Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data
Abstract
:1. Introduction
- By using SVM-merged DNNs on the CTG dataset, we achieved a faster convergence of the hyperplane, resulting in clinically relevant time performance. DNN automatically extracts features, and the generalized ability of SVMs was exploited for multiclass classification.
- We exploited transfer learning to improvise classification speed by bypassing the training time of the data samples.
- With the emergence of machine learning operations (MLOps), we presented a computationally lightweight model to achieve low latency in real-time settings.
- Our model outperforms the leading algorithms with respect to fetus classification accuracy.
2. Materials and Methods
2.1. CTG Dataset and Preprocessing
2.2. Proposed Classification Architecture
Algorithm 1 Function AlexNet-SVM (A, T, W). |
1: Input: AlexNet Model: A, Kernel Dimensions: Ki, |
2: Pre-trained weights of individual layers: [w1, w2,…,wn] |
3: Output: SVM Merged AlexNet Model: Asvm, |
4: Define model parameters # classifier, bias, optimizer |
5: For i ← 1 to Layers do # classes in data load |
6: if layers = = Conv then |
7: Min Batch = 10; # Minimum Batch Size |
8: Learning Rate = 1 × 10−4; |
9: output= AlexNet (data) |
10: loss ← cross_entropy (output, classes) # Loss Calculation |
11: optimizer. zero_grad (); # Update weights |
10: loss, Backward (); |
12: end |
13: LT= ← net.Layers (1:end-3) # Replacing Fully Connected Layers (FCL) |
14: Layers = LT, FCL (3, LF’20, b’20)); # LT (Layer Transfer), LF (Learn factor) |
15: SVM_L ← concatenate ((train_L), (validate_L)); # SVM_L (SVM Label) |
16: Asvm = (A, Wm, FCL) # Wm (modified weights of layers) |
17: end |
2.3. Performance Evaluation of Proposed Classification Architecture
Algorithm 2 Computation of Processing Time. |
1: Input: Model Parameters: Mp, DNN Architecture: Da, |
2: Output: Results for Processing time |
3: Define Parameters. |
4: a normal (constant) |
5: b rep(NA, constant) #replicate numerical values |
6: For each layer L belongs to [1, N] do |
7: Pt proc. time (); #Start the clock |
8: end |
9: For (i == constant){ |
10: b [i] a [i]+1; |
11: } |
12: proc. time ()-Pt; # Stop the clock |
13: output = Pt |
3. Results
4. Discussion
4.1. Merged (AlexNet-SVM) Architecture
4.2. Transfer Learning
4.3. Computational Complexity and Classification Accuracy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Fetal Accelerations |
AI | Artificial Intelligence |
ALTV | Abnormal Long-Term Variability |
ANNs | Artificial Neural Networks |
ASTV | Abnormal Short-Term Variability |
CE | Cross-Entropy |
CI | Confidence Interval |
CNNs | Convolutional Neural Networks |
CTG | Cardiotocographic |
CTGs | Cardiotocograms |
DL | Light Fetal Decelerations |
DNNs | Deep Neural Networks |
DP | Prolonged Decelerations |
DR | Repetitive Decelerations |
DS | Severe Fetal Decelerations |
ELNs | Extreme Learning Networks |
FG | Farrar Glauber |
FHR | Fetal Heart Rate |
FM | Fetal Movement |
LB | Baseline |
LSTM | Long Short-Term Memory |
LSTMs | Long Short-Term Memory Networks |
ML | Machine Learning |
MLOps | Machine Learning Operations |
MLP | Multilayer Perceptron |
N | Normal |
P | Pathological, Physiological |
S | Suspicious, Suspected |
SVMs | Support Vector Machines |
TL | Transfer Learning |
UC | Uterine Contraction |
VIF | Variance Inflation Factor |
References
- Davidson, L.; Boland, M.R. Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence. J. Pharmacokinet. Pharmacodyn. 2020, 47, 305–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Zeming, F.; Rehman, A.U.; Ullah, I.; Li, G.; Xiao, G. Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces. IEEE Access 2019, 7, 171431–171451. [Google Scholar] [CrossRef]
