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Abstract: Sidescan sonar is a small and low-cost sensor that can be mounted on most unmanned
underwater vehicles (UUVs) and unmanned surface vehicles (USVs). It has the advantages of
high resolution and wide coverage, which could be valuable in providing an efficient and cost-
effective solution for obtaining the bathymetry when bathymetric data are unavailable. This work
proposes a method of reconstructing bathymetry using only sidescan data from large-scale surveys
by formulating the problem as a global optimization, where a Sinusoidal Representation Network
(SIREN) is used to represent the bathymetry and the albedo and the beam profile are jointly estimated
based on a Lambertian scattering model. The assessment of the proposed method is conducted by
comparing the reconstructed bathymetry with the bathymetric data collected with a high-resolution
multi-beam echo sounder (MBES). An error of 20 cm on the bathymetry is achieved from a large-scale
survey. The proposed method proved to be an effective way to reconstruct bathymetry from sidescan
sonar data when high-accuracy positioning is available. This could be of great use for applications
such as surface vehicles with Global Navigation Satellite System (GNSS) to obtain high-quality
bathymetry in shallow water or small autonomous underwater vehicles (AUVs) if simultaneous
localization and mapping (SLAM) can be applied to correct the navigation estimate.

Keywords: bathymetric maps; neural nets; representation learning; sidescan sonars

1. Introduction

High-resolution bathymetry is valuable for various underwater applications. Tradi-
tionally multi-beam echo sounder (MBES) is used to collect bathymetric data due to its
ability to return three-dimensional measurements thanks to its two perpendicular arrays.
Sidescan sonar (SSS) with its single linear transducer array, on the other hand, can not be
directly used to reconstruct the seabed’s geometry. However, its returns can be well approx-
imated by a Lambertian model which makes it possible to use shape-from-shading (SFS)
techniques [1] to reconstruct bathymetry from sidescan images. Reconstructing bathymetry
from a single SSS line is a well-known ill-posed problem but combining multiple SSS
lines and leveraging recent advances in Deep Learning make the problem possible under
certain assumptions. However, one challenge is that the returned intensity is not only a
function of the surface normal but also affected by the seabed reflectivity. One approach is
to classify the seabed sediments from the collected sidescan data (via objective or subjective
analysis [2]), while another is to estimate the seabed reflectivity directly without determin-
ing the sediment types explicitly [3,4].

Although the new technological advances on phase differencing sonars, also known
as interferometric sonars (e.g., Edgetech 6205 from EdgeTech, United States and Klein Hy-
droChart 3500 from KLEIN, MIND Technology, United States), could acquire bathymetric
measurements, which could be of great help to many applications [5], they also have some
restrictions. For example, the Edgetech 6205 is mainly suitable for shallow water, less
deep than 35 m [6]. Another restriction is that the measurements of interferometric SSS are
noisier containing many outliers that must be filtered out [7]. However, in this work we
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focus on using non-interferometric SSS for the following reasons: they are ubiquitous in
the AUV community and provide a more affordable solution requiring less power.

Many previous works have proposed different methods to reconstruct bathymetry
from sidescan [3,4,8–17]. They can be categorized into different groups according to
different criteria, see Table 1. In terms of whether the external bathymetric data are
required, refs. [8–14] need external bathymetric data, either from sparse direct bathymetric
measurements [8,10–14] or coarse multi-beam data [9]. On the other hand, refs. [3,4,15–17]
do not require external bathymetric data where [15] assume the altitude of the towfish
is known and reconstruct the relative shapes of the seafloor with a linear method using
simulated sidescan. Refs. [3,4] use a flat seafloor assumption as the initialization and [16,17]
use the first bottom return in the sidescan waterfall images to obtain the altitude and by
combining data from the pressure sensor to get sparse bathymetric information. Note that
both [15,17] use actual seabed data and simulated sidescan from the actual seabed to assess
their proposed methods. In terms of how to model the scattering process, most of the
previous works use the Lambertian model [8–10,12,14–17] while [11,13] use data-driven
approaches, i.e., deep neural networks for the scattering modeling.

Table 1. A comparison between different methods of bathymetry reconstruction from sidescan.

