
Citation: Song, J.; Karagiannis, D.;

Lee, M. Modeling Method to Abstract

Collective Behavior of Smart IoT

Systems in CPS. Sensors 2022, 22, 5057.

https://doi.org/10.3390/s22135057

Academic Editor: Juan V. Capella

Received: 25 May 2022

Accepted: 28 June 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modeling Method to Abstract Collective Behavior of Smart IoT
Systems in CPS
Junsup Song 1 , Dimitris Karagiannis 2 and Moonkun Lee 1,*

1 Department of Computer Science and Engineering, Jeonbuk National University,
Jeonju 54907, Jeonbuk, Korea; junsup@jbnu.ac.kr

2 Research Group Knowledge Engineering, University of Vienna, 1090 Vienna, Austria;
dimitris.karagiannis@dke.univie.ac.at

* Correspondence: moonkun@jbnu.ac.kr

Abstract: This paper presents a new modeling method to abstract the collective behavior of Smart
IoT Systems in CPS, based on process algebra and a lattice structure. In general, process algebra
is known to be one of the best formal methods to model IoTs, since each IoT can be represented
as a process; a lattice can also be considered one of the best mathematical structures to abstract
the collective behavior of IoTs since it has the hierarchical structure to represent multi-dimensional
aspects of the interactions of IoTs. The dual approach using two mathematical structures is very
challenging since the process algebra have to provide an expressive power to describe the smart
behavior of IoTs, and the lattice has to provide an operational capability to handle the state-explosion
problem generated from the interactions of IoTs. For these purposes, this paper presents a process
algebra, called dTP-Calculus, which represents the smart behavior of IoTs with non-deterministic
choice operation based on probability, and a lattice, called n:2-Lattice, which has special join and meet
operations to handle the state explosion problem. The main advantage of the method is that the
lattice can represent all the possible behavior of the IoT systems, and the patterns of behavior can be
elaborated by finding the traces of the behavior in the lattice. Another main advantage is that the
new notion of equivalences can be defined within n:2-Lattice, which can be used to solve the classical
problem of exponential and non-deterministic complexity in the equivalences of Norm Chomsky
and Robin Milner by abstracting them into polynomial and static complexity in the lattice. In order
to prove the concept of the method, two tools are developed based on the ADOxx Meta-Modeling
Platform: SAVE for the dTP-Calculus and PRISM for the n:2-Lattice. The method and tools can be
considered one of the most challenging research topics in the area of modeling to represent the
collective behavior of Smart IoT Systems.

Keywords: domain engineering; knowledge architecture; smart IoT; collective behavior; n:2-Lattice;
dTP-Calculus; PRISM; SAVE; ADOxx Meta-Modeling Platform

1. Introduction

The Cyber-Physical System (CPS) is one of the best implementation methods for IoT
Systems, as shown in Figure 1, since the physical systems can be modeled, analyzed, and
verified for safety at the time of design before construction activity [1].

However, since the systems consist of hundreds, thousands, or even tens of thousands
of Smart IoTs, interacting with each other with communication and control while moving in
some geographically distributed area, autonomously or heteronomously, with some critical
missions, there are pressing needs to handle the size and complexity of the systems [2].
Particularly, the abstraction methods that handle the exponential growth problem of system
states caused by interactions among IoTs in the systems, known as a state-explosion
problem [3], must be presented [4].

Sensors 2022, 22, 5057. https://doi.org/10.3390/s22135057 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22135057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2167-9222
https://orcid.org/0000-0003-2541-3066
https://doi.org/10.3390/s22135057
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22135057?type=check_update&version=1

Sensors 2022, 22, 5057 2 of 31Sensors 2022, 22, x FOR PEER REVIEW 2 of 32

Figure 1. CPS Based on IoT Systems.

In order to handle the problem, this paper presents a new modeling method to ab-
stract the collective behavior of Smart IoT Systems, based on process algebra and a lattice.

Generally, it is known that process algebra can be one of the most suitable formal
methods to model IoTs because each IoT can be represented as a process [5]. Similarly, it
is known that a lattice can also be considered one of the most suitable mathematical struc-
tures to abstract the collective behaviors of IoTs because it has the hierarchical structure
to represent multi-dimensional aspects of interactions of IoTs. (Note that the word behavior
will be treated as a countable noun to distinguish an individual behavior from a group of
behaviors.)

However, the dual approach using two mathematical structures in the paper is very
challenging because the process algebra has to provide some expressive power to describe
the smart behavior of IoTs, and the lattice has to provide some operational capability to
handle the state-explosion problem generated by the interactions of IoTs.

In order to overcome the challenge, this paper presents a new process algebra, called
dTP-Calculus [6,7], and a new lattice, called n:2-Lattice [8], as follows:
 dTP-Calculus: This process algebra can represent the smart behavior of IoTs in the

systems with non-deterministic choice operation based on probability.
 n:2-Lattice: This lattice has two special join and meet operations to handle the state

explosion problem caused by the interactions of IoTs in the systems.
The justification for the approach will be discussed with related works in Section 2.
The dual approach in the paper is implemented as follows with PRISM and SAVE

tools, developed on the ADOxx Meta-Modeling Platform [9]:
(1) Phase I: Collective Behavior Modeling for Behavior Ontology with PRISM.

The top box of Figure 2 shows the overview of the approach with PRISM, consisting
of the following steps:
(i) Step 1: Active Ontology [10] is used to construct a class hierarchy of a domain,

where all the actors in the domain, including their interactions, are depicted as
classes and relations, respectively.

(ii) Step 2: Regular expression is used to define all the collective behaviors of the do-
main, where each behavior is depicted as a sequence of interactions between
actors. Further, their inclusion relations allow the organization of a hierarchical
order, which forms a special lattice, namely, n:2-Lattice.

(iii) Step 3: The behaviors are abstracted quantifiably with the notions of the cardi-
nality and capacity of the actors.

Figure 1. CPS Based on IoT Systems.

In order to handle the problem, this paper presents a new modeling method to abstract
the collective behavior of Smart IoT Systems, based on process algebra and a lattice.

Generally, it is known that process algebra can be one of the most suitable formal
methods to model IoTs because each IoT can be represented as a process [5]. Similarly,
it is known that a lattice can also be considered one of the most suitable mathematical
structures to abstract the collective behaviors of IoTs because it has the hierarchical structure
to represent multi-dimensional aspects of interactions of IoTs. (Note that the word behavior
will be treated as a countable noun to distinguish an individual behavior from a group
of behaviors).

However, the dual approach using two mathematical structures in the paper is very
challenging because the process algebra has to provide some expressive power to describe
the smart behavior of IoTs, and the lattice has to provide some operational capability to
handle the state-explosion problem generated by the interactions of IoTs.

In order to overcome the challenge, this paper presents a new process algebra, called
dTP-Calculus [6,7], and a new lattice, called n:2-Lattice [8], as follows:

• dTP-Calculus: This process algebra can represent the smart behavior of IoTs in the
systems with non-deterministic choice operation based on probability.

• n:2-Lattice: This lattice has two special join and meet operations to handle the state
explosion problem caused by the interactions of IoTs in the systems.

The justification for the approach will be discussed with related works in Section 2.
The dual approach in the paper is implemented as follows with PRISM and SAVE

tools, developed on the ADOxx Meta-Modeling Platform [9]:

(1) Phase I: Collective Behavior Modeling for Behavior Ontology with PRISM. The top
box of Figure 2 shows the overview of the approach with PRISM, consisting of the
following steps:

(i) Step 1: Active Ontology [10] is used to construct a class hierarchy of a domain,
where all the actors in the domain, including their interactions, are depicted as
classes and relations, respectively.

(ii) Step 2: Regular expression is used to define all the collective behaviors of the
domain, where each behavior is depicted as a sequence of interactions between
actors. Further, their inclusion relations allow the organization of a hierarchical
order, which forms a special lattice, namely, n:2-Lattice.

(iii) Step 3: The behaviors are abstracted quantifiably with the notions of the
cardinality and capacity of the actors.

Sensors 2022, 22, 5057 3 of 31

(iv) Step 4: Finally, a behavior ontology is defined by merging the n:2-Lattices into
one single integrated lattice, based on common actors with the notion of the
consistent quantification, for the domain.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 32

Figure 2. Approach.

In order to prove the concept of the approach, the authors developed the PRISM and
SAVE tools on ADOxx and applied them to the Smart Emergency Medical Service (EMS)
domain to abstract its collective behaviors. Further, a smart IoT example for the EMS Do-
main is also selected to interpret their collective behavior instances on PRISM by the de-
scribed projection and interpretation steps.

The EMS example shows that the method can be evaluated to be effective in achiev-
ing the objectives and efficient in realizing the goals by constructing a hierarchy of collec-
tive behaviors in the lattice as the behavior ontology, as well as the following projection
and interpretation tasks.

Further, the results show that, compared to other approaches [12–16], our method
can be very innovative in representing the behaviors with collective patterns in the struc-
ture of the n:2-Lattice.

Further, the PRISM and SAVE tools demonstrate the efficiency and effectiveness of
the approach for the feasibility of the method as the practical tools.

As a result, the main advantage of the method is that the lattice can represent all the
possible behaviors of the IoT systems, and the patterns of behaviors can be elaborated by
finding traces of the behaviors in the lattice.

Another main advantage is that the new notion of equivalence can be defined within
the lattice, which can be used to solve the classical problem of exponential and non-deter-
ministic complexity in the equivalences of Norm Chomsky and Robin Milner by

Figure 2. Approach.

The final lattice can be utilized for the interpretation of the collective behaviors of the
systems for the following phases. This phase will be described in detail in Section 3.

(2) Phase II: Behavior Instance Extraction from SAVE [6,7,11]. The bottom box of Figure 2
shows the specification and simulation method for a system with dTP-calculus, which
are realized on the ADOxx Meta-Modeling Platform [9] as a tool, namely, SAVE,
as follows:

(i) Step 1: Each IoT in the system is specified with dTP-Calculus for its opera-
tional requirements.

(ii) Step 2: Each IoT in the system is simulated, and its output is generated.
(iii) Step 3: Each abstract behavior instance is extracted from the output.

The simulation generates the abstract behavior instances of the system, which have to
be interpreted for their collective behavioral patterns. This phase will be described in detail
in Section 4.

(3) Phase III: Behavior Projection and Interpretation on Behavior Ontology with PRISM.
The right box of Figure 2 shows that the behavior instances of the system can be
projected to the behavior ontology for the system and interpreted for their collective

Sensors 2022, 22, 5057 4 of 31

behaviors in the patterns of the lattice after restructuring the regular behaviors into
the abstract ones in the following steps:

(i) Step 1: Each abstract behavior instance is projected to Behavior Ontology.
(ii) Step 2: The requirements for collective behavior instances are interpreted

and verified.

This phase will be described in detail in Section 5.
In order to prove the concept of the approach, the authors developed the PRISM and

SAVE tools on ADOxx and applied them to the Smart Emergency Medical Service (EMS)
domain to abstract its collective behaviors. Further, a smart IoT example for the EMS
Domain is also selected to interpret their collective behavior instances on PRISM by the
described projection and interpretation steps.

The EMS example shows that the method can be evaluated to be effective in achieving
the objectives and efficient in realizing the goals by constructing a hierarchy of collective
behaviors in the lattice as the behavior ontology, as well as the following projection and
interpretation tasks.

Further, the results show that, compared to other approaches [12–16], our method can
be very innovative in representing the behaviors with collective patterns in the structure of
the n:2-Lattice.

Further, the PRISM and SAVE tools demonstrate the efficiency and effectiveness of the
approach for the feasibility of the method as the practical tools.

As a result, the main advantage of the method is that the lattice can represent all the
possible behaviors of the IoT systems, and the patterns of behaviors can be elaborated by
finding traces of the behaviors in the lattice.

Another main advantage is that the new notion of equivalence can be defined within
the lattice, which can be used to solve the classical problem of exponential and non-
deterministic complexity in the equivalences of Norm Chomsky and Robin Milner by
abstracting them into polynomial and static complexity in the lattice. This will be discussed
in detail in Section 5.2.

This paper is organized as follows. Section 2 discusses related works to justify the dual
approach in the paper. Section 3 describes the modeling method for system behavior to
construct the Behavior Ontology based on the n:2-Lattice. Section 4 describes the specifica-
tion method for the systems with dTP-Calculus to generate the behavior instances through
abstraction from their simulation. Section 5 shows the projection and interpretation method
for the example on Behavior Ontology. Section 6 demonstrates the approach with the
PRISM and SAVE tools as a proof of concept in the approach. Finally, Section 7 presents the
conclusions and discusses future research.

2. Related-Works
2.1. Smart IoT and Process Algebra

Generally, an IoT System [17] is a system consisting of IoTs [18], which are computing
objects with sensors interconnected through the Internet. Originally, the concept of an IoT
was raised at the ITU (International Telecommunication Union) in 2005 [19] and became one
of the future technologies provided by Cisco, Gartner, etc., between 2008 and 2009 [20,21].
The main characteristics of an IoT System are known to be its distributivity, mobility,
communication (or interaction), real-time operation, etc. The most noticeable feature of the
system is that the communication or interactions can be controlled by human intervention.

Compared with the IoT System, the main feature of a Smart IoT System is the capability
of automation, which means that IoTs are able to communicate with each other and make
their own decisions without human intervention, as the notion of “Smart” implies.

As stated, process algebra is one of the most suitable formal methods since each IoT
can be modeled as a process. Further, the smartness can be represented as non-deterministic
choice operations based on probability. Originally the non-deterministic choice operation
was introduced by R. Milner for his PCCS [22] and followed by I. Lee for his PACSR [23].
However, their probabilities were based on simple conditional choice operations based on

Sensors 2022, 22, 5057 5 of 31

discrete probabilistic values without any distribution concepts, which implies that they are
not suitable to express the smartness notion of Smart IoTs.

Recently, the following two process algebras with probabilistic choice operations were
reported as follows:

(1) pCCPS: It is a process algebra with non-deterministic choice operation based on
discrete probability distribution only for CPS, whose definition is based on probabilis-
tic labelled transition semantics (pLTS) [24]. Other probabilistic distributions are not
defined yet.

(2) PALOMA: Is another process algebra with choice operations based on exponential
probability distribution to determine the location of a mobile agent [25]. Other proba-
bilistic distributions are not yet defined.

