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Abstract: Unsupervised deep learning methods have shown great success in jointly estimating
camera pose and depth from monocular videos. However, previous methods mostly ignore the
importance of multi-scale information, which is crucial for pose estimation and depth estimation,
especially when the motion pattern is changed. This article proposes an unsupervised framework
for monocular visual odometry (VO) that can model multi-scale information. The proposed method
utilizes densely linked atrous convolutions to increase the receptive field size without losing image
information, and adopts a non-local self-attention mechanism to effectively model the long-range
dependency. Both of them can model objects of different scales in the image, thereby improving the
accuracy of VO, especially in rotating scenes. Extensive experiments on the KITTI dataset have shown
that our approach is competitive with other state-of-the-art unsupervised learning-based monocular
methods and is comparable to supervised or model-based methods. In particular, we have achieved
state-of-the-art results on rotation estimation.

Keywords: visual odometry; V-SLAM; unsupervised learning

1. Introduction

Visual odometry (VO) is the key part of V-SLAM, which can recover the camera’s
6-DOF pose and single-frame depth map from the video sequence. It is widely used in
robotics [1], autonomous driving [2], augmented/virtual reality [3], and so on. Since VO
has a clear definition in geometry, methods that are based on geometry and probability
have been greatly developed, which are collectively referred to as model-based algorithms.
According to the different methods of data association between adjacent frames, model-
based algorithms can be grouped into feature-based and direct methods. After decades of
progress, a large number of excellent algorithms have been proposed in each, such as ORB-
SLAM [4] for the former group and LSD-SLAM [5], DSO [6] for the latter group. Despite
their prosperity, model-based methods also have non-negligible shortcomings. First of
all, the geometric probability models are based on static scene assumptions, but dynamic
objects, such as people and cars, exactly exist in real scenes. Second, they only use the
surface information of the image, while the deep semantics, space and other information are
not well exploited. Third, they need complex manual procedures, such as sensor calibration,
to complete the entire process [6]. When faced with challenging scenes, such as fast camera
movement, lighting changes, and insufficient environmental textures, the algorithms will
drop sharply or even fail to run.

As is well known, deep learning has achieved excellent results in many computer
vision tasks, such as object detection, image classification, and semantic segmentation.
This also has led researchers to employ deep learning in visual odometry. Supervised
deep learning [7] regards VO as a regression problem. Overall, it utilizes a convolutional
neural network (CNN) to extract efficient feature representations from raw RGB images,
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and then exploits a recurrent neural network (RNN) to regress 6-DOF camera motion.
Supervised learning-based VO requires a large dataset with ground truth to train the
networks. However, ground truth data are difficult and expensive to collect in practice.
Thus, much attention is transferred to unsupervised learning.

Compare to supervised methods, unsupervised learning can achieve comparable
performance [8,9] without requiring ground truth datasets. Unsupervised learning meth-
ods simultaneously estimate the camera pose and depth map of current frame, as well
as reconstructing the adjacent frame by differentiable image warping. This process is
usually achieved by constructing a loss function that measures the photometric consistency
between the reconstructed and the real images. Since Zhou et al. [8] first introduced the
concept of unsupervised learning, various approaches [10,11] have flourished successively,
empowering the unprecedented flexibility and practicability of VO.

Although unsupervised methods have shown great progress in the monocular VO
task, there is still room for improvement. For instance, the importance of multi-scale
information for the visual odometry task was not noted in previous works. The multi-
scale information is very critical for VSLAM and VO task because objects of different
scales contribute differently to the motion. In particular, for small-scale objects, such
as points, their relationship in the co-visible image is determined by the fundamental
matrix, and it is more accurate to recover motion from the fundamental matrix in scenes of
translational motion. For large-scale objects, such as lines and surfaces, the co-visible image
not only contains the basic epipolar mapping relationship, but also has a homography
geometric relationship. In the rotational motion scene, the fundamental matrix is degraded,
so accurate motion estimation can be obtained by using the homography brought by
large-scale objects. In the model-based algorithms, these can be accurately expressed
using geometric modeling. However, in the learning-based algorithms, the CNN or RNN
structure is limited by the size of the convolution kernel, and can only focus on the local
information of the image. In other words, modeling the multi-scale information is a promise
direction to improve the learning methods.

