Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Soil Warming Experiment
2.3. Characterization of Tree Growth Seasonality from Dendrometer Data
2.4. Statistical Analyses
3. Results
3.1. Soil Temperature and Dendrometer Data
3.2. Tree Growth Seasonality
3.3. Correlations among the Seasonal Parameters
4. Discussion
4.1. Tree Growth Seasonality
4.2. Soil Warming Effect
4.3. Effects of Drought and Insect Defoliation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, L.; Zhang, X.; Mekis, E.; Wan, H.; Bush, E. Changes in Canada’s Climate: Trends in Indices Based on Daily Temperature and Precipitation Data. Atmos. Ocean. 2018, 56, 332–349. [Google Scholar] [CrossRef] [Green Version]
- Christidis, N.; Stott, P.; Brown, S.; Karoly, D.; Caesar, J. Human Contribution to the Lengthening of the Growing Season during 1950–99. J. Clim. 2007, 20, 5441–5454. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing Lengths of the Four Seasons by Global Warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Myneni, R.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Correa-Díaz, A.; Romero-Sánchez, M.; Villanueva-Díaz, J. The greening effect characterized by the Normalized Difference Vegetation Index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. For. Ecol. Manag. 2021, 496, 119402. [Google Scholar] [CrossRef]
- Zhu, W.; Tian, H.; Xu, X.; Pan, Y.; Chen, G.; Lin, W. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 2011, 21, 260–271. [Google Scholar] [CrossRef]
- Park, H.; Jeong, S.-J.; Ho, C.-H.; Park, C.-E.; Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 2018, 217, 191–202. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Berner, L.; A Beck, P.S.; Bunn, A.; Lloyd, A.H.; Goetz, S. High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982–2008). J. Geophys. Res. Earth Surf. 2011, 116, G01015. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 2018, 8, 5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 1 March 2022).
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Furze, M.E.; Seyednasrollah, B.; Krassovski, M.B.; Latimer, J.M.; Nettles, W.R.; Heiderman, R.R.; et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 2018, 560, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Menardi, R. Trephor: A New Tool for Sampling Microcores from tree stems. IAWA J. 2006, 27, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-W.; Eckstein, D.; Schmitt, U. The pinning method: From pinning to data preparation. Dendrochronologia 2007, 25, 79–86. [Google Scholar] [CrossRef]
- Miller, T.W.; Stangler, D.F.; Larysch, E.; Honer, H.; Seifert, T.; Kahle, H.-P. A methodological framework to optimize models predicting critical dates of xylem phenology based on dendrometer data. Dendrochronologia 2022, 72, 125940. [Google Scholar] [CrossRef]
- Duchesne, L.; Houle, D.; D’Orangeville, L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada. Agric. For. Meteorol. 2012, 162–163, 108–114. [Google Scholar] [CrossRef]
- Van Der Maaten, E.; Pape, J.; Van Der Maaten-Theunissen, M.; Scharnweber, T.; Smiljanić, M.; Cruz-García, R.; Wilmking, M. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiol. 2018, 38, 1820–1828. [Google Scholar] [CrossRef]
- Knüsel, S.; Peters, R.; Haeni, M.; Wilhelm, M.; Zweifel, R. Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series. Forests 2021, 12, 765. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Morin, H.; Saracino, A.; Motta, R.; Borghetti, M. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 2006, 170, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deslauriers, A.; Rossi, S.; Anfodillo, T. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 2007, 25, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Cruz-García, R.; Balzano, A.; Čufar, K.; Scharnweber, T.; Smiljanić, M.; Wilmking, M. Combining Dendrometer Series and Xylogenesis Imagery—DevX, a Simple Visualization Tool to Explore Plant Secondary Growth Phenology. Front. For. Glob. Chang. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Downes, G.; Beadle, C.; Worledge, D. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 1999, 14, 102–111. [Google Scholar] [CrossRef]
- Deslauriers, A.; Morin, H.; Urbinati, C.; Carrer, M. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 2003, 17, 477–484. [Google Scholar] [CrossRef]