Extra Bathymetric
Data Required

Extra Bathymetric
Data Not Required

Lambertian
Scattering Model

Data-Driven
Scattering Model

[8–14] [3,4,15–17] [3,4,8–10,12,14–17] [11,13]

This work also uses the Lambertian model for the scattering modeling, whose ad-
vantage over using a data-driven model is that it does not require the “ground truth”
bathymetry to create the training data as was needed in [11,13]. In addition, the accurate
registration between the ground truth bathymetry formed from MBES data and sidescan is
crucial for a data-driven model, where less accurate registration would result in less accu-
rate estimates [11,13]. That registration can never be perfect in practice as it is impossible
to remove small timing issues or to know the true sound velocity profile experienced by
each sonar beam.This work is an extension of our previous work [12]. The extension is
that we remove the requirement of external bathymetric data by modelling the vertical
sidescan sonar beam pattern near the nadir. Naively, the idea is that knowing the beam
pattern and seeing the range of the first return closest to the nadir allows a bathymetric
estimate that can replace the altimeter values used in our previous work. Therefore, our
proposed method can be used in the situation where only sidescan data are available. The
altitude of the sonar is implicitly modeled from the nadir of the waterfall images and
similar to [17] that will be optimized directly by minimizing the loss on sidescan intensities.
The mathematical model in this work is similar to [3,4] but we use a neural network as
the bathymetric representation instead of a grid as most of the previous work or triangle
meshes [17]. Unlike [15,17], the method proposed in this work was evaluated on real
sidescan data instead of simulated data. In addition, unlike [16] where the reconstructed
bathymetry is assessed by comparing to linear interpolation of single-beam echo sounder
(SBES) data, we in this work evaluate our methods by comparing the reconstructed map to
high-precision MBES bathymetry.

One of the benefits of using implicit neural representations (INR) is that the memory
requirement is independent of the spatial resolution due to the neural network represen-
tation being continuous. The past few years have seen a rising interest in implicit neural
representations or coordinate-based representations to represent a scene rather than explicit
representations such as voxels; point clouds and triangle meshes. Different implicit repre-
sentations have been proposed, such as Occupancy Networks [18], Deep Signed Distance
Function (DeepSDF) [19], Scene Representation Networks (SRNs) [20], Neural Radiance
Fields (NeRF) [21], and Sinusoidal Representation Networks (SIRENs) [22]. Among these,
Occupancy Networks learn a binary classifier and use its decision boundary to represent
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the scene. NeRF is more suitable for applications such as novel views synthesizing. SIRENs
outperform ReLU-based Multi-layer Perceptrons (MLPs) such as DeepSDF and SRNs in
terms of capturing details when modeling large scenes [22], since the sine activation
functions make SIRENs be able to create high quality gradients of the represented signals.

The overview of the proposed method (we plan to release the code in the future) is
shown in Figure 1. The estimated bathymetry is parameterized by a neural network that
takes the Euclidean easting and northing coordinates as input and predicts the correspond-
ing seafloor height estimates. Given a sidescan ping, the sonar’s position and orientation
are used to calculate the position of echoes on the seafloor. The surface normal at that
point can be calculated using the gradient of the seafloor, which then can be used in a
Lambertian scattering model to approximate the returned intensity. By comparing the
measured intensity and the approximated intensity, the gradient of the intensity loss can be
backpropagated to update the neural bathymetry. Note that the loss is calculated on all
the intensities, including the nadir area, which indicates the altitude of the sonar, allowing
the constraints from the sidescan itself to estimate the relative seafloor height. Combing
the readings from the pressure sensor, we can estimate the absolute seafloor height from
sidescan without external bathymetric data.

y

z

Sidescan

Neural bathymetry

Lambertian model
Easting, northing

Predicted 1D bathymetry slice

- intersection with 

Intensity

Intensity Losses

Figure 1. Overview pipeline of the proposed method. The bathymetry is represented by a neural
network θ which takes the easting and northing (x, y) as the input and output the corresponding
height of the seafloor. Given θ and the sonar’s current attitude we can find the positions of the sonar
echoes and the gradients of the bathymetry ∇θ are computed (θ is differentiable) so that we can
use a Lambertian model to estimate the corresponding intensities Ĩ. The measured SSS intensities I
are used as a reference to compute the loss and we use a gradient-based optimizer to optimize the
bathymetry θ so that the simulated intensities match the measured ones.

The main contribution here is that the proposed method could produce high-quality
bathymetry with sidescan data only, thus having the potential of using smaller AUV
platforms with relatively simple equipment to carry out high-quality bathymetric surveys.
We also validate that our neural rendering method is capable of generating these maps
given good navigation and a sidescan sonar alone.

2. Methods
2.1. Sidescan Sonar Overview

Figure 2 illustrates the rear view and the top view of a sidescan at O(Ox, Oy, Oz)
operating at altitude h. Sidescan emits a sound pulse to ensonify a swath of the seafloor
and collect the reflected returns and their travel times. The sonar will not get echo returns
from the seafloor until the sound passes through all the water columns, leaving a distinct
separation in the sidescan waterfall image (Figure 3). The first return from the seabed
p f br is call the first bottom return, which is very useful to determine the altitude of the
sonar. Typically the sonar’s vertical beam width αv is about 40–60◦ and the horizontal
beam width αh is about 1◦. For a point p(Px, Py, Pz) on the seafloor within the ensonified
swath, it can be expressed by its polar coordinates (d, φg), where d is the distance between
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point p and the sonar, often referred to as the slant range and φg often referred to as the
grazing angle. For a sidescan, the slant range d is known but not the grazing angle φg due to
the unknown seafloor underneath. That leaves an ambiguity in the angles in the yz-plane,
making point p can be at any grazing angle φg within αv along the arc at distance d from the
sonar assuming isovelocity sound velocity profile (SVP). Another ambiguity for sidescan is
in the xy-plane, where the ensonified point p is ambiguous over the arc q due to the sensor
opening in the xy-plane αh. However, most of the time this can be ignored due to the fact
that αh is usually very small.