- Ahmad, I.; Ullah, I.; Khan, W.U.; Rehman, A.U.; Adrees, M.S.; Saleem, M.Q.; Cheikhrouhou, O.; Hamam, H.; Shafiq, M. Efficient Algorithms for E-Healthcare to Solve Multiobject Fuse Detection Problem. J. Health Eng. 2021, 2021, 9500304. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Deng, Y. A Comprehensive Feature Analysis of the Fetal Heart Rate Signal for the Intelligent Assessment of Fetal State. J. Clin. Med. 2018, 7, 223. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, C.; Improta, G.; Amato, F.; Cesarelli, G.; Romano, M. Classifying the type of delivery from cardiotocographic signals: A machine learning approach. Comput. Methods Progr. Biomed. 2020, 196, 105712. [Google Scholar] [CrossRef]
- Tran, D.; Cooke, S.; Illingworth, P.J.; Gardner, D.K. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 2019, 34, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, M.W.L.; Rodrigues, J.J.P.C.; Carvalho, F.H.C.; Chilamkurti, N.; Al-Muhtadi, J.; Denisov, V. Biomedical data analytics in mobile-health environments for high-risk pregnancy outcome prediction. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4121–4134. [Google Scholar] [CrossRef]
- Petrozziello, A.; Redman, C.W.G.; Papageorghiou, A.T.; Jordanov, I.; Georgieva, A. Multimodal Convolutional Neural Networks to Detect Fetal Compromise During Labor and Delivery. IEEE Access 2019, 7, 112026–112036. [Google Scholar] [CrossRef]
- Shahwar, T.; Zafar, J.; Almogren, A.; Zafar, H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks. Electronics 2022, 11, 721. [Google Scholar] [CrossRef]
- Cömert, Z.; Şengür, A.; Budak, Ü.; Kocamaz, A.F. Prediction of intrapartum fetal hypoxia considering feature selection algorithms and machine learning models. Health Inf. Sci. Syst. 2019, 7, 17. [Google Scholar] [CrossRef]
- Rahmayanti, N.; Pradani, H.; Pahlawan, M.; Vinarti, R. Comparison of machine learning algorithms to classify fetal health using cardiotocogram data. Procedia Comput. Sci. 2022, 197, 162–171. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, A.; Chen, Q.; Quan, B.; Liu, G.; Li, L.; Hong, J.; Wei, H.; Hao, Z. Intelligent classification of antepartum cardiotocography model based on deep forest. Biomed. Signal Process. Control 2021, 67, 102555. [Google Scholar] [CrossRef]
- Ponsiglione, A.M.; Cosentino, C.; Cesarelli, G.; Amato, F.; Romano, M. A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals. Sensors 2021, 21, 6136. [Google Scholar] [CrossRef]
- Al-Yousif, S.; Jaenul, A.; Al-Dayyeni, W.; Alamoodi, A.; Najm, I.; Tahir, N.M.; Alrawi, A.A.A.; Cömert, Z.; Al-Shareefi, N.A.; Saleh, A.H. A systematic review of automated pre-processing, feature extraction and classification of cardiotocography. PeerJ Comput. Sci. 2021, 7, e452. [Google Scholar] [CrossRef]
- Comert, Z.; Kocamaz, A.F.; Gungor, S. Cardiotocography signals with artificial neural network and extreme learning machine. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Türkey, 16–19 May 2016; pp. 1493–1496. [Google Scholar] [CrossRef]
- Hruban, L.; Spilka, J.; Chudáček, V.; Janků, P.; Huptych, M.; Burša, M.; Hudec, A.; Kacerovský, M.; Koucký, M.; Procházka, M.; et al. Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J. Eval. Clin. Pract. 2015, 21, 694–702. [Google Scholar] [CrossRef]
- Fanelli, A.; Magenes, G.; Campanile, M.; Signorini, M.G. Quantitative Assessment of Fetal Well-Being Through CTG Recordings: A New Parameter Based on Phase-Rectified Signal Average. IEEE J. Biomed. Health Inform. 2013, 17, 959–966. [Google Scholar] [CrossRef]
- Rehman, A.U.; Jiang, A.; Rehman, A.; Paul, A. Weighted Based Trustworthiness Ranking in Social Internet of Things by using Soft Set Theory. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1644–1648. [Google Scholar] [CrossRef]
- Spilka, J.; Chudáček, V.; Koucký, M.; Lhotská, L.; Huptych, M.; Janků, P.; Georgoulas, G.; Stylios, C. Using nonlinear features for fetal heart rate classification. Biomed. Signal Process. Control 2012, 7, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Dua, D.; Graff, C. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/cardiotocography (accessed on 22 January 2022).
