2 as 0.3, 0.4, 0.5, 0.6, and 0.7,
the number of malicious miners κ as 10, 40, 70, 100, and 130 and other parameters in
Table 2. Then, we analyzed the influence of similarity threshold υ on fitness value, and took
κ = 100 as an example to illustrate the influence. As shown in Figure 5, when the malicious
detection parameter υ1 is 0.5 and the malicious detection parameter υ2 is 0.5, the fitness
value reaches the maximum value. The reason is that when parameters υ1 and υ2 change
from 0.5 to 0.3, the similarity threshold range gradually decreases. It leads to reducing the
Aquila search range, and the found solution falls into a local optimal solution. Therefore,
the fitness value decreases accordingly. When the parameters υ1 and υ2 change from 0.5 to
0.7, the range of the similarity threshold gradually increases. It leads to the extension of
the Aquila search range, and it is difficult to find the global optimal solution quickly and
accurately. Therefore, the fitness value also decreases. When both parameters υ1 and υ2
are set to 0.5, the fitness value reaches the maximum value. Namely, FAWPA minimizes
the distance between clusters and maximizes the distance between different clusters. Then,
FAWPA achieves the optimal clustering effect of miners. Therefore, FAWPA chooses the
parameters υ1 and υ2 as 0.5.
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We selected the step size control parameters lstep as 0.5, 1.0, 1.5, and 2.0, the maximum
number of iterations as 1000, the number of malicious miners κ as 10, 40, 70, 100, and
130, and other parameters in Table 2. Then, we analyzed the influence of the step size
control parameters on the fitness value, and took κ = 100 as an example to illustrate the
influence of parameter lstep on the convergence rate of the global optimal solution. As
shown in Figure 6, when the parameter lstep is 1.5, the global optimal solution has the
fastest convergence rate. The reason is that when the step size control parameter is less
than 1.5, the unit distance of the Aquila search range is too small, and the search speed for
the optimal solution is slow. Therefore, the convergence rate is slow. When the parameter
lstep is greater than 1.5, the unit distance of the Aquila search range is too large, and the
number of searches in the same range is small. The local search ability is not enough, and
the optimal solution search is relatively weak. Therefore, the number of iterations required
to find the global optimal solution is the largest. When the lstep is 1.5, FAWPA quickly
locks the Aquila search range in the early flight, and quickly finds the optimal solution in
the later search process. The number of iterations required to find global optimal solution
is minimum. Therefore, FAWPA chooses the parameter lstep as 1.5, so it can realize the fast
search for the global optimal solution and has a high convergence rate.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 6. The influence of step length control parameter lstep on fitness value. 

5.2.2. Performance Analysis 

We selected the number of malicious miners   as 10, 40, 70, 100, and 130, the num-

ber of blocks as 30, 40, 50, 60, 70, 80, 90, and 100, and other parameters in Table 2. Then, 

we analyzed the influence of the number of malicious miners   and the number of 

mined blocks on the precision rate. As shown in Figure 7, no matter how the number of 

malicious miners   changes, with the increase of the number of mined blocks, the preci-

sion rate of FAWPA in detecting malicious miners gradually increases. The precision rate 

reaches more than 97.5%. The reason is that when the number of blocks is small, the min-

ing pool manager collects less information, such as the current credit value, cumulative 

credit value, offline times, delay time, and current network forks. Some malicious miners 

do not show malicious behavior, resulting in a low precision rate of malicious miners in 

FAWPA. As the number of blocks increases, malicious miners show more malicious be-

haviors than normal miners. FAWPA increases the data difference between malicious 

miners and normal miners through the reward and punishment mechanism and credit 

scoring model, and uses multiple attack characteristics as clustering dimensions. It makes 

miner credit classification based on eagle predation behavior more accurate. In the end, 

no matter how the number of malicious miners changes, FAWPA detects malicious min-

ers accurately, so the precision rate of malicious miners gradually increases. When the 

number of blocks is greater than 90, the mining pool manager has collected enough infor-

mation on the behavior of miners, and the malicious miners have shown obvious differ-

ences. Therefore, no matter how the number of malicious miners changes, the precision 

rate of malicious miners reaches more than 97.5%. 

Figure 6. The influence of step length control parameter lstep on fitness value.

5.2.2. Performance Analysis

We selected the number of malicious miners κ as 10, 40, 70, 100, and 130, the number
of blocks as 30, 40, 50, 60, 70, 80, 90, and 100, and other parameters in Table 2. Then, we
analyzed the influence of the number of malicious miners κ and the number of mined
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blocks on the precision rate. As shown in Figure 7, no matter how the number of malicious
miners κ changes, with the increase of the number of mined blocks, the precision rate
of FAWPA in detecting malicious miners gradually increases. The precision rate reaches
more than 97.5%. The reason is that when the number of blocks is small, the mining pool
manager collects less information, such as the current credit value, cumulative credit value,
offline times, delay time, and current network forks. Some malicious miners do not show
malicious behavior, resulting in a low precision rate of malicious miners in FAWPA. As
the number of blocks increases, malicious miners show more malicious behaviors than
normal miners. FAWPA increases the data difference between malicious miners and normal
miners through the reward and punishment mechanism and credit scoring model, and uses
multiple attack characteristics as clustering dimensions. It makes miner credit classification
based on eagle predation behavior more accurate. In the end, no matter how the number of
malicious miners changes, FAWPA detects malicious miners accurately, so the precision
rate of malicious miners gradually increases. When the number of blocks is greater than
90, the mining pool manager has collected enough information on the behavior of miners,
and the malicious miners have shown obvious differences. Therefore, no matter how the
number of malicious miners changes, the precision rate of malicious miners reaches more
than 97.5%.
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sion rate.