O

O

y

z

port starboard

αv

αh

h ppfbr
(Px,Py,Pz)

(Ox,Oy,Oz)

R
ea

r 
V

ie
w

To
p 

V
ie

w

x

y q

Figure 2. Sidescan sonar illustration in Forward Lateral Down (FLD) frame (modified from [17]). The
sidescan sonar usually has two heads symmetrically mounted on the port and starboard side of the
AUV with a fixed angle θt, often referred as to tilt angle, which is the angle between the horizontal
axis and the center of the vertical beam αv. There is usually a gap γ between the two heads leaving
a nadir gap where sidescan does not have coverage. Sidescan usually has a wide vertical beam αv

(often referred as to the sensor opening in the yz-plane) and very narrow horizontal beam αh (often
referred as to the sensor opening in the xy-plane).

Figure 3. An example of a raw sidescan sonar waterfall image containing 1500 pings with 1 cm
across-track resolution and 0.18 m along-track resolution, where the sonar is across a hill with many
rocks. The intensity is normalized to the range [0, 1] and 1 being the highest echo strength.
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2.2. Neural SFS

In this section, we will define our bathymetric representation and how to simulate
sidescan intensities using such representation in a differentiable manner (see Table 2 for the
inputs and outputs of the proposed method). At last, we will describe how to optimize the
system to obtain the estimated bathymetry.

Table 2. The main inputs and outputs of our method.

Inputs Description

oi ∈ R3 sidescan origin at ping i
Ri ∈ SO(3) sidescan rotation matrix at ping i

Ii,n ∈ R intensity at ping i and time bin n

Outputs

θ : R2 → R bathymetry height map
R : R2 → R+ albedo map
Φ : R→ R+ beam profile

Ai per-survey line gain

2.2.1. Implicit Neural Representation

We use an implicit neural representation (INR) for the bathymetry, i.e., a function
θ : R2 → R that maps Euclidean easting and northing x, y to its corresponding seafloor
height h̃. The implicit neural representation θ is parameterized by a variant of a MLP, known
as the SIREN [22], the same as in our previous work [12,13]. Although θ can, in principle,
be any differentiable neural network, SIREN has the advantage of producing high-quality
first-order derivatives [22], allowing to reconstruct small features of the seafloor. Note that
θ is differentiable, which is crucial to optimize the bathymetry given losses on sidescan
intensities. In addition, differentiability implies continuity, meaning that the size of the
neural network model θ is independent of the spatial resolution of the bathymetry, which
is one of the advantages of INR over explicit methods such as triangle meshes.

2.2.2. Sidescan Scattering Model

Similar to our previous work [12], the proposed method in this work requires precise
positioning, which could be available from a surface vessel. In addition, we assume the
horizontal beam width αh (see Figure 2) is narrow enough to be neglected, thus leaving the
ensonified volume for every ping i lying in one plane. For every bin n in ping i, assuming
isovelocity SVP, the ensonified volume pi,n(φ), is at a fixed distance dn away from the sonar;
parameterized by angle φ, where φ = 90◦ − φg and φg is the grazing angle in Figure 2.
As aforementioned, φ is unknown without knowing the bathymetry. However, given
the estimated bathymetry θ, we can use gradient descent to determine φi,n, as shown in
Figure 4 (assuming facing starboard). Once the seafloor intersection is found, we can define
the surface normal at point p with respect to θ, given the gradient components ∇x,∇y:

Nθ(p) =
[
−∇xθ(px; py),−∇yθ(px; py), 1

]T . (1)

Using the FLD sensor frame (see Figure 4), assuming the sonar facing the starboard
side, the rotation from the tangent to the surface normal is:

ri(φi,n) = dnRi[0, sin(φi,n), cos(φi,n)]
T . (2)

Given Nθ(p) and ri(φi,n), we can use the Lambertian scattering model to compute the
cosine of the incidence angle. In particular, we use the cos2 approximation [15] same as in
our previous work [12] due to giving better approximations at low grazing angles:

Mθ
i,n(φi,n) =

(
ri(φi,n)

T Nθ(p)(pi,n(φi,n))
)2

. (3)
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y

z

starboard

dn

(Ox,Oy,Oz)
O

Figure 4. Sidescan sonar frame for the starboard side. The bathymetry θ is illustrated as a 1D slice
assuming lying within the sidescan plane. To find the intersection with the echo pi,n(φ) parameterized
by the angle φ, we use a gradient descent algorithm to find φi,n starting from φ0.