- Bin Tufail, A.; Ma, Y.-K.; Kaabar, M.K.A.; Rehman, A.U.; Khan, R.; Cheikhrouhou, O. Classification of Initial Stages of Alzheimer’s Disease through Pet Neuroimaging Modality and Deep Learning: Quantifying the Impact of Image Filtering Approaches. Mathematics 2021, 9, 3101. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Akbari, H.; Rehman, A.U.; Nishtar, Z.; Masood, B.; Ghazvini, M.; Too, J.; Hamedi, N.; Kaabar, M.K.A. Exploiting Feature Selection and Neural Network Techniques for Identification of Focal and Nonfocal EEG Signals in TQWT Domain. J. Health Eng. 2021, 2021, 6283900. [Google Scholar] [CrossRef] [PubMed]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef]
- Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Rehman, A.U.; Hamam, H. A Hybrid Deep Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [Google Scholar] [CrossRef]
- Wang, H.; Tan, X.; Huang, Z. Mining incomplete clinical data for the early assessment of Kawasaki disease based on feature clustering and convolutional neural networks. Artif. Intell. Med. 2020, 105, 101859. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural net-works. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.; Ping, J.; Wing, Y. Evaluation of convolutional neural network for recognizing uterine contractions with electro-hysterogram. Comput. Biol. Med. 2019, 3, 103394. [Google Scholar] [CrossRef] [PubMed]
- Fergus, P.; Chalmers, C.; Montanez, C.C.; Reilly, D.; Lisboa, P.; Pineles, B. Modelling Segmented Cardiotocography Time-Series Signals Using One-Dimensional Convolutional Neural Networks for the Early Detection of Abnormal Birth Outcomes. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 5, 882–892. [Google Scholar] [CrossRef]
- Hao, D.; Song, X.; Qiu, Q.; Xin, X.; Yang, L.; Liu, X.; Jiang, H.; Zheng, D. Effect of electrode configuration on recognizing uterine contraction with electrohysterogram: Analysis using a convolutional neural network. Int. J. Imaging Syst. Technol. 2020, 31, 972–980. [Google Scholar] [CrossRef]
- Lee, K.-S.; Ahn, K.H. Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth. Diagnostics 2020, 10, 733. [Google Scholar] [CrossRef]
- Helguera-Repetto, A.C.; Soto-Ramírez, M.D.; Villavicencio-Carrisoza, O.; Yong-Mendoza, S.; Yong-Mendoza, A.; León-Juárez, M.; González-Y-Merchand, J.A.; Zaga-Clavellina, V.; Irles, C. Neonatal Sepsis Diagnosis Decision-Making Based on Artificial Neural Networks. Front. Pediatr. 2020, 8, 525. [Google Scholar] [CrossRef]
- Hussain, W.; Sadiq, M.T.; Siuly, S.; Rehman, A.U. Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks. Appl. Acoust. 2021, 177, 107941. [Google Scholar] [CrossRef]
- Reddy, S.C.; Ying, C.X. Classification and Feature Selection Approaches for Cardiotocography by Machine Learning Techniques. J. Telecommun. Electron. Comput. Eng. 2020, 12, 7–14. [Google Scholar]