We selected the number of malicious miners κ as 10, 40, 70, 100, and 130, the number of
mined blocks as 30, 40, 50, 60, 70, 80, 90, and 100, and other parameters in Table 3. Then, we
analyzed the influence of the number of malicious miners and the number of mined blocks
on the recall rate. As shown in Figure 8, no matter how the number of malicious miners
changes, as the number of mined blocks increases, the recall rate of FAWPA for malicious
miner detection gradually increases, and its recall rate reaches more than 95%. The reason
is that when the number of blocks is small, the mining pool manager collects less miner
behavior data, and some malicious miners do not show malicious behavior, so the recall
rate is low. As the number of blocks increases, FAWPA first performs box plot detection,
excludes malicious miners with obvious differences, and realizes preliminary data cleaning
and verification. Then, FAWPA detects the remaining malicious miners through MCCM
clustering. In the end, no matter how the number of malicious miners changes, FAWPA
detects malicious miners comprehensively, so the recall rate gradually increases. When
the number of blocks is greater than 90, the mining pool manager has collected enough
information on the differential behavior of malicious miners and honest miners, so the
recall rate of malicious miners is more than 95%. Among them, some malicious miners
have never mined blocks and have not carried out FAW attacks. Their behaviors do not
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show obvious differences from honest mining behaviors. Therefore, FAWPA cannot detect
these miners and the recall rate is slightly lower than the precision rate.
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5.2.3. Performance Comparison

We selected the number of malicious miners as 10, 40, 70, 100, and 130 and other
parameters in Table 3. Then, we calculated the cumulative revenues of the target mining
pool in ND, RSCM, AWRS, ICRDS, and FAWPA. As shown in Figure 9, the cumulative
revenue of the target mining pool with FAWPA is greater than that with ND, RSCM,
AWRS, and ICRDS. As the number of malicious miners increases, the cumulative revenue
of the target mining pool with FAWPA increases, while the cumulative revenues of the
target mining pool with ND, RSCM, AWRS, and ICRDS decrease accordingly. The reason
is that FAWPA combines the multi-dimensional behavior information of miners, and
evaluates the behavior of miners through reward and punishment mechanisms. Then,
FAWPA uses a miner credit classification mechanism based on eagle predation behavior
for miners. FAWPA can improve the precision rate and recall rate of malicious miner
detection and assign different revenue weights to different types of miners. Therefore, it can
effectively prevent FAW attacks from malicious miners. It also protects and improves the
accumulated revenue of the target mining pool. AWRS eliminates FAW attack motivation
of malicious miners by rewarding miners for workload. RSCM only evaluates the credit
value of miners through the number of network forks caused by miners, and assists the
mining pool manager in a time to eliminate malicious miners who carry out FAW attacks.
ICRDS implements a reward and punishment mechanism based on the number of block
submissions to limit malicious miners. AWRS, RSCM, and ICRDS do not fully consider
the multi-dimensional behavior of malicious miners, while ND does not consider the
detection of malicious miners, and its target mining pool has the lowest cumulative revenue.
Therefore, the target mining pool with FAWPA has the highest cumulative revenue, greater
than the cumulative revenues of the target mining pool with ND, RSCM, AWRS, and
ICRDS. At the same time, with the increasing number of malicious miners, the behavior
data of malicious miners and honest miners in the network are obviously different. The
precision rate and recall rate of FAWPA in detecting malicious miners increases, resulting
in a revenue decrease for malicious miners.

We assumed that the total computing power of the network is constant in the experi-
mental simulation. Therefore, the mining revenue of the honest mining computing power
in the target mining pool increased accordingly. FAWPA increased the cumulative revenue
of the target mining pool. However, ND, RSCM, AWRS, and ICRDS were less effective in
defending against FAW attacks. They difficultly coped with the increasing number of mali-
cious miners, and the cumulative revenues of target mining pools decreased accordingly.
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6. Conclusions

This paper proposes a FAW attack protection algorithm (FAWPA) based on the be-
havior of blockchain miners. Firstly, FAWPA performs data cleaning and preliminary
verification on the behavior of malicious mining pools that carry out FAW attacks on target
mining pools. We proposed a behavior reward and punishment mechanism and a credit
rating model to evaluate the block mining behavior of miners comprehensively. According
to the multiple attack characteristics of miner behavior data, we proposed a miner’s credit
classification mechanism based on fuzzy C-means (FCM), which combines the improved
Aquila optimizer (AO). The mechanism can accurately and efficiently detect miners with
malicious behavior and classify malicious miners in the mining pool with low credit levels.
Then, it gives lower revenue distribution weights to protect and improve the revenue of
the target mining pool. Secondly, we proposed a revenue model for the mining pool and
a revenue model for each miner under FAW attack. Finally, we analyzed the influence of
parameter selection on FAWPA and analyze the precision rate and recall rate of FAWPA.
Then, we compared the algorithm performance of ND, RSCM, AWRS, and ICRDS.

The simulation results show that no matter how the number of malicious miners
changes, FAWPA can comprehensively and efficiently detect malicious miners in the target
mining pool. FAWPA also improves the recall rate and precision rate of malicious miner
detection and improves the cumulative revenue of the target mining pool. However,
FAWPA mainly considers the attack and protection between a malicious attack mining
pool and a target mining pool, and does not consider the revenue problem among multiple
malicious attacks and multiple target mining pools. Therefore, the next research goal is to
study the protection algorithm among multiple mining pools under FAW attacks.
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