In addition, we also estimate the beam profile, gain and the albedo jointly. Similar
to [12], we estimate the gain Ai for each sidescan line. The albedo of the seafloor for the
whole surveyed area R(p) is a radial basis function parameterized by kernel weights RK,
which are learned during the optimization. The beam profile Φ(φ) is also defined as a
radial basis function with fixed-position kernels evenly spread across φ.

2.2.3. Nadir Model

Our gradient descent procedure produces for each sidescan intensity the point
pi,n(φ) = (px; py; pz) that is closest to the seafloor on the corresponding arc. If an arc
covers a volume that is completely in the water column above the seafloor, our gradient
descent procedure will not find an intersection with the seafloor, instead producing the clos-
est value above it, pz > θ(px; py). In our sonar model, such bins correspond to low-value
intensities within the nadir area. To reflect that within our model, we employ a smooth
indicator function that ensures that the intensity has no value if the closest value is far
from the seafloor, and has a value close to one if intersecting the seafloor. If we denote the
signed offset

∆θ(p) = θ(px; py)− pz, (4)

the indicator is given by the kernel:

δθ
i,n(φ) = exp(−∆θ(pi,n(φ))

2

σ2
N

). (5)

The spread parameter σN can be manually tuned to fit the smoothness of the nadir
line in the measured data.

Putting everything together, our full sonar model is given by the product of the
scattering model from [12] with our novel nadir model,

Ĩi,n = KAiδ
θ
i,n(φi,n)Mθ

i,n(φi,n)Φ(φi,n)R(pi,n(φi,n)). (6)

where K is the normalization constant. Notably, modeling the nadir transition enables us
to model the full sidescan range, as opposed to just the outer region past the nadir. In
addition, the information gained from the nadir should enable the network to implicitly
reason about the seafloor depth.
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2.2.4. Optimization

From our previous work (Section III-B) [12], having one normalization constant K
estimated for the whole dataset prior to training can improve convergence. The loss function
is merely minimizing the measured sidescan intensities and the simulated intensities:

L =
1

|{Ii,n}|∑Ii,n

∥∥ Ĩi,n − Ii,n
∥∥ (7)

where |·| denotes the size of the set {Ii,n} and ‖·‖ denotes the L2 norm. It is worth mention-
ing that the gradient descent procedure to find seafloor intersections is not differentiable;
therefore, we compute the intensity in Equation (6) without back-propagating through the
gradient descent procedure, similar to our previous work (Section II-E) [12]. Our previous
work showed that its impact could be neglected once θ has converged to the range of the
true height.

2.2.5. Assessment

To assess the proposed method, we evaluate the reconstructed bathymetry using mean
absolute error (MAE), maximum error, minimum error and standard deviation of the errors
compared to the high-resolution MBES bathymetry. The standard deviation is calculated as:

STD =

√√√√√ N
∑

i=1
∆Z2

N
, ∆Z = θ(px, py)− pz,gt, (8)

where θ(px, py) is the estimated depth point and pz,gt is the ground truth value obtained
from MBES, and N is the number of points in the height map.

3. Experiments
3.1. Data and Surveyed Area

The data to assess the proposed method are collected with a nearshore surface vessel
called Ping (see Figure 5). Ping is equipped with a Real-Time Kinematic (RTK) GPS, ensuring
the high precision of positioning. It also has a dual-head Reson 7125 MBES which collects
the bathymetric data that are used only for evaluation. The Edgetech 4200 MP sidescan
sonar is hull-mounted, ensuring sonar’s attitudes are accurate. The surveyed area contains
large features such as a hill, a ridge and some rocks. The area is at about 9–25 m depth.
Further details on the sensor and survey area are presented in Table 3.

Figure 5. MMT’s nearshore survey vessel Ping [23].
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Table 3. Dataset and survey area characteristics.

Property Value

Bathymetry resolution 0.5 m
Sidescan type Edgetech 4200 MP

Sidescan range 0.035 s⇒~50 m
Sidescan frequency 900 kHz

Composition ~70% Sedimentary rock, 30% sand
Mean altitude 17 m

Survey area ~350 m × 300 m
Sidescan pings ~93,000

The whole dataset contains 52 surveying lines of sidescan and the sidescan sonar
Edgetech 4200 MP has a 900 kHz sampling frequency with 1 cm across-track resolution
and 0.18 m along-track resolution. The raw XTF files are parsed (see Figure 3) using an
open-source software, auvlib [24], developed by ourselves and the waterfall images are
downsampled to have 64 bins per side for training, which were found empirically to have a
good trade-off between being able to reconstruct some of the rocks in the final bathymetric
map and the training time (11–12 h). Three examples of the downsampled waterfall images
can be seen from Figure 6, where each waterfall image contains 500 pings and each ping
has 128 bins for both port and starboard side.