Compared with the above process algebras, dTP-Calculus in the paper is able to
represent most of the probability distribution models, which are supported by the under-
lining simulation facility of the ADOxx Meta-Modeling Platform for implementation of
dTP-Calculus in the SAVE tool.

The comparative analysis of dTP-Calculus with other process algebra is shown in
Table 1 from the perspective of the main features of the smart IoT system. Note that
dTP-Calculus satisfies the basic requirements of the general IoT System with respect to
distributivity, mobility, communication, and real-time, as well as the main requirement of
the Smart IoT System with respect to probability.

Table 1. The comparative analysis of dTP-Calculus with other process algebra.

PCCS PACSR pCCPS PALOMA dTP-Calculus

Distributivity No No N/A Agent Geo-Space

Communication τ-action τ-action τ-action N/A
τ-action
Synch
Asyncho

Mobility N/A N/A N/A Agent
λ-action
Active
Passive

Real-Time N/A N/A Time N/A Time

Probability Conditional Conditional Discrete Distribution Exponential
Distribution

Discrete,
Normal,
Exponential,
Uniform
Distributions

2.2. State Explostion Problem and Abtraction

State explosion is the problem caused when the number of system states increases
exponentially at the time of composition with other systems [26]. There were a number of
approaches to handle the problem, but it is very hard to find any absolute solutions because
the problem is caused by the nature of system composition. Most of the approaches focus
on effective ways of reducing the number of system states in terms of abstraction.

Among these approaches, recent approaches related to process algebra can be summa-
rized as follows:

(1) Hierarchical approach: the flat level of the states of the process is hierarchically
organized [27];

(2) Grouping approach: A number of related states in the process are grouped together
into a single abstract state at the time of composition [28];

(3) Contextual Simplification: A set of specification contexts are abstracted into a single
functional context [29].

Among these, the most recent approaches are:

Sensors 2022, 22, 5057 6 of 31

(1) A composition method that conjunctive and complement choice operations to reduce
the size of the reachability graph, that is, the systems states in the graph [12];

(2) Dividing method that a logical formula is divided into a number of sequential sub-
formulas in order to apply model-checking [30].

Compared with the above approaches, the n:2-Lattice approach in the paper classifies
the system states, in the beginning, into the categories with respect to the following notions:

(1) Cardinality: It implies the composition patterns with respect to the number of actors
for behaviors in the system;

(2) Capacity: It implies the composition instances for the cardinality patterns.

Consequently, this approach reduces the states with respect to the types of behaviors,
that is, a sequence of interactions among actors. Further, it represents the composition of
two system states with respect to the same cardinality and capacity of the common actors.
The comparative research was conducted and represented in [10].

3. Phase I: Collective Behavior Modeling for Behavior Ontology

This section presents a basic theory for behavior ontology as a knowledge architecture
and the steps of the collective behavior modeling for the Smart EMS System Domain.
The Smart EMS System is the system where, in case of emergency calls from patients,
the patients from the emergency locations are transported to proper medical institutes by
ambulances under the control of 911. The example will be demonstrated with PRISM in
Section 6.

3.1. Theory: n:2-Lattice

We define a POSET 〈L,≤〉, where a, b are the members of Set L, while satisfying the
following two conditions, to be n-Lattice 〈L,≤, n〉:
(1) There exist more than one joins between a, b in Set {a, b}. That is, no least upper

bound exists.
(2) There exist more than one meets between a, b in Set {a, b}. That is, no greatest upper

bound exists.

By the above definition, n-Lattice is allowed to have multiple joins and meets. This
characteristic may violate the main property of the general lattice definition. However, it is
possible to interpret it as a polymorphic property with respect to all of the possible binary
relationships between two elements in the lattice.

Another important characteristic of the lattice is that the following two elements must
exist in the lattice in order to control the multi-dimensional growth of joins and meets:

(1) Super-Greatest Element (SGE): As shown in Figure 3, SGE implies the biggest element
among all of the elements of the n-Lattice.

(2) Super-Least Element (SLE): Similarly, as shown in Figure 3, SLE implies the smallest
element among all of the elements of the n-Lattice.

The implication of the multiple joins and meets properties of the n-Lattice is that the
exponential growth of the binary addition and binary multiplication is possible. Such
exponential growth may cause the final structure of the n-Lattice to be uncontrollable.

SGE and SLE have the main characteristic that effectively controls the exponential
growth of the n-Lattice caused by multiple joins and meets. In addition, SGE and SLE satisfy
the minimum requirements of the n-Lattice for the general lattice in the perspective of
polymorphic structures.

Finally, we formally define the n:2-Lattice, based on the above characteristics: n:2-Lattice
〈L,≤, n, 2〉 is defined as n-Lattice 〈L,≤, n〉 with both SGE and SLE.

Sensors 2022, 22, 5057 7 of 31

Sensors 2022, 22, x FOR PEER REVIEW 7 of 32

ambulances under the control of 911. The example will be demonstrated with PRISM in
Section 6.

3.1. Theory: n:2-Lattice
We define a POSET⟨𝐿, ≤⟩, where a, b are the members of Set L, while satisfying the

following two conditions, to be n-Lattice ⟨𝐿, ≤, 𝑛⟩:
(1) There exist more than one joins between a, b in Set {a, b}. That is, no least upper bound

exists.
(2) There exist more than one meets between a, b in Set {a, b}. That is, no greatest upper

bound exists.
By the above definition, n-Lattice is allowed to have multiple joins and meets. This

characteristic may violate the main property of the general lattice definition. However, it
is possible to interpret it as a polymorphic property with respect to all of the possible
binary relationships between two elements in the lattice.

Another important characteristic of the lattice is that the following two elements must
exist in the lattice in order to control the multi-dimensional growth of joins and meets:
(1) Super-Greatest Element (SGE): As shown in Figure 3, SGE implies the biggest element

among all of the elements of the n-Lattice.
(2) Super-Least Element (SLE): Similarly, as shown in Figure 3, SLE implies the smallest

element among all of the elements of the n-Lattice.

Figure 3. Examples for SGE and SLE.

The implication of the multiple joins and meets properties of the n-Lattice is that the
exponential growth of the binary addition and binary multiplication is possible. Such ex-
ponential growth may cause the final structure of the n-Lattice to be uncontrollable.

SGE and SLE have the main characteristic that effectively controls the exponential
growth of the n-Lattice caused by multiple joins and meets. In addition, SGE and SLE sat-
isfy the minimum requirements of the n-Lattice for the general lattice in the perspective
of polymorphic structures.

Finally, we formally define the n:2-Lattice, based on the above characteristics: n:2-
Lattice ⟨𝐿, ≤, 𝑛, 2⟩ is defined as n-Lattice ⟨𝐿, ≤, 𝑛⟩ with both SGE and SLE.

A triclinic in n:2-Lattice is shown in Figure 4.

Figure 3. Examples for SGE and SLE.

A triclinic in n:2-Lattice is shown in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 32

Figure 4. An Example for n:2-Lattice.

The n:2-Lattice can be considered as a lattice structure that has multiple joins and
meets for the internal elements of the lattice and has only one join and one meet for the
bottom elements and the top elements of the lattice. It demonstrates the characteristics of
the n:2-Lattice that allow non-determinism in the internal elements of the lattice, but it
does not allow non-deterministic boundaries for the top and the bottom elements of the
lattice.

3.2. Theory: Smart EMS Example
3.2.1. Step 1: Active Ontology

The first step is to design an active ontology for the Smart EMS System Domain in
the Smart IoT Systems. An active ontology consists of classes and subclasses in the domain,
including their interactions.

The Active ontology of the Smart EMS System Domain is shown in Figure 5. The
figure shows Smart EMS System Domain (EMS), Ambulance (A), Patient (P), Place (PL), Lo-
cation (L), and Hospital (H) as classes or subclasses, and a1~a5 as interactions among clas-
ses and subclasses. The notions of the classes and their interactions are as follow:
• Classes:

(i) Smart EMS System Domain (EMS): Smart EMS System Domain, that is, EMS is
the top-most class. It contains Ambulance (A), Patient (P), and Place (PL) as sub-
classes.

(ii) Patient (P): Patient, that is, P, is a class that is transported to Hospital (H) by
Ambulance (A).

(iii) Ambulance (A): Ambulance, that is, A, is a class that transports Patient (P) to
Hospital(H).

(iv) Place (PL): Place, that is, PL, is a class that contains Location (A) and Hospital
(H) as subclasses.

(v) Location (L): Location, that is, L, a class that denotes the place where Patient (P)
is at the beginning.

(vi) Hospital (H): Hospital, that is, H, is a class that denotes the place where Patient
(P) will be at the end.

• Interactions:
(i) a1 = <A, L>: a1 is a movement action that Ambulance (A) drives to Location (L).

It implies that the ambulance drives to the place where the patient is after re-
ceiving an emergency call from the patient.

(ii) a2 = <P, A>: a2 is a movement, that is, take-on, action that Patient (P) performs
onto Ambulance (A). It implies that the patient takes on the ambulance in order
to go to the specific hospital.

Figure 4. An Example for n:2-Lattice.

The n:2-Lattice can be considered as a lattice structure that has multiple joins and meets
for the internal elements of the lattice and has only one join and one meet for the bottom
elements and the top elements of the lattice. It demonstrates the characteristics of the
n:2-Lattice that allow non-determinism in the internal elements of the lattice, but it does not
allow non-deterministic boundaries for the top and the bottom elements of the lattice.

3.2. Theory: Smart EMS Example
3.2.1. Step 1: Active Ontology

The first step is to design an active ontology for the Smart EMS System Domain in the
Smart IoT Systems. An active ontology consists of classes and subclasses in the domain,
including their interactions.

The Active ontology of the Smart EMS System Domain is shown in Figure 5. The figure
shows Smart EMS System Domain (EMS), Ambulance (A), Patient (P), Place (PL), Location
(L), and Hospital (H) as classes or subclasses, and a1~a5 as interactions among classes and
subclasses. The notions of the classes and their interactions are as follow:

• Classes:

(i) Smart EMS System Domain (EMS): Smart EMS System Domain, that is, EMS
is the top-most class. It contains Ambulance (A), Patient (P), and Place (PL)
as subclasses.

Sensors 2022, 22, 5057 8 of 31

(ii) Patient (P): Patient, that is, P, is a class that is transported to Hospital (H) by
Ambulance (A).

(iii) Ambulance (A): Ambulance, that is, A, is a class that transports Patient (P) to
Hospital(H).

(iv) Place (PL): Place, that is, PL, is a class that contains Location (A) and Hospital
(H) as subclasses.

(v) Location (L): Location, that is, L, a class that denotes the place where Patient
(P) is at the beginning.

(vi) Hospital (H): Hospital, that is, H, is a class that denotes the place where Patient
(P) will be at the end.

• Interactions:

(i) a1 = <A, L>: a1 is a movement action that Ambulance (A) drives to Location
(L). It implies that the ambulance drives to the place where the patient is after
receiving an emergency call from the patient.

(ii) a2 = <P, A>: a2 is a movement, that is, take-on, action that Patient (P) performs
onto Ambulance (A). It implies that the patient takes on the ambulance in order
to go to the specific hospital.

(iii) a3 = <A, H>: a3 is a movement that Ambulance (A) drives to Hospital (H). It
implies that the ambulance drives to the hospital to transport the patient to the
hospital.

(iv) a4 = <A, P>: a4 is a movement, that is, take-off, action that Patient (P) performs
off Ambulance(A). It implies that the patient takes off the ambulance at the
hospital.

(v) a5 = <P, H>: a5 is a movement action that Patient (P) moves into Hospital (H).
It implies that the patient is now registered in the hospital for treatment.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 32

(iii) a3 = <A, H>: a3 is a movement that Ambulance (A) drives to Hospital (H). It
implies that the ambulance drives to the hospital to transport the patient to the
hospital.

(iv) a4 = <A, P>: a4 is a movement, that is, take-off, action that Patient (P) performs
off Ambulance(A). It implies that the patient takes off the ambulance at the hos-
pital.

(v) a5 = <P, H>: a5 is a movement action that Patient (P) moves into Hospital (H). It
implies that the patient is now registered in the hospital for treatment.

Figure 5. Active Ontology for Smart EMS Domain.

3.2.2. Step 2: Regular Behaviors
The collective behaviors are defined by determining their interactions, from Step 1,

in sequence. Further, the quantified behaviors are classified into two types of behaviors:
those with one single main actor and those with multiple main actors. Consequently, it is
possible to have different views of different actors. Here an actor implies the lowest sub-
class from Step 1. For example, from the Smart EMS Domain, actors are Ambulance (A),
Patient (P), Location (L), and Hospital (H). In addition, the behaviors of the actors are rep-
resented in the pattern of B(L, A, H, P). In the case of Ambulance (A) being the main actor,
the behavior performed by one Ambulance can be represented by B(n, 1, n, n), and that of
the multiple Ambulances can be achieved by B(n, n, n, n).

Here is a list of behaviors that can be defined for a single Ambulance in the regular
expression:
(1) 𝐵ଵ = ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5⟩: An Ambulance drives to a Location (a1). a Patient at the Lo-

cation takes on the Ambulance (a2). The Ambulance drives to a Hospital (a3). The
Patient takes off the Ambulance (a4). The Patient is registered to the Hospital (a5).

(2) 𝐵ଶ = ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5⟩ା : An Ambulance performs the behavior B1 repeatedly.
(3) 𝐵ଷ = ⟨𝑎1, ⟨𝑎2⟩ା , 𝑎3, ⟨𝑎4, 𝑎5⟩ା ⟩ା : An Ambulance drives to a Location (a1). A number

of Patients at the Location take on the Ambulance (⟨𝑎2⟩ା). The Ambulance drives to
a Hospital (a3). Each patient on the Ambulance takes off the Ambulance and is reg-
istered to the Hospital (⟨𝑎4, 𝑎5⟩ା). The Ambulance performs this behavior repeatedly.

(4) 𝐵ସ = ⟨𝑎1, ⟨𝑎2⟩ା , ⟨𝑎3, 𝑎4, 𝑎5⟩ା ⟩ା : An Ambulance drives to a Location (a1). A number
of Patients at the Location take on the Ambulance (⟨𝑎2⟩ା). An Ambulance drives to
each Hospital for each Patient, and the patient in the Ambulance takes off the Ambu-
lance and is registered in the Hospital (⟨𝑎3, 𝑎4, 𝑎5⟩ା). The Ambulance performs this
behavior repeatedly.