- Begley, K.; Begley, C.; Smith, V. Shared decision-making and maternity care in the deep learning age: Acknowledging and overcoming inherited defeaters. J. Eval. Clin. Pract. 2020, 27, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Peterek, T.; Gajdoš, P.; Dohnálek, P.; Krohová, J. Human Fetus Health Classification on Cardiotocographic Data Using Random. Forests 2014, 298, 189–198. [Google Scholar] [CrossRef]
- Yılmaz, E.; Kılıkçıer, Ç. Determination of Fetal State from Cardiotocogram Using LS-SVM with Particle Swarm Optimization and Binary Decision Tree. Comput. Math. Methods Med. 2013, 2013, 487179. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, J.; Ikenoue, S.; Yamamoto, H.; Sato, M.; Kasuga, Y.; Mitsukura, Y.; Ikegaya, Y.; Yasui, M.; Tanaka, M.; Ochiai, D. Deep neural network-based classification of cardiotocograms outperformed conventional algorithms. Sci. Rep. 2021, 11, 13367. [Google Scholar] [CrossRef] [PubMed]
- Parvathavarthini, S.; Sharvanthika, K.S.; Bohra, N.; Sindhu, S. Performance Analysis of Squeezenet and Densenet on Fetal Brain MRI Dataset. In Proceedings of the 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 29–31 March 2022; pp. 1340–1344. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.-Z.; Huang, L.; Fang, M.; Li, B.; Fu, X.; Wang, H.; Zhao, Q. Automatic Classification of Fetal Heart Rate Based on Convolutional Neural Network. IEEE Internet Things J. 2018, 6, 1394–1401. [Google Scholar] [CrossRef]
- Yefei, Z.; Yanjun, D.; Xiaohong, Z.; Lihuan, S.; Zhidong, Z. Bidirectional Long Short-term Memory-based Intelligent Auxiliary Diagnosis of Fetal Health. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, 23–25 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, Y.; Zhang, Y.; Zhang, Y.; Zhang, X.; Shao, L. DeepFHR: Intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network. BMC Med. Inform. Decis. Mak. 2019, 19, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Statistics by Class | “Sensitivity” | “Specificity” | “Pos Pred Value” | “Neg Pred Value” | “Prevalence” | “Detection Rate” | “Detection Prevalence” | “Balanced Accuracy” |
---|---|---|---|---|---|---|---|---|
Total number of observations: 2126 | Normal recordings: 1655 | |||||||
Random Forest [35] | 0.9029 | 0.7632 | 0.9461 | 0.6304 | 0.8216 | 0.7418 | 0.7840 | 0.8330 |
LS-SVM [36] | 0.8128 | 0.8000 | 0.9811 | 0.1739 | 0.9531 | 0.7746 | 0.7840 | 0.8064 |
AlexNet [37] | 0.9866 | 0.6875 | 0.8802 | 0.9565 | 0.6995 | 0.6901 | 0.784 | 0.8370 |
DenseNet [38] | 0.8445 | 0.8236 | 0.8653 | 0.8245 | 0.784 | 0.784 | 0.784 | 0.9367 |
MLP [39] | 0.8394 | 0.8289 | 0.8199 | 0.8083 | 0.6887 | 0.8840 | 0.8840 | 0.8598 |