(a) (b) (c)
Figure 6. Examples of downsampled sidescan sonar waterfall images, where each waterfall image
contains 500 pings and 128 bins (port and starboard). (a) Near the rocky area from southwest to
northeast. (b) Between the hill and the ridge from west to east. (c) Flat area from east to west, where
there is abnormal noise in the water column. Note that the port side in general appears to have higher
intensities than the starboard side.

3.2. Training Details

Similar to our previous work [12], we use a 5-layer MLP with the hidden layer size of
128, where the activation function is the sine function. All positional data are normalized
to the range [−1,1]. We train the MLP for 800 epochs using an Adam optimizer with a
learning rate of 2× 10−4 decayed by the factor 0.995 after every epoch. For each batch we
random sample 100 sidescan pings, each of which has 128 bins, 64 per side. We iterate
through all the sidescan data (roughly 93,000 pings) for one epoch. The whole training
takes approximately 12 h on a single Nvidia GEFORCE RTX 2080 Ti GPU. Note that the
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estimated bathymetric map converges pretty well in a large scale at 400 epochs, though
more epochs with a smaller learning rate would help the reconstruction of smaller details
such as rocks. The beamform Φ(φ) is only estimated for angles φ within 80◦ for either side,
based on our knowledge of the tilt angle θt. In particular, we use 20 fixed-position kernels
across [0◦, 80◦] but set the kernel weights corresponding to angles within φ = 10◦ to be a
constant value C. This is due to the fact that γ in Figure 2 can not be ignored and given our
knowledge it should be around 20◦.

4. Results

We assess our proposed method by comparing the estimated bathymetry to the high-
precision bathymetry from MBES with a resolution of 0.5 m. We use several metrics to
evaluate the quality of reconstructed bathymetry, mean absolute error (MAE), maximum,
minimum and standard deviation of the errors of the bathymetric map and the cosine
similarity [25] (bounded in [0, 1], 1 being identical) of the gradients of the bathymetric map,
similar to our previous work [12].

We begin with the qualitative results of the estimated bathymetry. Figure 7 shows the
comparison between the ground truth bathymetry and the one estimated from sidescan. In
addition, the gradients of the bathymetric maps are displayed in Figure 8, which shows
that the proposed method manages to reproduce not only the large-scale features such as
the hill and ridges but also some of the smaller features such as rocks. However, there are
many small rocks that are not reconstructed.
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Figure 7. Bathymetric maps for the surveyed area, where (a) is constructed from MBES bathymetric
data and (b) is estimated from sidescan data with a global optimization.
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Figure 8. Gradients maps for the surveyed area, where (a) is calculated with finite differences and
(b) is directly calculated from estimated bathymetry since θ is differentiable.
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To assess the estimated bathymetry further we calculate the errors on the bathymetry
for the proposed method and compare them with previous works [12,16], see Table 4. The
estimated bathymetry of the proposed method has a bias of around 10 cm and an average
error of 20 cm with standard deviation of 23 cm. However, the maximum and minimum
errors are a lot larger than the mean absolute error of 20 cm. The probability distribution
function (PDF) curves of the error is shown in Figure 9. We also compare the performance
using our previous method [12] and method used in [16] in Table 4. Note that our previous
method [12] used the MBES to simulate the altimeter to provide external bathymetric
measurement so that the mean absolute error and standard deviation are at centimeter
level. In addition, the results from [16] are compared with the Digital Elevation Model
(DEM) constructed from SBES and the surveyed area has less variation on the terrain (from
10–13 m depth), while [12] and this work are assessing the proposed methods with data
collected from high-resolution MBES from an area at 9–25 m depth.

Table 4. Statistics on the errors of the estimated bathymetry.

Max (m) Min (m) Mean (m) Abs. Mean
(m) STD (±m)

ours 2.458 −0.955 0.097 0.195 0.228
[12] 1.166 −1.244 −0.006 0.028 0.065
[16] 0.47 −0.54 0.00 - 0.12

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Error (m)

0.0

0.024

0.047

0.071

0.095

0.118

0.142

0.166

0.189

Pe
rc

en
ta

ge

Figure 9. PDF curves of errors of the surveyed area.

The albedo and beamform are also estimated with the bathymetric map at the same
time. The estimated albedo (see Figure 10) seems to have higher coefficients in the hill and
rocky areas, which is expected. However, the upper left corner area also has higher albedo
coefficients which should be related to the artifacts in the same area in Figure 8.