(5) 𝐵ହ = ⟨𝑎1, ⟨𝑎2⟩ା , ⟨𝑎3, ⟨𝑎4, 𝑎5⟩ା |𝑎3, 𝑎4, 𝑎5⟩ା ⟩ା : An Ambulance performs Behavior B3 or
B4 repeatedly.

Figure 5. Active Ontology for Smart EMS Domain.

3.2.2. Step 2: Regular Behaviors

The collective behaviors are defined by determining their interactions, from Step 1, in
sequence. Further, the quantified behaviors are classified into two types of behaviors: those
with one single main actor and those with multiple main actors. Consequently, it is possible
to have different views of different actors. Here an actor implies the lowest subclass from
Step 1. For example, from the Smart EMS Domain, actors are Ambulance (A), Patient (P),
Location (L), and Hospital (H). In addition, the behaviors of the actors are represented in the
pattern of B(L, A, H, P). In the case of Ambulance (A) being the main actor, the behavior
performed by one Ambulance can be represented by B(n, 1, n, n), and that of the multiple
Ambulances can be achieved by B(n, n, n, n).

Here is a list of behaviors that can be defined for a single Ambulance in the regular expression:

Sensors 2022, 22, 5057 9 of 31

(1) B1 = 〈a1, a2, a3, a4, a5〉: An Ambulance drives to a Location (a1). a Patient at the
Location takes on the Ambulance (a2). The Ambulance drives to a Hospital (a3). The
Patient takes off the Ambulance (a4). The Patient is registered to the Hospital (a5).

(2) B2 = 〈a1, a2, a3, a4, a5〉+ : An Ambulance performs the behavior B1 repeatedly.
(3) B3 = 〈a1, 〈a2〉+, a3, 〈a4, a5〉+〉+ : An Ambulance drives to a Location (a1). A number

of Patients at the Location take on the Ambulance (〈a2〉+). The Ambulance drives to
a Hospital (a3). Each patient on the Ambulance takes off the Ambulance and is regis-
tered to the Hospital (〈a4, a5〉+). The Ambulance performs this behavior repeatedly.

(4) B4 = 〈a1, 〈a2〉+, 〈a3, a4, a5〉+〉+ : An Ambulance drives to a Location (a1). A number
of Patients at the Location take on the Ambulance (〈a2〉+). An Ambulance drives
to each Hospital for each Patient, and the patient in the Ambulance takes off the
Ambulance and is registered in the Hospital (〈a3, a4, a5〉+). The Ambulance performs
this behavior repeatedly.

(5) B5 = 〈a1, 〈a2〉+, 〈a3, 〈a4, a5〉+|a3, a4, a5〉+〉+ : An Ambulance performs Behavior B3
or B4 repeatedly.

(6) B6 = 〈〈a1, a2〉+, a3, 〈a4, a5〉+〉+ : An Ambulance drives to a number of Locations for
multiple Patients (〈a1, a2〉+). The Ambulance drives to a Hospital (a3). Each patient
in the Ambulance takes off from the Ambulance and is registered in the Hospital
(〉a4, a5〉+). The Ambulance performs this behavior repeatedly.

(7) B7 = 〈〈a1, a2〉+, 〈a3, a4, a5〉+〉+ : An Ambulance drives to a number of Locations for
multiple Patients (〈a1, a2〉+). An Ambulance drives to each Hospital for each Patient,
and the patient in the Ambulance takes off from the Ambulance and is registered in
the Hospital (〈a3, a4, a5〉+). The Ambulance performs this behavior repeatedly.

(8) B8 = 〈〈a1, a2〉+, 〈a3, 〈a4, a5〉+|a3, a4, a5〉+〉+ : An Ambulance performs Behavior B6
or B7 repeatedly.

(9) B9 =

〈

a1, 〈a2〉+,
〈

a3, 〈a4, a5〉+|
a3, a4, a5

〉+
〉
|〈

〈a1, a2〉+,
〈

a3, 〈a4, a5〉+|
a3, a4, a5

〉+
〉

+

: An Ambulance performs Behavior B5 or

B8 repeatedly.

3.2.3. Step 3: Abstract Behaviors

This step abstracts the regular behaviors from Step 2. Both the number of main actors
and the numbers of their collaborating actors determine the degree of their interactions.

The notational format of Abstract Behavior is represented by B
(

ci
〈a1,··· ,ai〉

, · · · , ck
〈z1,··· ,zk〉

)
.

Here in ci
〈a1,··· ,ai〉

of the format, c represents an actor, where the upper and lower subscripts
represent cardinality and capacity, respectively. Note that cardinality implies the number of
the main actor, and that capacity implies the numbers of other actors that can get involved
in the interaction. For example, A1

〈1〉 implies that one Ambulance can hold one Patient, and

A2
〈1,1〉 implies that each of the two Ambulances can hold one Patient for each Ambulance.

The EMS example contains the following abstract behaviors for one Ambulance from
Step 2:

(1) B1 = B1

(
P1
〈1〉, A1

〈1〉, H1
〈1〉

)
(2) B2 = B2

(
Pi
〈x1,··· ,xi〉

, A1
〈1〉, Hk

〈z1,··· ,zk〉

)
(3) B3 = B3

(
P1
〈x〉, A1

〈y〉, H1
〈z〉

)
(4) B4 = B4

(
P1
〈x〉, A1

〈y〉, Hk
〈11,··· ,1k〉

)
(5) B5 = B5

(
P1
〈x〉, A1

〈y〉, Hk
〈z1,··· ,zk〉

)
(6) B6 = B6

(
Pi
〈11,··· ,1i〉

, A1
〈y〉, H1

〈k〉

)
(7) B7 = B6

(
Pi
〈11,··· ,1i〉

, A1
〈1〉, Hk

〈11,··· ,1k〉

)

Sensors 2022, 22, 5057 10 of 31

(8) B8 = B8

(
Pi
〈11,··· ,1i〉

, A1
〈y〉, Hk

〈z1,··· ,zk〉

)
(9) B9 = B9

(
Pi
〈x1,··· ,xi〉

, A1
〈y〉, Hk

〈z1,··· ,zk〉

)
Further, the example also contains the following abstract behaviors for n Ambulances:

(1) B11 = B11

(
P1
〈x〉, Aj

〈y1,··· ,yj〉
, H1
〈z〉

)
(2) B12 = B12

(
P1
〈x〉, Aj

〈y1,··· ,yj〉
, Hk
〈z1,··· ,zk〉

)
(3) B13 = B13

(
Pi
〈x1,··· ,xi〉

, Aj
〈y1,··· ,yj〉

, H1
〈z〉

)
(4) B14 = B14

(
Pi
〈x1,··· ,xi〉

, Aj
〈y1,··· ,yj〉

, Hk
〈z1,··· ,zk〉

)
3.2.4. Step 4: Behavior Lattice (BL) and Behavior Ontology (BO)

Lattice L1 can be constructed from Step 3 based on their inclusion relations among
behaviors, as follows:

(1) B1 v B2, (2) B1 v B3, (3) B1 v B4, (4) B3 v B5
(5) B4 v B5, (6) B1 v B6, (7) B1 v B7, (8) B6 v B8
(9) B7 v B8, (10) B2 v B9, (11) B5 v B9, (12) B8 v B9
Similarly, Lattice Ln can be constructed from Step 3 based on their inclusion relations

among behaviors, as follows:
(1) B11 v B12, (2) B11 v B13, (3) B12 v B14, (4) B13 v B14
Figure 6 shows one lattice of the behavior ontology for the example, merged from two

lattices for one Ambulance at the bottom and for n Ambulances at the top.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 32

(5) 𝐵ସ ⊑ 𝐵ହ, (6) 𝐵ଵ ⊑ 𝐵, (7) 𝐵ଵ ⊑ 𝐵, (8) 𝐵 ⊑ 𝐵଼
(9) 𝐵 ⊑ 𝐵଼, (10) 𝐵ଶ ⊑ 𝐵ଽ, (11) 𝐵ହ ⊑ 𝐵ଽ, (12) 𝐵଼ ⊑ 𝐵ଽ

Similarly, Lattice Ln can be constructed from Step 3 based on their inclusion relations
among behaviors, as follows:

(1) 𝐵ଵଵ ⊑ 𝐵ଵଶ, (2) 𝐵ଵଵ ⊑ 𝐵ଵଷ, (3) 𝐵ଵଶ ⊑ 𝐵ଵସ, (4) 𝐵ଵଷ ⊑ 𝐵ଵସ
Figure 6 shows one lattice of the behavior ontology for the example, merged from

two lattices for one Ambulance at the bottom and for n Ambulances at the top.
This step includes merging the lattices into one integrated lattice of lattices, called

Behavior Ontology, as shown in Figure 6.

Figure 6. Behavior Lattices for EMS B(n, 1, n, n) and B(n, n, n, n).

4. Phase II: Behavior Instance Extraction
This section describes the method of extracting behavior instances for a target IoT

system in the Smart EMS System Domain with dTP-Calculus in the SAVE tool.

4.1. Theory: dTP-Calculus
dTP-Calculus is a new process algebra designed to model distributed mobile real-

time systems. For Smart IoT Systems, it can be used to model each IoT as a sequence of
actions and interactions as a process. It was extended from dT-Calculus [11] by defining
timed movements of processes with probability. The new feature includes the probabilis-
tic choice operation, determined by the various probability distributions.

4.1.1. Main Characteristics
dTP-Calculus provides the main characteristics of mobility, synchronization, priority,

time, and probability, as follows.

Figure 6. Behavior Lattices for EMS B(n, 1, n, n) and B(n, n, n, n).

This step includes merging the lattices into one integrated lattice of lattices, called
Behavior Ontology, as shown in Figure 6.

4. Phase II: Behavior Instance Extraction

This section describes the method of extracting behavior instances for a target IoT
system in the Smart EMS System Domain with dTP-Calculus in the SAVE tool.

Sensors 2022, 22, 5057 11 of 31

4.1. Theory: dTP-Calculus

dTP-Calculus is a new process algebra designed to model distributed mobile real-time
systems. For Smart IoT Systems, it can be used to model each IoT as a sequence of actions
and interactions as a process. It was extended from dT-Calculus [11] by defining timed
movements of processes with probability. The new feature includes the probabilistic choice
operation, determined by the various probability distributions.

4.1.1. Main Characteristics

dTP-Calculus provides the main characteristics of mobility, synchronization, priority,
time, and probability, as follows.

Mobility

dTP-Calculus represents the movements of a process with respect to the type of
movement mode and direction:

(1) The movement mode: The mode is determined by the autonomy or heteronomy of
the movement as follows:

(i) Active movements: The movements that a process performs autonomously.
(ii) Passive movements: The movements that a process is performed heteronomously

by other processes.

(2) The movement direction: The direction is determined by the target of the movement
to or from a process:

(i) Move-in direction: The direction that a process moves into another process area.
(ii) Move-out direction: The direction that a process moves out of another process area.

Table 2 shows the four types of movements available in dTP-Calculus.

Table 2. Type of Movements.

Direction
Mode

Active Passive

Move-in In Get
Move-out Out Put

Synchronization

The movement in dTP-Calculus is basically synchronous. Therefore, a handshake,
known as permission, is necessary for both active and passive movements. Further, an
asynchronous movement is also possible, determined by priorities in the form of an excep-
tion to the synchronous case. For example, a process with a higher priority can move in or
out of other processes without any permission; it depends on its protocol.

Priority

Priority is a property that can be imposed on a process. It can be used for asynchronous
communication and movement to handle exceptional situations in given protocols.

Time

The time for dTP-Calculus is discrete and represented by a natural number. The tem-
poral properties of an action, i.e., communication or movements, can be defined as follows:

(1) Ready Time: The minimum time needed for a process to prepare for an action.
(2) Timeout: The maximum time needed for a process to prepare for an action.
(3) Execution Time: The time needed for a process to perform an action itself.
(4) Deadline: The time for a process to terminate an action including its ready time.
(5) Period: The temporal period in which a process repeats an action.

Sensors 2022, 22, 5057 12 of 31

Probability

dTP-Calculus defines the following probability distribution models for the probabilis-
tic choice:

(1) Discrete distribution;
(2) Normal distribution;
(3) Exponential distribution;
(4) Uniform distribution.

The detailed definitions for the models are described in Section 4.1.2. The implementa-
tion of the models for dTP-Calculus is feasible due to the ADOxx meta-modeling platform
since the platform provides the basic features and functionalities of the statistical simulation
based on the different statistical models, such as R [31] and SAS [32].

4.1.2. Syntax

Figure 7 shows the basic syntax of dTP-calculus. Each syntax is defined as follows:

(1) Action: It denotes an operation performed by a process. There are four different types
of action: null (Empty), communication (Send/Receive), movement (Movement), and
control (Control).

(2) Timed action: It is an action with the properties of ready time(r), timeout(to), execution
time(e), and deadline(d). A detailed description of the properties is presented in Section
Time. The types of Timed Action are the same as those of the actions in (1).

(3) Timed process: It is a process with the same properties as Timed Action in (2).
(4) Priority: It denotes the priority of a process. It is represented with a natural number.

The higher value represents the higher priority, with the exception that 0 represents
the highest priority.

(5) Nesting: It denotes the inclusion relations among processes.
(6) Channel: It denotes the communication channels between processes, which allow

synchronization for communication.
(7) Choice: It denotes the non-deterministic selection operation of actions or processes.
(8) Probabilistic choice: It is the choice operation in (7) that is defined probabilistically,

based on the following four probabilistic distribution models:

(i) Discrete Distribution (D): For discrete distribution, the probability is directly
specified in the condition. For example, 0.7 and 0.3 are directly specified at P
and Q, respectively, for the following probabilistic choice:

P{0.7}+D Q{0.3} (1)

(ii) Normal Distribution (N(µ, σ)): It is specified with the values of µ and σ. For
example, 50 and 5 are specified for µ and σ, respectively, for the following
probabilistic choice:

P{v > 52}+N(50,5) Q{v ≤ 52} (2)

(iii) Exponential Distribution (Ex(λ)): It is specified with the value of λ. For example,
0.33 is specified for λ for the following probabilistic choice:

P{v > 2.5}+E(0.33) Q{v ≤ 2.5} (3)

(iv) Uniform Distribution (U(l, u)): It is specified with the lower and upper bound
values of l and u. For example, 3 and 7 are specified for l and u, respectively,
for the following probabilistic choice:

P{v > 5}+U(3,7) Q{v ≤ 5} (4)

(9) Parallel: It denotes that the multiple processes are running simultaneously.