LSTM [40] | 0.9744 | 0.9621 | 0.9534 | 0.921 | 0.833 | 0.925 | 0.8870 | 0.9625 |
CWT-CNN [41] | 0.9012 | 0.8721 | 0.8981 | 0.9873 | 0.756 | 0.756 | 0.757 | 0.9408 |
Proposed architecture | 0.9894 | 0.9877 | 0.9982 | 0.9925 | 0.784 | 0.784 | 0.784 | 0.9991 |
Pathological recordings: 176 | ||||||||
Random Forest [35] | 0.8628 | 0.95610 | 0.47059 | 1.000 | 0.03756 | 0.03756 | 0.07981 | 0.8780 |
LS-SVM [36] | 0.8888 | 0.95588 | 0.47059 | 0.9949 | 0.04225 | 0.03756 | 0.07981 | 0.9023 |
AlexNet [37] | 0.9232 | 0.96552 | 0.58824 | 1.000 | 0.04695 | 0.04695 | 0.07981 | 0.8927 |
Densenet [38] | 0.9161 | 0.98492 | 0.82353 | 1.000 | 0.06573 | 0.06573 | 0.07981 | 0.8724 |
MLP [39] | 0.9411 | 0.98000 | 0.76471 | 1.000 | 0.06103 | 0.06103 | 0.07981 | 0.9151 |
LSTM [40] | 0.9652 | 0.9634 | 0.7921 | 1.000 | 0.06521 | 0.0671 | 0.07981 | 0.9210 |
CWT-CNN [41] | 0.9753 | 0.9843 | 0.8322 | 1.000 | 0.07412 | 0.0667 | 0.07981 | 0.9523 |
Proposed architecture | 1.000 | 0.99492 | 0.94118 | 1.000 | 0.07512 | 0.07512 | 0.07981 | 0.9974 |
Suspect recordings: 295 | ||||||||
Random Forest [35] | 0.5000 | 0.9235 | 0.5172 | 0.91848 | 0.14085 | 0.07042 | 0.13615 | 0.7117 |
LS-SVM [36] | 0.7200 | 0.9816 | 0.8966 | 0.8696 | 0.2347 | 0.1221 | 0.1221 | 0.8608 |
AlexNet [37] | 0.8056 | 0.9783 | 0.8566 | 0.9620 | 0.1690 | 0.1362 | 0.1362 | 0.9028 |
DenseNet [38] | 0.9032 | 0.9545 | 0.9615 | 0.9837 | 0.1455 | 0.1315 | 0.1362 | 0.8889 |
MLP [39] | 0.8788 | 0.9655 | 0.9834 | 0.9783 | 0.1549 | 0.1362 | 0.1362 | 0.9194 |
LSTM [40] | 0.8921 | 0.9678 | 0.9873 | 0.9838 | 0.1564 | 0.1362 | 0.1315 | 0.9675 |
CWT-CNN [41] | 0.9512 | 0.985 | 0.9887 | 0.9765 | 0.1456 | 0.1362 | 0.1362 | 0.9876 |
Proposed architecture | 0.9667 | 0.996 | 1.0000 | 0.9946 | 0.1408 | 0.1362 | 0.1362 | 0.9972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad Hussain, N.; Rehman, A.U.; Othman, M.T.B.; Zafar, J.; Zafar, H.; Hamam, H. Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data. Sensors 2022, 22, 5103. https://doi.org/10.3390/s22145103
Muhammad Hussain N, Rehman AU, Othman MTB, Zafar J, Zafar H, Hamam H. Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data. Sensors. 2022; 22(14):5103. https://doi.org/10.3390/s22145103
Chicago/Turabian StyleMuhammad Hussain, Nadia, Ateeq Ur Rehman, Mohamed Tahar Ben Othman, Junaid Zafar, Haroon Zafar, and Habib Hamam. 2022. "Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data" Sensors 22, no. 14: 5103. https://doi.org/10.3390/s22145103
APA StyleMuhammad Hussain, N., Rehman, A. U., Othman, M. T. B., Zafar, J., Zafar, H., & Hamam, H. (2022). Accessing Artificial Intelligence for Fetus Health Status Using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data. Sensors, 22(14), 5103. https://doi.org/10.3390/s22145103