The estimated beamform is displayed in Figures 11 and 12, where we can see the
estimated beam profile matches the analytical model [26] using a linear-phased array with
a tilt angle θt = 40◦. The theoretical beam pattern is calculated as:

Φl(φ) =
( sin(ksin(φ− φ0))

ksin(φ− φ0)

)4
, (9)

where k = 3.29 for a (one-way) 3 dB beam width of 50◦ and φ0 is half of the beam width.
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Figure 10. Normalized estimated albedo coefficient across the surveyed area.
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Figure 11. Normalized beamform, where the blue line is using the linear-phased array model to
calculate the beamform (at title angle 40◦), the orange line and green line are estimated beamform
from the optimization for port and starboard, respectively.
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(b) Normalized analytical beam pattern

Figure 12. Normalized beam pattern for port and starboard side, (a) estimated beam pattern and
(b) analytical model using a linear-phased array with the center of beam at φ = 50◦. We can notice
the effect of setting angles within γ to a constant value in (a).

When estimating the beamform, we set beamform corresponding to φ under 10◦ to
a constant value. Doing such considerably helps the convergence of the optimization.
We found out that using different values for the constant C did not affect the quality of
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the gradient maps, as shown in Figure 13a. The qualitative results for different C are
displayed in Appendix A, from which one could barely tell the difference from each other.
However, as one can see from Table 5, the absolute height map could deviate from the
actual bathymetry, also shown in Figure 13b. This shows the proposed method could
estimate the relative height pretty well from sidescan data itself, but one might argue that
giving only a few points of absolute height of the seafloor (or even one) could “pin down”
the seafloor and reduce the absolute error.
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(a) Cosine similarity of the gradient maps
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(b) Absolute errors on the height maps

Figure 13. Setting the beamform of the angles within γ to an arbitrary constant value does not affect
the convergence of the optimization or the quality of the gradient maps. (a) shows that the cosine
similarity of the estimated gradients against the ground truth stays steadily around 0.8 as the constant
C changes from 0 to 1. However, the absolute errors on the bathymetry could deviate from the ground
truth from 20 cm to more than 1 m without external bathymetric data as constraints.

Table 5. Quantitative results.

MAE (m) Cosine Similarity

C = e−10 0.195 0.817
C = e−3 0.214 0.814
C = e−1.5 0.605 0.799
C = e−1 0.893 0.791
C = e−0.5 0.556 0.800
C = 1 0.207 0.815

Given estimated bathymetry θ, estimated albedo R and estimated beam profile Φ, we
can calculate the simulated sidescan intensities given sonar’s attitude. An example (more
in Appendix B) is displayed in Figure 14 where on the left is the measured waterfall image
downsampled to 64 bins per side and on the right is the simulated SSS. The simulated SSS
can be georeferenced using the estimated bathymetry, as shown in Figure 15. We can also
find that using a Lambertian model gives an image with much less noise. This suggests
that some speckle noise filtering on the measured SSS with a higher resolution (or even
without downsampling) might further improve the estimated bathymetry, especially for
the small features such as rocks.
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(a) Measured SSS waterfall image
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Figure 14. An example of SSS waterfall image containing 600 pings across the hill from east to west.
(a) Measured SSS downsampled to 64 bins per side for training and (b) SSS using the Lambertian
model calculated from estimated bathymetry, albedo and beam pattern.
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Figure 15. Georeferenced SSS of Figure 14b using the estimated bathymetry.

5. Discussion
5.1. External Bathymetric Measurement

In the proposed method, the absolute depth of the seafloor is obtained by com-
bining the depth of the sonar and the altitude implicitly learned from the nadir model
(Equation (5)). With the novel nadir model and modelling the full beam pattern, we could
remove the requirement of external bathymetric measurement in our previous work [12].
In particular, our previous work [12] used the MBES measurement to simulate the altimeter
readings due to lacking of an extra altimeter sensor on the surveying vehicle. However,
with the new nadir model, we could in theory use the same vehicle to survey a new area of
interest with no prior map and use sidescan data to create a bathymetric map using the
proposed method.
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Since we do not have a separate altimeter sensor reading in this particular dataset,
we can only compare the performance between using a “perfect” altimeter [12] and using
first bottom return to extract altitude in Table 4. Grantedly, using the MBES to simulate the
altimeter as external bathymetric measurement would give a better performance, namely
lower average error and standard deviation.

5.2. Implicit Neural Representations: Sirens

The proposed method uses Implicit Neural Representations, in particular a SIREN to
represent the bathymetry. Implicit Neural Representations could potentially be more mem-
ory efficient than explicit representations (e.g., triangle meshes). In addition, compared
to implicit surface representations (e.g., radial basis functions), SIRENs make fewer as-
sumptions by leveraging learning from data and can produce higher quality gradients [22]
because of the sine activation functions. In particular, SIRENs are more suitable to the
proposed method since we need access to the gradients of the seafloor for the Lambertian
model, compared to the MLPs with ReLU activation functions with sinusoidal positional
encoding [21].