Sensors 2022, 22, 5057 13 of 31

(10) Exception: It is the operation that is defined to handle an exception.
(11) Sequence: It denotes an array of actions in a process, representing the basic patterns of

actions in the process.
(12) Empty: It denotes a null action, representing an idle process.
(13) Send/Receive: It denotes a part of the paired communication actions, that is, sending or

receiving, between two processes, based on synchronization.
(14) Movement request: It denotes a request action for the synchronous movement among

processes.
(15) Movement permission: It denotes a permission action for the synchronous movement

among processes.
(16) Create process: It denotes a control action of a process to create its new child process

inside itself.
(17) Kill process: It denotes a control action of a process to terminate one of its internal

processes with a lower priority.
(18) Exit process: It denotes a control action for a process to terminate itself.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 32

(16) Create process: It denotes a control action of a process to create its new child process
inside itself.

(17) Kill process: It denotes a control action of a process to terminate one of its internal
processes with a lower priority.

(18) Exit process: It denotes a control action for a process to terminate itself.

Figure 7. Syntax of dTP-Calculus.

4.1.3. Semantics
The semantics of dTP-Calculus are listed in Table 3 as a set of transition rules. The

semantics of dTP-Calculus in the table is represented by the following form of the transi-
tion rules, where Conclusion can be derived from Premise when the Side condition is satis-
fied: 𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 (𝑆𝑖𝑑𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (5)

The premise and conclusion in this form can be represented as the following labelled
transitions where the process state 𝑃 can be transited to another process state 𝑃′ with or
without Action 𝐴. 𝑃 ሱ⎯ሮ 𝑃′, 𝑃 ሱ⎯⎯ሮ 𝑃′ (6)

Table 3. Semantics of dTP-Calculus.

No Name Transition Rules

(1) Sequence
−𝐴 ∙ 𝑃 ሱ⎯⎯ሮ 𝑃

(2)
ChoiceL

−𝑃 + 𝑄 ሱ⎯ሮ 𝑃

ChoiceR
−𝑃 + 𝑄 ሱ⎯ሮ 𝑄

(3) Probability Choice
𝐴 ∙ 𝑃 → 𝑃(∑ 𝐴{𝑝𝑐}) ∙ 𝑃∈ூ {}ሱ⎯⎯⎯ሮ 𝑃′ (𝑝𝑐 = 1, 𝑖 ∈ 𝐼∈ூ)

(4) Com
−𝑐ℎଵ(𝑚𝑠𝑔ଵ) ∙ 𝑃||𝑐ℎଶ(𝑚𝑠𝑔ଶ) ∙ 𝑄 ఛ ሱ⎯⎯ሮ 𝑃||𝑄 ((𝑐ℎଵ = 𝑐ℎଶ) ∧ (𝑚𝑠𝑔ଵ = 𝑚𝑠𝑔ଶ))

(5)

ParallelL
𝑃 ሱ⎯ሮ 𝑃′𝑃||𝑄 ሱ⎯ሮ 𝑃′||𝑄

ParallelR
𝑄 ሱ⎯ሮ 𝑄′𝑃||𝑄 ሱ⎯ሮ 𝑃||𝑄′

Figure 7. Syntax of dTP-Calculus.

4.1.3. Semantics

The semantics of dTP-Calculus are listed in Table 3 as a set of transition rules. The
semantics of dTP-Calculus in the table is represented by the following form of the transition
rules, where Conclusion can be derived from Premise when the Side condition is satisfied:

Premise
Conclusion

(Side condition) (5)

Table 3. Semantics of dTP-Calculus.

No Name Transition Rules

(1) Sequence
−

A·P A→P

(2)
ChoiceL −

P+Q→P

ChoiceR −
P+Q→Q

(3) Probability Choice A·P A→ P

(∑i∈I Ai{pci})·P
Ai{pci}→ P′

(
∑
i∈I

pci = 1, i ∈ I
)

(4) Com
−

ch1(msg1)·P||ch2(msg2)·Q
τ→P||Q

((ch1 = ch2) ∧ (msg1 = msg2))

Sensors 2022, 22, 5057 14 of 31

Table 3. Cont.

No Name Transition Rules

(5)

ParallelL
P→P′

P||Q→P′ ||Q

ParallelR
Q→Q′

P||Q→P||Q′

ParallelCom P A→P′ ,Q A→Q′

P||Q τ→P′ ||Q′

(6)

NestingO P→P′
P[Q]→P′ [Q]

NestingI
Q→Q′

P[Q]→P[Q′]

NestingCom
P A→P′ ,Q A→Q′

P
∣∣∣∣∣∣Q τ→P′

∣∣∣∣∣∣Q′

(7)

In P
in(k)Q→ P′ ,Q

Pin(k)→ Q′

P||Q δ→Q′ [P′]

Out P
out(k)Q→ P′ ,Q

Pout(k)→ Q′

Q[P] δ→P′ ||Q′

Get P
get(k)Q→ P′ ,Q

Pget(k)→ Q′

P||Q δ→P′ [Q′]

Put P
put(k)Q→ P′ ,Q

Pput(k)→ Q′

P[Q]
δ→P′ ||Q′

(8)

InP P
inpri (k)Q→ P′

P(n1)
||Q(n2)

δ→Q(n2)[P
′
(n1)]

((n1 > n2 ∧ n2 6= 0) ∨ (n1 = 0∧ n2 6= 0))

OutP P
outpri (k)Q→ P′

Q(n2)[P(n1)]
δ→P′ (n1)

||Q(n2)

((n1 > n2 ∧ n2 6= 0) ∨ (n1 = 0∧ n2 6= 0))

GetP P
getpri (k)Q→ P′

P(n1)
||Q(n2)

δ→P′ (n1)[Q(n2)]
((n1 > n2 ∧ n2 6= 0) ∨ (n1 = 0∧ n2 6= 0))

PutP P
putpri (k)Q→ P′

P(n1)[Q(n2)]
δ→P′ (n1)

||Q(n2)

((n1 > n2 ∧ n2 6= 0) ∨ (n1 = 0∧ n2 6= 0))

(9) TickTimeR
−

Aper,n
[r,to,e,d] ·P

B1→ Aper,n
[r−1,to,e,d−1] ·P

(r ≥ 1)

(10) TickTimeTO
A·P||A·Q τ∨δ→ P||Q

Aper,n
[0,to,e,d] ·P

B1→ Aper,n
[0,to−1,e,d−1] ·P

(to ≥ 1)

(11) TickTimeSyncE
A·P||A·Q τ∨δ→ P||Q

Aper1, n1
[0,to1,e1,d1]

·P||Aper2, n2
[0,to2,e2,d2]

·Q B1→ Aper1, n1
[0,to1,e1−1,d1−1] ·P||A

per2, n2
[0,to2,e2−1,d2−1] ·Q

(e1 ≥ 1, e2 ≥ 1)

(12) TickTimeAsyncE
−

Aper,n
[0,to,e,d] ·P

B1→ Aper,n
[0,to,e−1,d−1] ·P

(e ≥ 1)

(13) TickTimeEnd
−

Aper,n
[0,to,0,d] ·P

B1→ P

(14) Timeout
−(

Aper,n
[0, 0,e,d]\E

)
·P B1→ E·P

(15) Deadline
−(

Aper,n
[r, to,e,0]\E

)
·P B1→ E·P

(16) Period
−

Aper,n
[r,to,e,d] ·P

Bper→ Aper, n−1
[r,to,e,d] ·P

(n ≥ 1)

(17) Period End
−

Aper,0
[0,to,0,d] ·P

B1→ P

The premise and conclusion in this form can be represented as the following labelled
transitions where the process state P can be transited to another process state P′ with or
without Action A.

P→ P′, P A→ P′ (6)

Sensors 2022, 22, 5057 15 of 31

Each transition rule in the table can be defined as follows:

(1) Sequence: Defines that the proper execution of Action A makes the transition of A·P
to P, without any premise and side condition.

(2) Choice: ChoiceL and ChoiceR define that P or Q is selected for execution without any
premise and side condition.

(3) Probability Choice: It defines that Choice is performed probabilistically with a given
premise and a side condition. For example, A1{0.7} + A2{0.1} + A3{0.2} implies
that the probabilities for Actions A1, A2, and A3 are 70%, 10%, and 20%, respectively.

(4) Com: It defines the synchronous communication between P and Q on a channel with
the conditions of ch1 = ch2 and msg1 = msg2. The Send action is defined by a message
with overline (msg1) and the Receive action is defined by a message without overline
(msg2). Synchronous communication is represented by the τ action.

(5) Parallel: ParallelL and ParallelR define that the two processes, P and Q, are independent
of each other and are executed in parallel. However, if they are dependent, the
ParallelCom Com rule should be applied. It defines that if the two processes, P and
Q, are synchronous actions, their τ action can occur synchronously in parallel, not
affecting other processes.

(6) Nesting: NestingO and NestingI define that the transition of P or Q does not affect the
nested relation between P and Q. However, if there are synchronous actions between
P and Q, the actions will affect both processes by their parallel synchronous transition
as NestingCom. Note that the synchronous action between P and Q is denoted by the
τ action.

(7) In, Out, Get, and Put: In and Get are the moving-in actions of a process into an-
other process, autonomously and heteronomously, respectively, and Out and Put are
the moving-out actions of a process out of another process, autonomously and het-
eronomously, respectively. These actions are performed synchronously, meaning that
the movement actions must be approved by the target process for both the moving-in
and moving-out actions. Such synchronous movement actions are represented by δ
action. Note that In and Out are active, and Get and Put are passive.

(8) InP, OutP, GetP, and PutP: These rules are for asynchronous movements, represented
by priorities. For example, if the process with a higher priority requests a movement
to another process with a lower priority, there is no need to recieve permission from
the other process. These rules can be used to handle some exceptional cases in
emergency situations.

(9) TickTimeR: It defines the elapsed local time in a process by decrementing the ready
time r and the deadline d of an action by a time unit with B 1.

(10) TickTimeTO: It defines the elapsed local time in a process by decrementing the timeout
to and the deadline d of an action by a time unit with B 1 after the ready time r is
completed in a condition where the synchronous partner process is not ready.

(11) TickTimeSyncE: It defines the elapsed execution time for the synchronous action. If two
synchronous actions A and A are ready, two actions are performed synchronously,
and the execution time e and the deadline d of the actions are decremented by a time
unit with B 1.

(12) TickTimeAsyncE: It defines the elapsed execution time for the asynchronous action.
Since the asynchronous does not require to wait for its timeout, to, it is possible to
proceed to its execution just after its ready time, r. After that, its execution time, e,
and deadline, d, are decremented by a time unit with B 1.

(13) TickTimeEnd: It defines the termination of the action A by completing its execution
time e. Note that B 1 implies the elapsed time unit.

(14) Timeout: It defines the state of Timeout error at the time when Timeout(to) becomes
0 by the elapsed time unit with B 1, which implies a system fault. If an exception
handler E is defined and the action with the fault is terminated, the handler E after
the exception operator (\) is executed. Note that Process P is still valid.

Sensors 2022, 22, 5057 16 of 31

(15) Deadline: Similar to Timeout, defines the state of Deadline error at the time when
Deadline(d) becomes 0 by the elapsed time unit with B 1, which implies a system fault.
If an exception handler E is defined, the action with the fault is terminated and the
handler process E after the exception operator (\) is executed. Process P is still valid.

(16) Period: It defines the periodic repetition of Action A. In Period, Action A executes itself
in the period A n time. It means that the value of n will be decremented by 1 after
each B per.

(17) Period End: It defines the termination of the periodic repetition of Action A. Since the
value of n is 0, Action A will not repeat itself any more after the elapsed unit period,
B per.

4.2. Smart IoT Example

A Smart IoT Example is selected to demonstrate the method to extract behavior
instances of the example with dTP-Calculus and the SAVE tool. This subsection shows the
steps of the extraction. The example will be demonstrated with PRISM in Section 6.

A Smart EMS Example consists of the following IoT instances for each of the EMS
actors, as defined in Section 3.2:

• Patient: There is a total of eight Patients in the example: Each Patient is in Houses A,
B, C, and D, respectively, and the other four Patients are in School E.

• Ambulance: There is a total of three Ambulances (A, B, and C) in the example.
• Place: There is a total of four Houses (A, B, C, and D) and one School(E) in the example.
• Hospital: There is a total of three Hospitals (A, B, and C) in the example.

Figure 8 shows a conceptual view of the system configuration.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 32

(13) TickTimeEnd: It defines the termination of the action 𝐴 by completing its execution
time 𝑒. Note that ⊳ 1 implies the elapsed time unit.

(14) Timeout: It defines the state of Timeout error at the time when Timeout(to) becomes 0
by the elapsed time unit with ⊳ 1, which implies a system fault. If an exception han-
dler 𝐸 is defined and the action with the fault is terminated, the handler 𝐸 after the
exception operator (\) is executed. Note that Process 𝑃 is still valid.

(15) Deadline: Similar to Timeout, defines the state of Deadline error at the time when Dead-
line(d) becomes 0 by the elapsed time unit with ⊳ 1, which implies a system fault. If
an exception handler 𝐸 is defined, the action with the fault is terminated and the
handler process 𝐸 after the exception operator (\) is executed. Process 𝑃 is still
valid.

(16) Period: It defines the periodic repetition of Action 𝐴. In Period, Action 𝐴 executes
itself in the period 𝐴 𝑛 time. It means that the value of 𝑛 will be decremented by 1
after each ⊳ 𝑝𝑒𝑟.

(17) Period End: It defines the termination of the periodic repetition of Action 𝐴. Since the
value of 𝑛 is 0, Action 𝐴 will not repeat itself any more after the elapsed unit period, ⊳ 𝑝𝑒𝑟.