- Deslauriers, A.; Rossi, S.; Turcotte, A.; Morin, H.; Krause, C. A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 2011, 29, 151–161. [Google Scholar] [CrossRef] [Green Version]
- van der Maaten, E.; van der Maaten-Theunissen, M.; Smiljanić, M.; Rossi, S.; Simard, S.; Wilmking, M.; Deslauriers, A.; Fonti, P.; von Arx, G.; Bouriaud, O. dendrometeR: Analyzing the pulse of trees in R. Dendrochronologia 2016, 40, 12–16. [Google Scholar] [CrossRef]
- Zweifel, R.; Haeni, M.; Buchmann, N.; Eugster, W. Are trees able to grow in periods of stem shrinkage? New Phytol. 2016, 211, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, R.; Sterck, F.; Braun, S.; Buchmann, N.; Eugster, W.; Gessler, A.; Häni, M.; Peters, R.L.; Walthert, L.; Wilhelm, M.; et al. Why trees grow at night. New Phytol. 2021, 231, 2174–2185. [Google Scholar] [CrossRef]
- Turcotte, A.; Morin, H.; Krause, C.; Deslauriers, A.; Thibeault-Martel, M. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric. For. Meteorol. 2009, 149, 1403–1409. [Google Scholar] [CrossRef]
- Tardif, J.; Flannigan, M.; Bergeron, Y. An Analysis of the Daily Radial Activity of 7 Boreal Tree Species, Northwestern Quebec. Environ. Monit. Assess. 2001, 67, 141–160. [Google Scholar] [CrossRef] [PubMed]
- D’Orangeville, L.; Houle, D.; Côté, B.; Duchesne, L.; Morin, H. Increased soil temperature and atmospheric N deposition have no effect on the N status and growth of a mature balsam fir forest. Biogeosciences 2013, 10, 4627–4639. [Google Scholar] [CrossRef] [Green Version]
- van der Maaten, E.; Bouriaud, O.; van der Maaten-Theunissen, M.; Mayer, H.; Spiecker, H. Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley. Agric. For. Meteorol. 2013, 181, 85–93. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Itter, M.; Kneeshaw, D.; Munger, J.W.; Richardson, A.D.; Dyer, J.M.; A Orwig, D.; Pan, Y.; Pederson, N. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 2021, 42, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; DesLauriers, A.; Griçar, J.; Seo, J.-W.; Rathgeber, C.B.K.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Alvarez-Uria, P.; Körner, C. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct. Ecol. 2007, 21, 211–218. [Google Scholar] [CrossRef]
- Wilson, G.; Green, M.; Brown, J.; Campbell, J.; Groffman, P.; Durán, J.; Morse, J. Snowpack affects soil microclimate throughout the year. Clim. Chang. 2020, 163, 705–722. [Google Scholar] [CrossRef]
- Delisle, J.; Bernier-Cardou, M.; Labrecque, A. Extreme cold weather causes the collapse of a population of Lambdina fiscellaria (Lepidoptera: Geometridae) in the Laurentian Mountains of Québec, Canada. Can. Èntomol. 2019, 151, 311–328. [Google Scholar] [CrossRef]
- Houle, D.; Lajoie, G.; Duchesne, L. Major losses of nutrients following a severe drought in a boreal forest. Nat. Plants 2016, 2, 16187. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Côté, B.; Houle, D.; Morin, H.; Duchesne, L. A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir. Trees 2013, 27, 1525–1536. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Côté, B.; Duchesne, L. Soil response to a 3-year increase in temperature and nitrogen deposition measured in a mature boreal forest using ion-exchange membranes. Environ. Monit. Assess. 2014, 186, 8191–8202. [Google Scholar] [CrossRef] [PubMed]
- D’Orangeville, L.; Côté, B.; Houle, D.; Whalen, J. Reduced mineralizable carbon in a boreal forest soil after three years of artificial warming. Can. J. Soil Sci. 2013, 93, 567–572. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation, R Package Version 0.8.3. 2020. Available online: https://dplyr.tidyverse.org/ (accessed on 1 March 2022).
- Haeni, M.; Knüsel, S.; Wilhelm, M.; Peters, R.L.; Zweifel, R. Treenetproc—Clean, Process and Visualise Dendrometer Data, R Package Version 0.1.4. 2020. Available online: https://Github.Com/Treenet/Treenetproc (accessed on 1 March 2022).
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef] [PubMed]
- Adams, J. Durartion of Light and Growth. Ann. Bot. 1924, os-38, 509–523. [Google Scholar] [CrossRef]
- Kramer, P.J. Effect of Variation in Length of Day on Growth and Dormancy of Trees. Plant Physiol. 1936, 11, 127–137. [Google Scholar] [CrossRef] [Green Version]
- D’Orangeville, L.; Houle, D.; Duchesne, L.; Côté, B. Can the Canadian drought code predict low soil moisture anomalies in the mineral soil? An analysis of 15 years of soil moisture data from three forest ecosystems in Eastern Canada. Ecohydrology 2015, 9, 238–247. [Google Scholar] [CrossRef]