5.3. Shadows

We assume the shadows can be neglected due to there being few shadows in our
dataset specifically. Additionally, because of the downsampling procedure, very few
pixels in the waterfall images correspond to shadows and we empirically found out that
simply ignoring the shadows did not affect the convergence of the model. They are
possibly ignored during the optimization as if they are outliers. Another way of dealing
with shadows is to empirically set a threshold to remove all the points corresponding to
them, as we did in our previous work [12]. However, shadows contain some information
about the seafloor features and one way to model the shadows is through differentiable
rendering [17], where the height of the protrusions causing the shadows can be inferred.

5.4. Noise in SSS Data

We, in this work, use downsampled SSS to reconstruct the bathymetry, which is
conducted by averaging the SSS intensities within larger intervals. Such a procedure has
weakened the effect of noise in the SSS images. However, if SSS data contain echoes from
objects, fish or abnormal noise in the water column (see Figure 6c), the estimated bathymetry
will still be affected. However, one of the disadvantages of downsampling is losing some
useful information. The alternative of using downsampling to reduce the assumed white
noise in the SSS waterfall images is to properly model the noise for underwater acoustic
signals [27,28] and transform the noise distribution from acoustic signal processors to the
SSS images.

5.5. SSS Resolution

In theory, the proposed method can be used on the raw sidescan images since the
method does not rely on downsampling. Downsampling SSS reduces some of the noise but
also reduces the across-track range resolution and loses some information. The across-track
range resolution, in particular, would limit how accurate the altitude inferred from the first
bottom return of SSS can be. Increasing the SSS resolution might be able to reproduce very
small features of the seafloor, e.g., small rocks. However, using raw sidescan pings to train
might run into some practical issues, such as taking too much memory so that each batch
can only contain very few pings. In addition, the positioning error and orientation error
will most likely be a problem at this level of resolution, especially at the outer part of the
sidescan pings.

5.6. Refraction

In this work, we ignore the refraction of sound waves treating the sound ray as a
straight line and we also assume isovelocity, which would result in an inaccurate calculation
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of the return echo’s position. This effect would be more severe using higher SSS resolution
or surveying a deeper area.

5.7. Potential Applications: Small AUV Bathymetry

Bathymetry surveys have gone from lead and line to MBES. These MBES originally
were attached to ships, but now are beginning to be used from AUVs. Commercial surveys
use very large and expensive AUVs such as the Kongsberg Hugin. These AUVs are
equipped with excellent MBES, inertial navigation, and Doppler Velocity Log. Generally a
large size is needed to mount a high quality MBES and to have enough thrust to overcome
any ocean currents with minimal navigation error. They can travel long missions close to
the seafloor with relatively low drift in dead-reckoning estimates. By being closer to the
seafloor the horizontal resolution is improved while the swath width is decreased. The
survey can be programmed and after the AUV is launched the ship need only be available
for emergency ascents if they occur and for the recovery at the end of the mission. It is the
high resolution and autonomy from the ship and crew that is attractive.

However there are drawbacks. These AUVs are difficult to launch and recover, re-
quiring special rigging and a large ship. The decreased swath increases the time for the
same coverage. There also is the problem of geo-referencing the data without any GPS. The
AUVs themselves are very costly and could be lost.

If one could extract the same or better bathymetry and navigation from sidescan sonar
collected from a small AUV a far larger swath could be covered with far lower requirements
on the size of the ship. If enough features are present on the sea floor simultaneous
localization and mapping, SLAM, techniques could be applied to the sidescan images
to post-process the dead-reckoning and sonar to give a corrected navigation estimate,
Figure 16. The neural rendering based methods we are working on and presented here
have the promise to provide a bathymetric estimate at the cross-track resolution of the
sidescan i.e., a few cm. The longitudinal resolution would depend on speed and ping rate
(related to slant range). So far we have looked at how the method can indeed provide
good bathymetry. As the models are fully differentiable w.r.t all parameters including the
AUV positions and orientations as well as the bathymetry, we could in principle use the
same framework to refine the navigation estimate if started from a sufficiently good SLAM
approximation. We might iterative correct the bathymetry then the navigation only to
refine the bathymetry again.