4.2. Smart IoT Example
A Smart IoT Example is selected to demonstrate the method to extract behavior in-

stances of the example with dTP-Calculus and the SAVE tool. This subsection shows the
steps of the extraction. The example will be demonstrated with PRISM in Section 6.

A Smart EMS Example consists of the following IoT instances for each of the EMS
actors, as defined in Section 3.2:
• Patient: There is a total of eight Patients in the example: Each Patient is in Houses A,

B, C, and D, respectively, and the other four Patients are in School E.
• Ambulance: There is a total of three Ambulances (A, B, and C) in the example.
• Place: There is a total of four Houses (A, B, C, and D) and one School(E) in the exam-

ple.
• Hospital: There is a total of three Hospitals (A, B, and C) in the example.

Figure 8 shows a conceptual view of the system configuration.

Figure 8. Configuration of the EMS Example. Figure 8. Configuration of the EMS Example.

4.2.1. Step 1: Specification with dTP-Calculus

Figure 9 shows the code for the example in dTP-Calculus. There is a total of 21 pro-
cesses as follows:

• Control System: CS.
• 911 Center: 911.
• Hospitals: HospitalA, HospitalB, HospitalC.
• Ambulances: AmbA, AmbB, AmbC.

Sensors 2022, 22, 5057 17 of 31

• Places: HouseA, HouseB, HouseC, HouseD, School.
• Patients: PHBP1, PHBP2, PHBP3, PHD1, PHD2, PHD3, PFP1, PFP2.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 32

4.2.1. Step 1: Specification with dTP-Calculus
Figure 9 shows the code for the example in dTP-Calculus. There is a total of 21 pro-

cesses as follows:
• Control System: CS.
• 911 Center: 911.
• Hospitals: HospitalA, HospitalB, HospitalC.
• Ambulances: AmbA, AmbB, AmbC.
• Places: HouseA, HouseB, HouseC, HouseD, School.
• Patients: PHBP1, PHBP2, PHBP3, PHD1, PHD2,

 PHD3, PFP1, PFP2.

𝐶𝑆 = (൫𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃തതതതതതതത). 𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷തതതതതതത)൯
 +൫𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷തതതതതതത). 𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃തതതതതതതത)൯).

 𝐶𝐴𝐿𝐿(𝑆𝐶𝐹𝑃1). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐹𝑃2). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1തതതതതത). 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿2തതതതതത). (൫𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃തതതതതതതത). 𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷തതതതതതത)൯
 +൫𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷തതതതതതത). 𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃തതതതതതതത)൯). ∅ஶ; 911 = 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷). (൫𝐴𝑚𝑏𝐴(𝐻𝐷തതതത). 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1). 𝐴𝑚𝑏𝐵(𝑆𝐶ഥ). 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷). 𝐴𝑚𝑏𝐴(𝐻𝐶തതത)൯
 ⨁ଵ൫𝐴𝑚𝑏𝐵(𝐻𝐷തതതത). 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1). 𝐴𝑚𝑏𝐴(𝑆𝐶ഥ). 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷). 𝐴𝑚𝐵𝐴(𝐻𝐶തതത)൯). 𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑖𝑛. ∅ஶ; 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴 = 𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃). 𝐴𝑚𝑏𝐶(𝐻𝐴തതത). 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒1). 𝐻𝐴൫𝑅𝑒𝑎𝑑𝑦1തതതതതതതത൯. 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿2). 𝐴𝑚𝑏𝐶(𝑆𝐶ഥ).
 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃). 𝐴𝑚𝑏𝐶(𝐻𝐵തതതത). 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒2). 𝐻𝐴൫𝑅𝑒𝑎𝑑𝑦2തതതതതതതത൯. 𝐻𝐴൫𝑅𝑒𝑎𝑑𝑦3തതതതതതതത൯. 𝐴𝑚𝑏𝐶 𝑖𝑛. ∅ஶ; 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝐵 = 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3). 𝐻𝐵൫𝑅𝑒𝑎𝑑𝑦1തതതതതതതത൯. ൫(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)൯.
 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4). 𝐻𝐵൫𝑅𝑒𝑎𝑑𝑦2തതതതതതതത൯. ൫(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)൯.
 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒5). 𝐻𝐵൫𝑅𝑒𝑎𝑑𝑦3തതതതതതതത൯. ൫(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)൯. ∅ஶ; 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶 = 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6). 𝐻𝐶൫𝑅𝑒𝑎𝑑𝑦1തതതതതതതത൯. 𝐻𝐶൫𝑅𝑒𝑎𝑑𝑦2തതതതതതതത൯. ൫(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)൯. ∅ஶ; 𝐴𝑚𝑏𝐴 = ((𝐴𝑚𝑏𝐴(𝐻𝐷). 𝑜𝑢𝑡 911. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐷. 𝑔𝑒𝑡 𝑃𝐻𝐷2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐷. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒3തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷2.
 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐴𝑚𝑏𝐴(𝐻𝐶). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐶. 𝑔𝑒𝑡 𝑃𝐻𝐷1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒3തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷1
 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)⨁ଵ(𝐴𝑚𝑏𝐴(𝑆𝐶). 𝑜𝑢𝑡 911. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐹𝑃1. 𝑔𝑒𝑡 𝑃𝐹𝑃2. 𝑔𝑒𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙.
 ((𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒4തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒6തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶)
 +(𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒6തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒4തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵))). 𝑖𝑛 911. ∅ஶ; 𝐴𝑚𝑏𝐵 = ((𝐴𝑚𝑏𝐵(𝑆𝐶). 𝑜𝑢𝑡 911. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐹𝑃1. 𝑔𝑒𝑡 𝑃𝐹𝑃2. 𝑔𝑒𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙. ((𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒4തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵.
 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒6തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶) + (𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒6തതതതതതതതത).
 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒4തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)))
 ⨁ଵ(𝐴𝑚𝑏𝐵(𝐻𝐷). 𝑜𝑢𝑡 911. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐷. 𝑔𝑒𝑡 𝑃𝐻𝐷2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐷. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒3തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷2.
 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐴𝑚𝑏𝐵(𝐻𝐶). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐶. 𝑔𝑒𝑡 𝑃𝐻𝐷1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒3തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷1.
 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)). 𝑖𝑛 911. ∅ஶ;
 𝐴𝑚𝑏𝐶 = 𝐴𝑚𝑏𝐶(𝐻𝐴). 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑙𝐴. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐴. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐴. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒1തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃1.
 𝐴𝑚𝑏𝐶(𝑆𝐶). 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙 . 𝐴𝑚𝑏𝐶(𝐻𝐵). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐵. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐵.
 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝚤𝑣𝑒2തതതതതതതതത). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃2. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃3. ∅ஶ; 𝐻𝑜𝑢𝑠𝑒𝐴 = 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅ஶ; 𝐻𝑜𝑢𝑠𝑒𝐵 = 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅ஶ; 𝐻𝑜𝑢𝑠𝑒𝐶 = ൫(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)൯. ∅ஶ; 𝐻𝑜𝑢𝑠𝑒𝐷 = ൫(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)൯. ∅ஶ; 𝑆𝑐ℎ𝑜𝑜𝑙 = ൫(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)൯. 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅ஶ; 𝑃𝐻𝐵𝑃1 = 𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃തതതതതതതത). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐻𝐵𝑃2 = 𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃തതതതതതതത). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐻𝐵𝑃3 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐵𝑃തതതതതതതത). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴3(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐻𝐷1 = 𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷തതതതതതത). ൫(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)൯. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐻𝐷2 = 𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷തതതതതതത). ൫(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)൯. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐻𝐷3 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷തതതതതത). ൫(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)൯. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵3(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐹𝑃1 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷തതതതതത). ൫(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)൯. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐶 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐶1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ; 𝑃𝐹𝑃2 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷തതതതതത). ൫(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁ଵ(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)൯. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐶 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐶2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅ஶ;

Figure 9. dTP-Calculus Code for the Smart EMS Example.

4.2.2. Step 2: Simulation
The specifications for the example in dTP-Calculus are simulated by the Simulator of

the SAVE tool. The snapshot of the output of the simulation for the example is shown in
Figure 10. Note that the actions are highlighted, from which the behaviors are constructed
based on the definitions from Section 3.2.

Figure 9. dTP-Calculus Code for the Smart EMS Example.

4.2.2. Step 2: Simulation

The specifications for the example in dTP-Calculus are simulated by the Simulator of
the SAVE tool. The snapshot of the output of the simulation for the example is shown in
Figure 10. Note that the actions are highlighted, from which the behaviors are constructed
based on the definitions from Section 3.2.

Sensors 2022, 22, 5057 18 of 31Sensors 2022, 22, x FOR PEER REVIEW 19 of 32

Figure 10. Simulation Output for EMS Example with Instances of Actions and Behaviors.

4.2.3. Step 3: Extraction of Abstract Behavior Instances
This step extracts the abstract behavior instances of the example from the output of

the simulation.
Regular behaviors are abstracted into abstract behaviors with respect to cardinality

and capacity, which are defined as follows:
• Cardinality: The number of actors in an abstract behavior.
• Capacity: The possible number of other actors held by each actor in cardinality.

The abstraction information for the abstract behavior based on cardinality and capac-
ity is classified into the following three levels:
• Level 1: 𝐴ହ → ୦ୣ ୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୮ୟ୲୧ୣ୬୲ୱ ଷ → ୦ୣ ୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୫ୠ୳୪ୟ୬ୡୣୱ

• Level 2: 𝐴⟨ଵ,ଶ,ଶ⟩ → ୦ୣ ୬୳୫ୠୣ୰ ୭ ୮ୟ୲୧ୣ୬୲ୱ ୦ୣ୪ୢ ୠ୷ ୣୟୡ୦ ୟ୫ୠ୳୪ୟ୬ୡୣୱ⟨ଷ⟩ → ୦ୣ ୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୫ୠ୳୪ୟ୬ୡୣୱ

• Level 3: 𝐴⟨[ଵ],[ଶ,ଷ],[ସ,ହ]⟩ → ୍ୈୱ ୭ ୮ୟ୲୧ୣ୬୲ୱ ୦ୣ୪ୢ ୠ୷ ୣୟୡ୦ ୟ୫ୠ୳୪ୟ୬ୡୣୱ⟨[ଵ],[ଶ],[ଷ]⟩ → ୍ୈ ୭ ୣୟୡ୦ ୟ୫ୠ୳୪ୟ୬ୡୣୱ

Figure 10. Simulation Output for EMS Example with Instances of Actions and Behaviors.

4.2.3. Step 3: Extraction of Abstract Behavior Instances

This step extracts the abstract behavior instances of the example from the output of
the simulation.

Regular behaviors are abstracted into abstract behaviors with respect to cardinality and
capacity, which are defined as follows:

• Cardinality: The number of actors in an abstract behavior.
• Capacity: The possible number of other actors held by each actor in cardinality.

The abstraction information for the abstract behavior based on cardinality and capacity
is classified into the following three levels:

• Level 1: A3 → The total number of Ambulances
5 → The Total number of patients

• Level 2: A〈3〉 → The total number of Ambulances
〈1,2,2〉 → The number of patients held by each ambulances

• Level 3: A〈[1],[2],[3]〉 → ID of each ambulances
〈[1],[2,3],[4,5]〉 → IDs of patients held by each ambulances

Sensors 2022, 22, 5057 19 of 31

Next these six behavior instances can be abstracted into the following abstract behavior
instances of the behavior ontology defined in Section 3.2:

(1) B1.1

(
PA

AH , AA
〈1〉, HA

〈1〉

)
= B1.1

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
(2) B1.2

(
PE

BH , AA
〈1〉, HA

〈1〉

)
= B1.2

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
(3) B1.3

(
PB

AB , AB
〈1〉, HC

〈1〉

)
= B1.3

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
(4) B1.4

(
PC

BB , AB
〈1〉, HC

〈1〉

)
= B1.4

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
(5) B1.5

(
PD

AD , AB
〈1〉, HB

〈1〉

)
= B1.5

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
(6) B3.1

(
PE
〈AF , BF ,CB〉, AC

〈3〉, HC
〈3〉

)
= B5.1

(
P1
〈3〉, AC

〈3〉, H1
〈3〉

)
Figure 11 pictorially shows the behavior B1.1

(
PA

AH , AA
〈1〉, HA

〈1〉

)
. Note that behavior PA

AH

is represented with P as the Location, whose top and bottom subscripts imply Location A,
that is, House A, and Patient A in House A, respectively. Note also that the top subscript of
Patient A in Patient A(AH) implies the name of disease for the patient, that is, Heart Disesase.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 32

Next these six behavior instances can be abstracted into the following abstract behav-
ior instances of the behavior ontology defined in Section 3.2:
(1) 𝐵ଵ.ଵ൫𝑃ಹ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ = 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(2) 𝐵ଵ.ଶ൫𝑃ಹா , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ = 𝐵ଵ.ଶ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(3) 𝐵ଵ.ଷ൫𝑃ಳ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ = 𝐵ଵ.ଷ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(4) 𝐵ଵ.ସ൫𝑃ಳ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ = 𝐵ଵ.ସ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(5) 𝐵ଵ.ହ൫𝑃ವ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ = 𝐵ଵ.ହ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(6) 𝐵ଷ.ଵ ቀ𝑃〈ಷ,ಷ,ಳ〉ா , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ ቁ = 𝐵ହ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯

Figure 11 pictorially shows the behavior 𝐵ଵ.ଵ൫𝑃ಹ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯. Note that behavior 𝑃ಹ
is represented with P as the Location, whose top and bottom subscripts imply Location A,
that is, House A, and Patient A in House A, respectively. Note also that the top subscript
of Patient A in Patient A(𝐴ு) implies the name of disease for the patient, that is, Heart
Disesase.

The basic behavior for 𝐵ଵ.ଵ൫𝑃ಹ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ is represented in the regular expression as 𝐵ଵ = ⟨𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5⟩, and behaves as follows:
• Ambulance A drives to House A (a1).
• Patient A takes on Ambulance A (a2).
• Ambulance A drives to Hospital A (a3).
• Patient A takes off Ambulance A (a4).
• Patient A is registered to Hospital A (a5).

The abstract behavior of 𝐵ଵ.ଵ൫𝑃ಹ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯ is 𝐵ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ଵ , 𝐻⟨ଵ⟩ଵ ൯, and it implies that
one Ambulance transports one Patient to one Hospital.