- Duchesne, L.; Houle, D. Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. For. Ecol. Manag. 2011, 262, 863–872. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.; Renner, S.S.; Zohner, C.M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef]
- Norby, R.J. Comment on “Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees”. Science 2021, 371, 1689–1699. [Google Scholar] [CrossRef]
- Lupi, C.; Morin, H.; DesLauriers, A.; Rossi, S. Xylogenesis in black spruce: Does soil temperature matter? Tree Physiol. 2012, 32, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, M.C.E.; Rossi, S.; Walsh, D.; Morin, H.; Houle, D. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce. Front. Plant Sci. 2015, 6, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Years | Means | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | ||
Growth onset (DOY; 5% of yearly growth completed) | |||||||||||||
Control | 147 | 155 | 147 | 140 | 149 | 149 | 155 | 156 | 157 | 164 | 157 | 146 | 151 |
Heated | 145 | 160 | 148 | 146 | 157 | 148 | 153 | 153 | 154 | 162 | 155 | 145 | 152 |
Overall | 146 | 157 | 147 | 142 | 152 | 149 | 154 | 155 | 156 | 163 | 156 | 146 | 152 |
Growth cessation (DOY; 95% of yearly growth completed) | |||||||||||||
Control | 249 | 232 | 236 | 241 | 273 | 241 | 264 | 248 | 294 | 259 | 242 | 214 | 248 |
Heated | 254 | 232 | 242 | 242 | 261 | 226 | 268 | 223 | 234 | 242 | 232 | 206 | 240 |
Overall | 252 | 232 | 239 | 242 | 268 | 235 | 266 | 237 | 270 | 252 | 238 | 211 | 244 |
Growing season duration (days; from 5% to 95% of yearly growth completed) | |||||||||||||
Control | 102 | 77 | 89 | 102 | 124 | 92 | 109 | 92 | 137 | 95 | 85 | 68 | 96 |
Heated | 109 | 72 | 95 | 96 | 104 | 77 | 116 | 71 | 80 | 80 | 76 | 61 | 88 |
Overall | 106 | 75 | 92 | 99 | 116 | 86 | 112 | 83 | 114 | 88 | 81 | 66 | 93 |
Total annual growth (µm) | |||||||||||||
Control | 1572 | 1672 | 1260 | 679 | 547 | 685 | 896 | 1292 | 1107 | 1055 | 1102 | 1065 | 1115 |
Heated | 1018 | 1031 | 1079 | 824 | 818 | 1301 | 1513 | 1957 | 1409 | 1504 | 1547 | 1090 | 1216 |
Overall | 1295 | 1322 | 1178 | 741 | 663 | 949 | 1160 | 1577 | 1228 | 1248 | 1293 | 1073 | 1160 |
Average daily growth rate (µm/day) | |||||||||||||
Control | 15.4 | 21.6 | 16.6 | 7.4 | 4.3 | 8.0 | 8.5 | 15.1 | 7.9 | 11.3 | 13.9 | 15.8 | 12.7 |
Heated | 11.4 | 14.9 | 12.7 | 8.9 | 8.1 | 16.4 | 13.9 | 26.9 | 17.6 | 18.7 | 20.4 | 17.9 | 15.0 |
Overall | 13.4 | 17.9 | 14.8 | 8.0 | 5.9 | 11.6 | 10.8 | 20.2 | 11.8 | 14.4 | 16.7 | 16.5 | 13.7 |
Effect | Onset | Cessation | Duration | Total | Rate | ||||
---|---|---|---|---|---|---|---|---|---|
5% | 80% | 90% | 95% | 80% | 90% | 95% | |||
Treatment | 0.2 | 2.0 | 5.0 * | 9.6 * | 2.8 | 5.6 * | 11.2 ** | 8.4 ** | 21.0 *** |
Year | 85.1 *** | 38.1 *** | 14.4 *** | 68.2 *** | 3.5 * | 3.0 * | 19.0 *** | 3.8 * | 9.6 *** |
Interaction | 0.5 | 0.8 | 1.0 | 27.2 *** | 1.6 | 1.0 | 2.9 * | 0.9 | 1.3 |
Effect | Cessation | Duration | Total | Rate | |||||
---|---|---|---|---|---|---|---|---|---|
80% | 90% | 95% | 80% | 90% | 95% | ||||
Onset | 5% | 0.51 *** | 0.26 * | 0.23 * | −0.28 ** | −0.17 | −0.05 | −0.08 | −0.04 |
Cessation | 80% | 0.49 *** | 0.41 *** | 0.59 *** | 0.27 ** | 0.28 ** | 0.02 | −0.10 | |
90% | 0.68 *** | 0.30 ** | 0.87 *** | 0.60 *** | −0.24 * | −0.45 *** | |||
95% | 0.22 * | 0.55 *** | 0.93 *** | −0.22 * | −0.59 *** | ||||
Duration | 80% | 0.46 *** | 0.35 *** | 0.11 | −0.06 | ||||
90% | 0.62 *** | −0.22 * | −0.44 *** | ||||||
95% | −0.21 * | −0.60 *** | |||||||
Total | 0.88 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oogathoo, S.; Duchesne, L.; Houle, D.; Kneeshaw, D. Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment. Sensors 2022, 22, 5155. https://doi.org/10.3390/s22145155
Oogathoo S, Duchesne L, Houle D, Kneeshaw D. Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment. Sensors. 2022; 22(14):5155. https://doi.org/10.3390/s22145155
Chicago/Turabian StyleOogathoo, Shalini, Louis Duchesne, Daniel Houle, and Daniel Kneeshaw. 2022. "Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment" Sensors 22, no. 14: 5155. https://doi.org/10.3390/s22145155
APA StyleOogathoo, S., Duchesne, L., Houle, D., & Kneeshaw, D. (2022). Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment. Sensors, 22(14), 5155. https://doi.org/10.3390/s22145155