A drawback to using smaller AUVs is that they would be slow. In addition, even if the
individual swath of the sidescan is very large there needs to be many overlapping swaths
from a few different AUV headings for the estimates to correctly converge. On the other
hand while handling multiple Hugin AUVs is extremely difficult, launching many hand
held AUVs is not. We therefore propose a team of AUVs launched together to carry out
a survey in unison. Thus we can collect multiple overlapping swaths in one pass, then
repeat from a second or third heading. Equipping the AUV with acoustic modems and time
synchronizing them would allow one AUV to ping the others, which when comparing the
send and receive times post mission would allow the relative ranges between the pinging
AUV and the others to be determined. This would then be an additional constraint that
could be added to the SLAM optimization framework. This is likely needed to replace the
dead-reckoning between lines one would have when surveying with on AUV over a longer
time. By alternating the pinging AUV a web of constraints could be formed between the
AUV trajectories. This vision is illustrate in Figure 17.
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Figure 16. An example of how sidescan waterfall images can have features matched between them
that are later used in a SLAM framework to both correct the navigation and constrain the seafloor
depth estimate at these points. This is an example of where we hand annotated the matching features.
(The features need a much higher resolution than here to actually see.) Each image comprises two
waterfall images from different parallel lines of a survey. The same base waterfall image is shown to
the left in each image. Matching waterfall images are shown to the right. The green lines connecting
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matching features form a crossing pattern when the AUV was moving in opposite directions and
they are parallel when when moving in the same direction. As this was a lawn mower pattern survey
every other line is in the opposite direction. the bottom two images are the closest two lines to the
base line. The bottom line was to the starboard side of the base line (the vehicle travels downward in
these images). The other three are to the port (thanks to Li Ling for these images).

Figure 17. A schematic of a multi-agent small AUV fleet being launched (rather whimsically) from
an automatic launcher (top). These would be equipped with sidescan sonar and navigation sensors.
Optionally also acoustic modems that allowed them to ping one another according to some timing
protocol that allowed ranges between individual AUVs to be periodically measured. The AUVs
carry out the survey in parallel lines (middle). Finally we illustrate the resulting starboard side-
scan swathes from the first three lines showing how there can be substantial overlap (bottom).
Post mission any between-AUV range measurements can be combined with constraints formed by
matching features in overlapping sonar regions to improve the dead-reckoning estimates. Once
that has been performed the method of neural rendering presented here could be used to estimate
the bathymetry. The rendering optimization could even be extended to refining the AUV attitude
estimates. Such a system would allow rapid bathymetric surveys to be carried out from small boats
with low cost equipment.

6. Conclusions

We present a neural shape-from-shadow method that can be used to reconstruct
bathymetry from sidescan sonar data alone without external bathymetric data. We demon-
strate in our experiments that the proposed method can fuse multiple lines of sidescan data
from a large-scale survey into a self-consistent bathymetric map through global optimiza-
tion. The assessment of comparing with the bathymetric map constructed from a MBES
shows quantitative errors but gives a qualitatively good estimate of the relative heights of
the seafloor, clearly indicating the large features such as hills, ridges and large rocks. The
proposed method has wide applications for small surface vehicles equipped with GNSS
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or small underwater vehicles if SLAM can be used to obtain accurate positioning, which
usually lack large MBES sensors.

Future work should focus on using a higher resolution of SSS while reducing the noise
so that smaller features of the seafloor can be reconstructed. In addition, one might want
to take the sonar’s attitudes as parameters into optimization jointly with the bathymetry,
instead of treating them as a given . Another possible work is to combine raw SSS and
MBES data to produce a super-resolution bathymetry to reconstruct micro-features that are
only visible from SSS images.
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Appendix A. Qualitative Results for the Constant C
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Figure A1. Predicted bathymetry and its gradient map for C = e−10.
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Figure A2. Predicted bathymetry and its gradient map for C = e−3.
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Figure A3. Predicted bathymetry and its gradient map for C = e−1.5.
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Figure A4. Predicted bathymetry and its gradient map for C = e−1.
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Figure A5. Predicted bathymetry and its gradient map for C = e−0.5.
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Figure A6. Predicted bathymetry and its gradient map for C = 1.
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Appendix B. More SSS Images
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(b) Simulated SSS waterfall image

Figure A7. An example of SSS waterfall image across the hill from east to west. (a) Measured SSS
downsampled to 64 bins per side for training and (b) SSS using the Lambertian model calculated
from estimated bathymetry, albedo and beam pattern.
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Figure A8. Georeferenced SSS of Figure A7b using the estimated bathymetry.
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Measured SSS image

(a) Measured SSS waterfall image

Simulated SSS image
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(b) Simulated SSS waterfall image

Figure A9. An example of SSS waterfall image near the hill from east to west. (a) Measured SSS
downsampled to 64 bins per side for training and (b) SSS using the Lambertian model calculated
from estimated bathymetry, albedo and beam pattern.
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Figure A10. Georeferenced SSS of Figure A9b using the estimated bathymetry.



Sensors 2022, 22, 5092 23 of 24

Measured SSS image

(a) Measured SSS waterfall image

Simulated SSS image
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(b) Simulated SSS waterfall image

Figure A11. An example of SSS waterfall image near the rocky area from east to west. (a) Measured
SSS downsampled to 64 bins per side for training and (b) SSS using the Lambertian model calculated
from estimated bathymetry, albedo and beam pattern.
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Figure A12. Georeferenced SSS of Figure A11b using the estimated bathymetry.
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