Figure 11. Graphical Representation of 𝐵ଵ.ଵ൫𝑃ಹ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ ൯.

These behavior instances are further abstracted with respect to the EMS behavior on-
tology defined in Section 3.2:
(1) 𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ ⊑ 𝐵ଽ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯
(2) 𝐵ଶ.ଶ൫𝑃⟨ଵ,ଵ,ଵ⟩ଷ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯ ⊑ 𝐵ଽ.ଶ൫𝑃⟨ଵ,ଵ,ଵ⟩ଷ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯
(3) 𝐵ହ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଵ,ଶ⟩ଶ ൯ ⊑ 𝐵ଽ.ଷ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଵ,ଶ⟩ଶ ൯

Figure 11. Graphical Representation of B1.1

(
PA

AH , AA
〈1〉, HA

〈1〉

)
.

The basic behavior for B1.1

(
PA

AH , AA
〈1〉, HA

〈1〉

)
is represented in the regular expression

as B1 = a1, a2, a3, a4, a5, and behaves as follows:

• Ambulance A drives to House A (a1).
• Patient A takes on Ambulance A (a2).
• Ambulance A drives to Hospital A (a3).
• Patient A takes off Ambulance A (a4).
• Patient A is registered to Hospital A (a5).

The abstract behavior of B1.1

(
PA

AH , AA
〈1〉, HA

〈1〉

)
is B1

(
P1
〈1〉, A1

〈1〉, H1
〈1〉

)
, and it implies

that one Ambulance transports one Patient to one Hospital.
These behavior instances are further abstracted with respect to the EMS behavior

ontology defined in Section 3.2:

(1) B2.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
vB9.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
(2) B2.2

(
P3
〈1,1,1〉, AB

〈1〉, H3
〈1,1,1〉

)
vB9.2

(
P3
〈1,1,1〉, AB

〈1〉, H3
〈1,1,1〉

)
(3) B5.1

(
P1
〈3〉, AC

〈3〉, H2
〈1,2〉

)
vB9.3

(
P1
〈3〉, AC

〈3〉, H2
〈1,2〉

)

Sensors 2022, 22, 5057 20 of 31

For example, B2.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
can be visualized in Figure 12. It represents

an abstract behavior instance of B2 for B1.1

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
and B1.2

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
for

Abmulance A.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 32

For example,𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ can be visualized in Figure 12. It represents an ab-
stract behavior instance of 𝐵ଶ for 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ and 𝐵ଵ.ଶ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ for Abmu-
lance A.

Figure 12. Graphical Representation of 𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯.

Further, all of the behavior instances of 𝐵ଽ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ , 𝐵ଽ.ଶ൫𝑃⟨ଵ,ଵ,ଵ⟩ଷ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯, and 𝐵ଽ.ଷ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯ can be abstracted to 𝐵ଵସ for three Ambu-
lances with a capacity of one, one, and three, as follows:
(1) 𝐵ଵସ൫𝑃⟨ଵ,ଵ,ଵ,ଵ,ସ⟩ହ , 𝐴⟨ଵ,ଵ,ଷ⟩ଷ , 𝐻⟨ଶ,ଵ,ହ⟩ଷ ൯

This behavior instance can be visualized in Figure 13. It shows an abstraction behav-
ior instance of all the mentioned 𝐵ଽ behaviors.

Figure 13. Graphical Representation of 𝐵ଵସ൫𝑃⟨ଵ,ଵ,ଵ,ଵ,ସ⟩ହ , 𝐴⟨ଵ,ଵ,ଷ⟩ଷ , 𝐻⟨ଶ,ଵ,ହ⟩ଷ ൯.

Figure 12. Graphical Representation of B2.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
.

Further, all of the behavior instances of B9.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
, B9.2

(
P3
〈1,1,1〉, AB

〈1〉, H3
〈1,1,1〉

)
,

and B9.3

(
P1
〈3〉, AC

〈3〉, H1
〈3〉

)
can be abstracted to B14 for three Ambulances with a capacity of

one, one, and three, as follows:

(1) B14

(
P5
〈1,1,1,1,4〉, A3

〈1,1,3〉, H3
〈2,1,5〉

)
This behavior instance can be visualized in Figure 13. It shows an abstraction behavior

instance of all the mentioned B9 behaviors.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 32

For example,𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ can be visualized in Figure 12. It represents an ab-
stract behavior instance of 𝐵ଶ for 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ and 𝐵ଵ.ଶ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ for Abmu-
lance A.

Figure 12. Graphical Representation of 𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯.

Further, all of the behavior instances of 𝐵ଽ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ , 𝐵ଽ.ଶ൫𝑃⟨ଵ,ଵ,ଵ⟩ଷ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯, and 𝐵ଽ.ଷ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯ can be abstracted to 𝐵ଵସ for three Ambu-
lances with a capacity of one, one, and three, as follows:
(1) 𝐵ଵସ൫𝑃⟨ଵ,ଵ,ଵ,ଵ,ସ⟩ହ , 𝐴⟨ଵ,ଵ,ଷ⟩ଷ , 𝐻⟨ଶ,ଵ,ହ⟩ଷ ൯

This behavior instance can be visualized in Figure 13. It shows an abstraction behav-
ior instance of all the mentioned 𝐵ଽ behaviors.

Figure 13. Graphical Representation of 𝐵ଵସ൫𝑃⟨ଵ,ଵ,ଵ,ଵ,ସ⟩ହ , 𝐴⟨ଵ,ଵ,ଷ⟩ଷ , 𝐻⟨ଶ,ଵ,ହ⟩ଷ ൯. Figure 13. Graphical Representation of B14

(
P5
〈1,1,1,1,4〉, A3

〈1,1,3〉, H3
〈2,1,5〉

)
.

Sensors 2022, 22, 5057 21 of 31

5. Phase III: Behavior Projection and Interpretation on Behavior Ontology
with PRISM
5.1. Projection of Behavior Instances to Behavior Ontology

Figure 14 shows the results of the projection of the behavior instances from the previous
phase on the Behavior Ontology of the Smart EMS Systems Domain.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 32

5. Phase III: Behavior Projection and Interpretation on Behavior Ontology with
PRISM
5.1. Projection of Behavior Instances to Behavior Ontology

Figure 14 shows the results of the projection of the behavior instances from the pre-
vious phase on the Behavior Ontology of the Smart EMS Systems Domain.

Figure 14. Projection of Behavior Instances to Behavior Ontology.

5.2. Interpretations for Equivalences
The strong and weak equivalences relations for the Smart EMS System Domain ex-

tracted from Figure 14 are as follows:
(1) Strong equivalences:

(i) 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ଶ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(1-1-a in Figure 14);

(ii) 𝐵ଵ.ଷ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ସ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ହ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(1-1-b in Figure 14);

(iii) 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ଶ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ଷ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼𝐵ଵ.ସ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ∼ 𝐵ଵ.ହ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯
(1-2 in Figure 14);

(iv) 𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ ∼ 𝐵ଶ.ଶ൫𝑃⟨ଵ,ଵ,ଵ⟩ଷ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯
(2-1 in Figure 14);

(v) 𝐵ଽ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ ∼ 𝐵ଽ.ଶ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ,ଵ⟩ଷ ൯ ∼ 𝐵ଽ.ଷ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯
(9-1 in Figure 14).

(2) Weak equivalences:
(i) 𝐵ଵ.ଵ൫𝑃⟨ଵ⟩ଵ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ⟩ଵ ൯ ≈ 𝐵ଷ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯;
(ii) (The above 1. iii) ≈ 𝐵ଷ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଷ⟩ଵ ൯;
(iii) 𝐵ଶ.ଵ൫𝑃⟨ଵ,ଵ⟩ଶ , 𝐴⟨ଵ⟩ , 𝐻⟨ଵ,ଵ⟩ଶ ൯ ≈ 𝐵ହ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଵ,ଶ⟩ଶ ൯;
(iv) (The above 1. iv) ≈ 𝐵ହ.ଵ൫𝑃⟨ଷ⟩ଵ , 𝐴⟨ଷ⟩ , 𝐻⟨ଵ,ଶ⟩ଶ ൯.
The types of the above equivalences are determined by the cardinality and capacity

of the actor with respect to the Behavior Ontology based on the n:2-Lattice. Since all the
possible compositional complexity of the interactions among the actors in the types of the
above equivalences are already abstracted with respect to the collective patterns of their

Figure 14. Projection of Behavior Instances to Behavior Ontology.

5.2. Interpretations for Equivalences

The strong and weak equivalences relations for the Smart EMS System Domain ex-
tracted from Figure 14 are as follows:

(1) Strong equivalences:

(i) B1.1

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
∼ B1.2

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
(1-1-a in Figure 14);

(ii) B1.3

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
∼ B1.4

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
∼ B1.5

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
(1-1-b in

Figure 14);
(iii) B1.1

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
∼ B1.2

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
∼ B1.3

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
∼ B1.4

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
∼ B1.5

(
P1
〈1〉, AB

〈1〉, H1
〈1〉

)
(1-2 in Figure 14);

(iv) B2.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
∼ B2.2

(
P3
〈1,1,1〉, AB

〈1〉, H3
〈1,1,1〉

)
(2-1 in Figure 14);

(v) B9.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
∼ B9.2

(
P2
〈1,1〉, AB

〈1〉, H3
〈1,1,1〉

)
∼ B9.3

(
P1
〈3〉, AC

〈3〉, H1
〈3〉

)
(9-1 in Figure 14).

(2) Weak equivalences:

(i) B1.1

(
P1
〈1〉, AA

〈1〉, H1
〈1〉

)
≈ B3.1

(
P1
〈3〉, AC

〈3〉, H1
〈3〉

)
;

(ii) (The above 1. iii) ≈ B3.1

(
P1
〈3〉, AC

〈3〉, H1
〈3〉

)
;

(iii) B2.1

(
P2
〈1,1〉, AA

〈1〉, H2
〈1,1〉

)
≈ B5.1

(
P1
〈3〉, AC

〈3〉, H2
〈1,2〉

)
;

(iv) (The above 1. iv) ≈ B5.1

(
P1
〈3〉, AC

〈3〉, H2
〈1,2〉

)
.

The types of the above equivalences are determined by the cardinality and capacity
of the actor with respect to the Behavior Ontology based on the n:2-Lattice. Since all the
possible compositional complexity of the interactions among the actors in the types of the

Sensors 2022, 22, 5057 22 of 31

above equivalences are already abstracted with respect to the collective patterns of their
behaviors, it is not necessary to consider the non-deterministic states of the complexity
existing in the interactions among the actors of the behaviors. Therefore, it is not necessary
to consider the non-deterministic problem caused by Norm Chomsky’s equivalences and
Robin Milner’s bisimulations. It could be one of the main advantages of the approach
in the paper provided by the Behavior Ontology to analyze and interpret these types
of equivalences.

5.3. Future Research for Probable Similarity

Further, probable similarity can be defined with respect to the strong and weak
equivalences since dTP-Calculus allows the choice operations with probability. It implies
that two systems can probably be similar with respect to a set of identical processes, or IoTs,
with the same choice operations with different probabilities, under a tolerable condition of
the probabilistically acceptable threshold in similarity.

6. Proof of Concepts
6.1. The PRISM Tool

The PRISM tool was realized on the ADOxx Meta-Modeling Platform. ADOxx is
one of the best-known open SW and originated from the OMiLAB of the University of
Vienna. It is recognized as one of the most innovative meta-modeling tools open to the
public. In total more than 70 open models are available on ADOxx for non-profit public
applications [33].

Figure 15 shows the architecture with modeling views of PRISM. The graphical rep-
resentations of the models in PRISM are defined by the ADOxx Development Tool, and
the procedures of its components are constructed using the ADOxx libraries. The detailed
algorithms of the procedures are programmed with the ADOScript language.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 32

behaviors, it is not necessary to consider the non-deterministic states of the complexity
existing in the interactions among the actors of the behaviors. Therefore, it is not necessary
to consider the non-deterministic problem caused by Norm Chomsky’s equivalences and
Robin Milner’s bisimulations. It could be one of the main advantages of the approach in
the paper provided by the Behavior Ontology to analyze and interpret these types of
equivalences.

5.3. Future Research for Probable Similarity
Further, probable similarity can be defined with respect to the strong and weak

equivalences since dTP-Calculus allows the choice operations with probability. It implies
that two systems can probably be similar with respect to a set of identical processes, or
IoTs, with the same choice operations with different probabilities, under a tolerable con-
dition of the probabilistically acceptable threshold in similarity.

6. Proof of Concepts
6.1. The PRISM Tool

The PRISM tool was realized on the ADOxx Meta-Modeling Platform. ADOxx is one
of the best-known open SW and originated from the OMiLAB of the University of Vienna.
It is recognized as one of the most innovative meta-modeling tools open to the public. In
total more than 70 open models are available on ADOxx for non-profit public applications
[33].

Figure 15 shows the architecture with modeling views of PRISM. The graphical rep-
resentations of the models in PRISM are defined by the ADOxx Development Tool, and
the procedures of its components are constructed using the ADOxx libraries. The detailed
algorithms of the procedures are programmed with the ADOScript language.

Figure 15. The architecture with modeling views of PRISM.

The PRISM tool consists of the ADOxx Platform, PRISM Components, and PRISM
Models, as follows:

Figure 15. The architecture with modeling views of PRISM.

The PRISM tool consists of the ADOxx Platform, PRISM Components, and PRISM
Models, as follows:

Sensors 2022, 22, 5057 23 of 31

(1) ADOxx Platform: ADOxx is the platform supporting the meta-modeling method to
implement the modeling language, mechanisms, and algorithms of PRISM. In terms
of PRISM, ADOxx can be classified into the following sub-layers:

(i) First Sub-Layer: It consists of pre-defined functions to develop the PRISM mod-
eling tool. The functions are used to implement the basic modeling language,
mechanisms, and algorithms of the modeling tool.

(ii) Second Sub-Layer: It consists of APIs provided by ADOxx. APIs are provoked
by the ADOScripts language and used to implement the extended functions,
that is, user-defined functions of the modeling tool.

(iii) Third Sub-Layer: It consists of the ADOxx repository to store the products
produced by the modeling tool, as well as the functions to export and import
the products to/from external supporting systems.

(2) PRISM Components: PRISM provides all the functions to model and analyze the be-
haviors stated in the steps in Section 3 and is supported by the following components:

(i) Regular Behavior Generator (RBG): RBG is used to construct the regular be-
haviors based on Active Ontology. The RB model is generated as a result.

(ii) Abstract Behavior Generator (ABG): ABG is used to construct the abstract
behaviors based on the RB model produced from the above (i). The AB model
is generated at the end.

(iii) Behavior Lattice Generator (BLG): BLG is used to construct the behavior lat-
tice based on the AB model produced from the above (ii). The BL model is
generated at the end.

(iv) Behavior Lattice Merger (BLM): BLM is used to construct one behavior lattice
integrated from the BL models of the two different systems. Note that inte-
gration is only possible when the two different BL models have a common
main actor.

(v) Behavior Interpreter (BI): BI is used to project the collective behavior patterns
of the selected domain onto the BL mode produced above (iii). The iBL model
is generated at the end. In order to utilize BI, it is necessary to collect the
behavior data of the selected system domain example from the SAVE tool.

(3) PRISM Modelers: PRISM Modelers consist of the products produced by the PRISM tool:

(i) Class Diagram (CD): The CD model is the model designed for the hierarchical
structure of the classes in the system domain.

(ii) Active Diagram (AD): The AD model is the model designed for the actions
among the classes in the CD model from (1). Active ontology is constructed at
the end.

(iii) Regular Behavior (RB): The RB model consists of the regular behaviors gener-
ated from the AD model.

(iv) Abstract Behavior (AB): The AB model consists of abstract behaviors generated
from the RB model.

(v) Behavior Lattice (BL): The BL model is generated from the AB model. The
inclusion relations among abstract behaviors can be found in the model.

(vi) Merged Lattice of Behavior Lattices (mLBL): The mLBL model is constructed
from two different BL models.

(vii) Interpreted Behavior Lattice (iBL): The iBL model is generated from the BL
model. This model allows the extraction of the collective behavior patterns of
the example from the selected system domain.

6.2. The SAVE Tool

Figure 16 shows the architecture with modeling views of SAVE (Specification, Analysis,
Verification, and Evaluation). SAVE is the tool suite to specify, analyze, and verify the
operational and safe requirements of systems with dTP-Calculus in Section 4. SAVE was
developed on the ADOxx Meta-Modeling Platform. In addition, SAVE provides the graphic

Sensors 2022, 22, 5057 24 of 31

notations and simulation functions for specification, analysis, and verification, based on
the meta-modeling methods of ADOxx. The basic components of SAVE are as follows:

(1) Specifier: Is the modeling tool to specify the operational requirements of a system
by using the graphic notations of dTP-Calculus. It consists of In-the-Large (ITL) and
In-the-Small (ITS) modelers. ITL is the model to specify the system view consisting
of processes and their inclusion relations, including communication channels, in a
conceptual geographical space. It represents a process as a node, as well as inclusion
relations. In addition, the channels, represented as arcs, are connecting processes for
communication. ITS is the model to specify the process view consisting of the actions,
communications, and movements of a process. ITS represents a process as a Process
Lane, which consists of blocks of the actions, communications, and movements of
the process. The specifier generates ITL and ITS models. The details are presented
in [6,7].

(2) Analyzer: It is the tool that simulates the execution paths generated using the ITL
and ITS models from (1). As a result, an execution model is generated automatically.
It analyzes all of the execution paths of the simulation model, and it represents the
simulation results of each execution path pictorially. The details are presented in [6,7].

(3) Verifier: It is the tool to verify the safety and security requirements of a system from
the simulation results from (2). As a result, the geo-temporal space (GTS) model is
generated. The GTS model represents the simulation results of all the actions and
movements of the processes pictorially in a two-dimensional space. The details are
presented in [6,7].

Sensors 2022, 22, x FOR PEER REVIEW 25 of 32

SAVE was developed on the ADOxx Meta-Modeling Platform. In addition, SAVE
provides the graphic notations and simulation functions for specification, analysis,
and verification, based on the meta-modeling methods of ADOxx. The basic compo-
nents of SAVE are as follows:
(1) Specifier: Is the modeling tool to specify the operational requirements of a system

by using the graphic notations of dTP-Calculus. It consists of In-the-Large (ITL)
and In-the-Small (ITS) modelers. ITL is the model to specify the system view con-
sisting of processes and their inclusion relations, including communication chan-
nels, in a conceptual geographical space. It represents a process as a node, as well
as inclusion relations. In addition, the channels, represented as arcs, are connect-
ing processes for communication. ITS is the model to specify the process view
consisting of the actions, communications, and movements of a process. ITS rep-
resents a process as a Process Lane, which consists of blocks of the actions, com-
munications, and movements of the process. The specifier generates ITL and ITS
models. The details are presented in [6,7].

(2) Analyzer: It is the tool that simulates the execution paths generated using the ITL
and ITS models from (1). As a result, an execution model is generated automati-
cally. It analyzes all of the execution paths of the simulation model, and it repre-
sents the simulation results of each execution path pictorially. The details are pre-
sented in [6,7].

(3) Verifier: It is the tool to verify the safety and security requirements of a system
from the simulation results from (2). As a result, the geo-temporal space (GTS)
model is generated. The GTS model represents the simulation results of all the actions
and movements of the processes pictorially in a two-dimensional space. The details
are presented in [6,7].

Figure 16. The architecture with modeling views of SAVE.

6.3. Smart EMS Example
6.3.1. Phase I with PRISM

Step 1 of Phase I is to construct the target Active Ontology, consisting of classes and
interactions. A class can include subclasses with inclusion relations. An interaction

Figure 16. The architecture with modeling views of SAVE.

6.3. Smart EMS Example
6.3.1. Phase I with PRISM

Step 1 of Phase I is to construct the target Active Ontology, consisting of classes and
interactions. A class can include subclasses with inclusion relations. An interaction implies
a movement of class between two classes. Figure 17 shows the active ontology of the
Smart EMS modeled in PRISM. In the figure, EMS implies the upper class, which includes
Ambulance (A), Patient (P), and Place (PL) as subclasses. Note that the Place (PL) class also

Sensors 2022, 22, 5057 25 of 31

includes Location (L) and Hospital (H) as subclasses. The figure also includes a1~a5 as
interactions between classes.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 32

implies a movement of class between two classes. Figure 17 shows the active ontology of
the Smart EMS modeled in PRISM. In the figure, EMS implies the upper class, which in-
cludes Ambulance (A), Patient (P), and Place (PL) as subclasses. Note that the Place (PL)
class also includes Location (L) and Hospital (H) as subclasses. The figure also includes
a1~a5 as interactions between classes.

Figure 17. Phase I: Step 1.

Step 2 of Phase I is to define regular behaviors with a sequence of the interactions
defined in Step 1. The regular behavior implies the behavior with the main class of the
cardinality 1. Figure 18 shows the regular behaviors modeled in PRISM.

Step 3 of Phase I is to define the Abstract behaviors by abstracting the regular behav-
iors defined in Step 2. The Abstract behavior implies the behavior with the main class of
the cardinality n. The Abstract behaviors and their inclusion relations are automatically
generated from regular behaviors by PRISM in this step. Step 3 of Phase I is to construct a
behavior ontology from the abstract behaviors and inclusion relations from Step 3. Figure
19 shows the behavior ontology in the lattice structures and the inclusion relations in a
dialog box.

Figure 17. Phase I: Step 1.

Step 2 of Phase I is to define regular behaviors with a sequence of the interactions
defined in Step 1. The regular behavior implies the behavior with the main class of the
cardinality 1. Figure 18 shows the regular behaviors modeled in PRISM.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 32

implies a movement of class between two classes. Figure 17 shows the active ontology of
the Smart EMS modeled in PRISM. In the figure, EMS implies the upper class, which in-
cludes Ambulance (A), Patient (P), and Place (PL) as subclasses. Note that the Place (PL)
class also includes Location (L) and Hospital (H) as subclasses. The figure also includes
a1~a5 as interactions between classes.

Figure 17. Phase I: Step 1.

Step 2 of Phase I is to define regular behaviors with a sequence of the interactions
defined in Step 1. The regular behavior implies the behavior with the main class of the
cardinality 1. Figure 18 shows the regular behaviors modeled in PRISM.

Step 3 of Phase I is to define the Abstract behaviors by abstracting the regular behav-
iors defined in Step 2. The Abstract behavior implies the behavior with the main class of
the cardinality n. The Abstract behaviors and their inclusion relations are automatically
generated from regular behaviors by PRISM in this step. Step 3 of Phase I is to construct a
behavior ontology from the abstract behaviors and inclusion relations from Step 3. Figure
19 shows the behavior ontology in the lattice structures and the inclusion relations in a
dialog box.

Figure 18. Phase I: Step 2.

Step 3 of Phase I is to define the Abstract behaviors by abstracting the regular behaviors
defined in Step 2. The Abstract behavior implies the behavior with the main class of
the cardinality n. The Abstract behaviors and their inclusion relations are automatically
generated from regular behaviors by PRISM in this step. Step 3 of Phase I is to construct a
behavior ontology from the abstract behaviors and inclusion relations from Step 3. Figure 19
shows the behavior ontology in the lattice structures and the inclusion relations in a
dialog box.

Sensors 2022, 22, 5057 26 of 31

Sensors 2022, 22, x FOR PEER REVIEW 27 of 32

Figure 18. Phase I: Step 2.

Figure 19. Phase I: Step 3.

6.3.2. Phase II with SAVE
Figure 20 shows the Smart EMS Example in SAVE. The circles on the left of the figure

imply the locations where patients are. Similarly, regarding the figure, the ones in the
middle and the ones on the right imply the ambulances and the hospitals.

Figure 21 shows the results of the simulation for the specification defined in Figure
20. During the simulation, the movements of all the processes, that is, Ambulances and
Patients, along with the temporal perspective, that is, the system behaviors, are analyzed
and synthesized, as shown in Figure 10. In addition, the raw data that will be used in
Phase III are collected, as shown in Figure 22.

Figure 20. Phase II: Step 1.

Figure 19. Phase I: Step 3.

6.3.2. Phase II with SAVE

Figure 20 shows the Smart EMS Example in SAVE. The circles on the left of the figure
imply the locations where patients are. Similarly, regarding the figure, the ones in the
middle and the ones on the right imply the ambulances and the hospitals.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 32

Figure 18. Phase I: Step 2.

Figure 19. Phase I: Step 3.

6.3.2. Phase II with SAVE
Figure 20 shows the Smart EMS Example in SAVE. The circles on the left of the figure

imply the locations where patients are. Similarly, regarding the figure, the ones in the
middle and the ones on the right imply the ambulances and the hospitals.

Figure 21 shows the results of the simulation for the specification defined in Figure
20. During the simulation, the movements of all the processes, that is, Ambulances and
Patients, along with the temporal perspective, that is, the system behaviors, are analyzed
and synthesized, as shown in Figure 10. In addition, the raw data that will be used in
Phase III are collected, as shown in Figure 22.

Figure 20. Phase II: Step 1. Figure 20. Phase II: Step 1.

Figure 21 shows the results of the simulation for the specification defined in Figure 20.
During the simulation, the movements of all the processes, that is, Ambulances and

Sensors 2022, 22, 5057 27 of 31

Patients, along with the temporal perspective, that is, the system behaviors, are analyzed
and synthesized, as shown in Figure 10. In addition, the raw data that will be used in Phase
III are collected, as shown in Figure 22.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 32

Figure 21. Phase II: Step 2.

Figure 22. The Raw Data for Behaviors from Simulation in SAVE.

6.3.3. Phase III with PRISM
Figure 23 shows the types of abstract behaviors of the ambulances as a main class

from the raw data in Figure 22. For example, the types of abstract behaviors performed by
Ambulance 1 are B1, B1, B2, and B9. Figures 24 and 25 show the results of projecting the
abstract behaviors performed by all the ambulances onto the behavior ontology generated
during Phase I.

Figure 21. Phase II: Step 2.

Sensors 2022, 22, x FOR PEER REVIEW 28 of 32

Figure 21. Phase II: Step 2.

Figure 22. The Raw Data for Behaviors from Simulation in SAVE.

6.3.3. Phase III with PRISM
Figure 23 shows the types of abstract behaviors of the ambulances as a main class

from the raw data in Figure 22. For example, the types of abstract behaviors performed by
Ambulance 1 are B1, B1, B2, and B9. Figures 24 and 25 show the results of projecting the
abstract behaviors performed by all the ambulances onto the behavior ontology generated
during Phase I.

Figure 22. The Raw Data for Behaviors from Simulation in SAVE (Korean means confirm).

6.3.3. Phase III with PRISM

Figure 23 shows the types of abstract behaviors of the ambulances as a main class
from the raw data in Figure 22. For example, the types of abstract behaviors performed by
Ambulance 1 are B1, B1, B2, and B9. Figures 24 and 25 show the results of projecting the
abstract behaviors performed by all the ambulances onto the behavior ontology generated
during Phase I.

Sensors 2022, 22, 5057 28 of 31Sensors 2022, 22, x FOR PEER REVIEW 29 of 32

Figure 23. The Abstract Behaviors for Those in Figure 22.

Figure 24. Phase III: Step 1.

Figure 23. The Abstract Behaviors for Those in Figure 22 (Korean means confirm).

Sensors 2022, 22, x FOR PEER REVIEW 29 of 32

Figure 23. The Abstract Behaviors for Those in Figure 22.

Figure 24. Phase III: Step 1. Figure 24. Phase III: Step 1.

Sensors 2022, 22, x FOR PEER REVIEW 30 of 32

Figure 25. Phase III: Step 2.

7. Conclusions and Future Research
This paper presented a new modeling method to abstract the collective behavior of

Smart IoT Systems in CPS based on dTP-Calculus and behavior ontology and demonstrated
its feasibility with two tools: PRISM and SAVE. The modeling method consisted of these
phases:
(1) Phase 1: Each behavior of the IoT Systems Domain was defined as a sequence of the

interactions and/or movements of a group of the IoTs in the systems with respect to
each type of IoT. Since interactions and movements among the behaviors were over-
lapped, the behaviors were organized in a lattice structure called n:2-Lattice, which
has the special properties of multiple joins and meets. Further, the lattice could be
interpreted with respect to the cardinalities of the types of IoTs, and it was possible
to construct a type-oriented knowledge architecture for all the possible collective be-
havior of the IoT systems.

(2) Phase 2: An IoT Example from the IoT Systems Domain was modeled with dTP-Cal-
culus, where all the actions of each IoT in the example were defined as the interac-
tions and movements of processes with dTP-Calculus.

(3) Phase 3: The output of the simulation was abstracted and projected to the Behavior
Ontology of the domain.
The method demonstrated that dTP-Calculus was appropriate to model Smart IoTs

in CPS and that the Behavior Ontology based on the n:2-Lattice had the structural capa-
bility to represent multi-dimensional aspects of behaviors in a hierarchical structure. Con-
sequently, the combination of two mathematical structures allowed for the efficient and
effective abstraction of the collective behavior of Smart IoT Systems in CPS.

The main advantage of the method is that the architecture can represent all the pos-
sible behaviors of IoT systems and that the patterns of behavior can be elaborated by find-
ing traces of the behaviors in the lattice.

Another main advantage is that the new notion of equivalence can be defined within
the behavior ontology, which can be used to solve the classical problem of exponential

Figure 25. Phase III: Step 2.

Sensors 2022, 22, 5057 29 of 31

7. Conclusions and Future Research

This paper presented a new modeling method to abstract the collective behavior
of Smart IoT Systems in CPS based on dTP-Calculus and behavior ontology and demon-
strated its feasibility with two tools: PRISM and SAVE. The modeling method consisted of
these phases:

(1) Phase 1: Each behavior of the IoT Systems Domain was defined as a sequence of the
interactions and/or movements of a group of the IoTs in the systems with respect
to each type of IoT. Since interactions and movements among the behaviors were
overlapped, the behaviors were organized in a lattice structure called n:2-Lattice,
which has the special properties of multiple joins and meets. Further, the lattice could
be interpreted with respect to the cardinalities of the types of IoTs, and it was possible
to construct a type-oriented knowledge architecture for all the possible collective
behavior of the IoT systems.

(2) Phase 2: An IoT Example from the IoT Systems Domain was modeled with dTP-
Calculus, where all the actions of each IoT in the example were defined as the interac-
tions and movements of processes with dTP-Calculus.

(3) Phase 3: The output of the simulation was abstracted and projected to the Behavior
Ontology of the domain.

The method demonstrated that dTP-Calculus was appropriate to model Smart IoTs in
CPS and that the Behavior Ontology based on the n:2-Lattice had the structural capability to
represent multi-dimensional aspects of behaviors in a hierarchical structure. Consequently,
the combination of two mathematical structures allowed for the efficient and effective
abstraction of the collective behavior of Smart IoT Systems in CPS.

The main advantage of the method is that the architecture can represent all the possible
behaviors of IoT systems and that the patterns of behavior can be elaborated by finding
traces of the behaviors in the lattice.

Another main advantage is that the new notion of equivalence can be defined within
the behavior ontology, which can be used to solve the classical problem of exponential and
non-deterministic complexity in the equivalences of Norm Chomsky and Robin Milner
by abstracting them into polynomial and static complexity in the lattice. It means that the
ontology provides a systematic mechanism to specify, analyze, and verify the equivalences
based on a formal structure, that is, the n:2-Lattice.

More specifically, Behavior Ontology provides the meaning interpretation of the
strong and weak equivalences since it is based on the n:2-Lattice mathematical structure. In
addition, Behavior Ontology overcomes the complexity and non-deterministic conditions
of all the interactions among the actors of the behaviors since the complexities and non-
deterministic conditions are abstracted in the behavior patterns of the ontology.

In addition, in order to prove the concept of the method, two working tools were
developed based on the ADOxx Meta-Modeling Platform: SAVE for dTP-Calculus and
PRISM for Behavior Ontology.

The method and tools can be considered one of the most challenging research topics
in the area of a domain engineering method to abstract the collective behavior of Smart
IoT Systems.

The most interesting future research will focus on the probable similarity between
two systems with respect to a set of identical processes or IoTs with some acceptable
probability threshold.

Author Contributions: Conceptualization, M.L. and J.S.; methodology, M.L.; software, J.S.; validation,
M.L, D.K. and J.S.; formal analysis, J.S.; investigation, J.S.; writing—original draft preparation,
J.S.; writing—review and editing, M.L. and D.K.; visualization, J.S.; supervision, M.L.; project
administration, M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 5057 30 of 31

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Yu, W.; Dillon, T.; Mostafa, F.; Rahayu, W.; Liu, Y. Implementation of industrial cyber physical system: Challenges and solutions.

In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May
2019; pp. 173–178. [CrossRef]

2. Freund, L.; Al-Majeed, S. Modelling industrial iot system complexity. In Proceedings of the 2020 International Conference on
Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 20–21 December 2020; pp. 1–5.
[CrossRef]

3. Haxthausen, A.E.; Peleska, J. Formal development and verification of a distributed railway control system. IEEE Trans. Softw. Eng.
2000, 26, 687–701. [CrossRef]

4. Clarke, E.M.; Klieber, W.; Nováček, M.; Zuliani, P. Model checking and the state explosion problem. In LASER Summer School on
Software Engineering; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–30. [CrossRef]

5. Lee, S.; Song, J.; Karagiannis, D.; Lee, M. Analysis Method for Probabilistic Verification for Smart IoT Systems with Process
Algebra. In Proceedings of the 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), Jeju Island, South
Korea, 13–15 August 2021; pp. 221–228. [CrossRef]

6. Song, J.; Lee, M. Process Algebra to Control Nondeterministic Behavior of Enterprise Smart IoT Systems with Probability. In
Proceedings of the IFIP Working Conference on The Practice of Enterprise Modeling, Luxembourg, 27–29 November 2019;
Springer: Cham, Switzerland, 2019; pp. 184–196. [CrossRef]

7. Song, J.; Choe, Y.; Lee, M. Application of probabilistic process model for smart factory systems. In Proceedings of the International
Conference on Knowledge Science, Engineering and Management, Athens, Greece, 28–30 August 2019; Springer: Cham,
Switzerland, 2019; pp. 25–36. [CrossRef]

8. Choe, Y.; Lee, M. A Lattice Model to Verify Behavioral Equivalences. In Proceedings of the 2014 European Modelling Symposium,
Pisa, Italy, 21–23 October 2014; pp. 378–386. [CrossRef]

9. Fill, H.G.; Karagiannis, D. On the conceptualisation of modelling methods using the ADOxx meta modelling platform. Enterp.
Model. Inf. Syst. Archit. 2013, 8, 4–25. [CrossRef]

10. Song, J.; Lee, M. A Composition Method to Model Collective Behavior. In Proceedings of the IFIP Working Conference on The
Practice of Enterprise Modeling, Vienna, Austria, 31 October–2 November 2018; Springer: Cham, Switzerland, 2018; pp. 121–137.
[CrossRef]

11. Choe, Y.; Lee, M. Algebraic method to model secure IoT. In Domain-Specific Conceptual Modeling; Springer: Cham, Switzerland,
2016; pp. 335–355. [CrossRef]

12. Choi, W.; Choe, Y.; Lee, M. A reduction method for process and system complexity with conjunctive and complement choices in
a process algebra. In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung
Taiwan, 1–5 July 2015; Volume 3, pp. 381–386. [CrossRef]

13. Clarke, E.M.; Emerson, E.A.; Sifakis, J. Model checking: Algorithmic verification and debugging. Commun. ACM 2009, 52, 74–84.
[CrossRef]

14. Yeh, W.J.; Young, M. Compositional reachability analysis using process algebra. In Proceedings of the symposium on Testing,
analysis, and verification, Victoria, BC, Canada, 8–10 October 1991; pp. 49–59. [CrossRef]

15. Chen, T.; Chilton, C.; Jonsson, B.; Kwiatkowska, M. A compositional specification theory for component behaviours. In
Proceedings of the European Symposium on Programming, Tallinn, Estonia, 24 March–1 April 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 148–168. [CrossRef]

16. Raju, S.C. An Automatic Verification Technique for Communicating Real-Time State Machines; Technical Report 93–04-08; Univ. of
Washington: Seattle, DC, USA, 1993.

17. Bouguettaya, A.; Sheng, Q.Z.; Benatallah, B.; Neiat, A.G.; Mistry, S.; Ghose, A.; Yao, L. An internet of things service roadmap.
Commun. ACM 2021, 64, 86–95. [CrossRef]

18. Zhang, W.E.; Sheng, Q.Z.; Mahmood, A.; Zaib, M.; Hamad, S.A.; Aljubairy, A.; Ma, C. The 10 research topics in the Internet of
Things. In Proceedings of the 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC), Atlanta,
GA, USA, 1–3 December 2020; pp. 34–43. [CrossRef]

19. International Telecommunication Union. Internet of Things: IoT Day Special; LexInnova Technologies, LLC: Houston, TX, USA,
2005; Volume 7.

20. Evans, D. The Internet of Things: How the Next Evolution of the Internet is Changing Everything; CISCO White Paper; CISCO: San Jose,
CA, USA, 2011.

21. Gartner. Gartner’s 2009 Hype Cycle Special Report Evaluates Maturity of 1,650 Technologies; Gartner Research: Stamford, CT, USA,
2009. Available online: https://www.gartner.com/en/documents/1108412 (accessed on 15 June 2022).

22. Hansson, H.; Jonsson, B. A calculus for communicating systems with time and probabilities. In Proceedings of the 11th Real-Time
Systems Symposium, Lake Buena Vista, FL, USA, 5–7 December 1990; pp. 278–287. [CrossRef]

http://doi.org/10.1109/ICPHYS.2019.8780271
http://doi.org/10.1109/3ICT51146.2020.9311942
http://doi.org/10.1109/32.879808
http://doi.org/10.1007/978-3-642-35746-6_1
http://doi.org/10.1109/SmartIoT52359.2021.00042
http://doi.org/10.1007/978-3-030-35151-9_12
http://doi.org/10.1007/978-3-030-29563-9_3
http://doi.org/10.1109/EMS.2014.92
http://doi.org/10.1007/BF03345926
http://doi.org/10.1007/978-3-030-02302-7_8
http://doi.org/10.1007/978-3-319-39417-6_15
http://doi.org/10.1109/COMPSAC.2015.249
http://doi.org/10.1145/1592761.1592781
http://doi.org/10.1145/120807.120812
http://doi.org/10.1007/978-3-642-28869-2_8
http://doi.org/10.1145/3464960
http://doi.org/10.1109/CIC50333.2020.00015
https://www.gartner.com/en/documents/1108412
http://doi.org/10.1109/REAL.1990.128759

Sensors 2022, 22, 5057 31 of 31

23. Lee, I.; Philippou, A.; Sokolsky, O. Resources in process algebra. J. Log. Algebraic Program. 2007, 72, 98–122. [CrossRef]
24. Lanotte, R.; Merro, M.; Tini, S. A probabilistic calculus of cyber-physical systems. Inf. Comput. 2021, 279, 104618. [CrossRef]
25. Feng, C.; Hillston, J. PALOMA: A process algebra for located markovian agents. In Proceedings of the International Conference

on Quantitative Evaluation of Systems, Florence, Italy, 8–10 September 2014; Springer: Cham, Switzerland, 2014; pp. 265–280.
[CrossRef]

26. Valmari, A. The state explosion problem. In Advanced Course on Petri Nets; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 429–528. [CrossRef]

27. Aslansefat, K.; Latif-Shabgahi, G.R. A hierarchical approach for dynamic fault trees solution through semi-Markov process. IEEE
Trans. Reliab. 2019, 69, 986–1003. [CrossRef]

28. Xu, C.; Su, J.; Chen, S. Exploring efficient grouping algorithms in regular expression matching. PLoS ONE 2018, 13, e0206068.
[CrossRef] [PubMed]

29. Hillston, J.; Marin, A.; Rossi, S.; Piazza, C. Contextual lumpability. In Proceedings of the 7th International Conference on
Performance Evaluation Methodologies and Tools, Torino, Italy, 10–12 December 2013; pp. 194–203. [CrossRef]

30. Kwon, G. Relay reachability algorithm for exploring huge state space. Electron. Notes Theor. Comput. Sci. 2006, 149, 19–31.
[CrossRef]

31. Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.
32. Spector, P. An Introduction to the SAS system; Department of Statistics, University of California: Berkeley, CA, USA, 2003. Available

online: http://www.stat.berkeley.edu/classes/s100/sas.pdf (accessed on 15 May 2022).
33. OMiLAB Hompage. Available online: https://austria.omilab.org/psm/tools (accessed on 10 April 2022).

http://doi.org/10.1016/j.jlap.2007.02.005
http://doi.org/10.1016/j.ic.2020.104618
http://doi.org/10.1007/978-3-319-10696-0_22
http://doi.org/10.1007/3-540-65306-6_21
http://doi.org/10.1109/TR.2019.2923893
http://doi.org/10.1371/journal.pone.0206068
http://www.ncbi.nlm.nih.gov/pubmed/30356262
http://doi.org/10.4108/icst.valuetools.2013.254408
http://doi.org/10.1016/j.entcs.2005.07.024
http://www.stat.berkeley.edu/classes/s100/sas.pdf
https://austria.omilab.org/psm/tools

	Introduction
	Related-Works
	Smart IoT and Process Algebra
	State Explostion Problem and Abtraction

	Phase I: Collective Behavior Modeling for Behavior Ontology
	Theory: n:2-Lattice
	Theory: Smart EMS Example
	Step 1: Active Ontology
	Step 2: Regular Behaviors
	Step 3: Abstract Behaviors
	Step 4: Behavior Lattice (BL) and Behavior Ontology (BO)

	Phase II: Behavior Instance Extraction
	Theory: dTP-Calculus
	Main Characteristics
	Syntax
	Semantics

	Smart IoT Example
	Step 1: Specification with dTP-Calculus
	Step 2: Simulation
	Step 3: Extraction of Abstract Behavior Instances

	Phase III: Behavior Projection and Interpretation on Behavior Ontology with PRISM
	Projection of Behavior Instances to Behavior Ontology
	Interpretations for Equivalences
	Future Research for Probable Similarity

	Proof of Concepts
	The PRISM Tool
	The SAVE Tool
	Smart EMS Example
	Phase I with PRISM
	Phase II with SAVE
	Phase III with PRISM

	Conclusions and Future Research
	References