Motivated by the aforementioned fact, we propose an unsupervised monocular VO
framework based on multi-scale modeling. Our network consists of a pose estimation
sub-network and a depth estimation sub-network, respectively, which is similar to the
previous structure [7,8]. The pose estimation sub-network inputs adjacent image frames
and regresses the relative transformation. The depth estimation sub-network inputs a single
frame of image and outputs the corresponding depth map. The predicted pose and depth
are then used to generate supervised information through the view synthesis technique,
which guides the training of the entire network. The overall network framework is shown
in Figure 1. As illustrated, our network develops two strategies to model the multi-scale
information. First, we add dilated convolutional layers to the backbone of the network,
which utilizes distant pixels to increase the size of the convolution kernel. In addition,
we densely link convolutional layers with different dilation rates to increase the density
of image pixels. As such, the size of the receptive field is significantly increased without
losing image information. Second, we introduce a non-local self-attention mechanism,
which computes the global dependencies between features at different locations, and then
performs weighted fusion of the original feature maps. This mechanism makes each pixel
in the feature map contain the information of other positions. In addition, we generate
depth maps of different scales, and calculate the photometric loss separately at each scale
to realize multi-scale information modeling at the image level. Our contributions can be
summarized as follows:

1. We propose to use densely linked atrous convolutions to increase the receptive field
size in VO task. As such, the network can effectively capture multi-scale information.

2. We propose to use the non-local self-attention mechanism to calculate the pixel-level
pairwise relation as well as model the long-range dependency. Thus our network can
make better use of the multi-scale information in the image.
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We extensively evaluate the proposed framework on the KITTI dataset, and the results
show that our method is competitive with other state-of-the-art unsupervised learning-
based monocular methods and is comparable to supervised or model-based methods. In
particular, we have achieved state-of-the-art results on rotation estimation.

The remainder of this article is organized as follows: Section 2 provides the research
summary; Section 3 describes our architecture and the training scheme; Section 4 describes
the experimental setting and illustrates the evaluation results with corresponding analysis;
Section 5 offers concluding thoughts and directions for future work.

Figure 1. Illustration of our proposed framework. The DepthNet takes a single image as input
and predicts corresponding depth map D̂t−1. The PoseNet takes every two consecutive images as
input and predicts corresponding camera pose Tt−1,t. The differentiable image warping is applied to
reconstructed image Ît, then we calculate the photometric consistency loss LP according to It and
Ît. The depth map D̂t−1 is used to calculate the depth loss LD and geometry consistency loss LGC.
Atrous conv denotes the densely linked atrous convolution layers, and attention denotes the non-local
self-attention module.

2. Related Work
2.1. Supervised Methods

PoseNet [12], proposed by Kendall et al. in 2015, is the first method that uses CNN to
complete the VO task, which utilizes an end-to-end approach to directly regress the 6DOF
camera poses from monocular image sequences. However, the VO gets the camera pose
from consecutive image sequences, so researchers have turned their attention to the RNN
network, which can better process sequence data. Wang et al. proposed DeepVO [7] in 2017,
which uses a two-layer LSTM to process sequence information and realizes the learning
of image sequence correlation. On the basis of this large framework, technologies such as
optical flow estimation [13] and depth uncertainty [14] were introduced into VO, which
further improves the accuracy and robustness. The limitation of supervised learning is that
it requires a large amount of labeled data. The acquisition of ground truth often requires
expensive equipment or highly manual labeling, and some gathered data are inaccurate.
For example, depth obtained by LIDAR is sparse, and the output depth of Kinect contains
a lot of noise. Furthermore, some ground truth is unable to be obtained (e.g., optical flow).
Previous works have tried to address these problems with synthetic datasets [15], but there
is always a gap between synthetic and real-world data.

2.2. Unsupervised Methods

Benefiting from datasets that do not require ground truth, unsupervised learning
has better generalization and adaptability, so it has become the focus of research. In 2017,
Zhou et al. [8] proposed to use a network capable of simultaneously predicting depth and
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pose, and used differentiable image warping to reconstruct the adjacent frame from the
obtained depth and pose. The photometric loss was then calculated to guide the training of
the network, and this framework has also become the basis for unsupervised methods. On
this basis, Wang et al. [9] used optical flow as the network input, and used the consistency
constraints of forward and backward optical flows to construct a loss function, which
improved the accuracy of the network. Yasin, Li et al. [16,17] applied adversarial generative
network (GAN) to further strengthen the ability to discriminate between the reconstructed
image and the original image. In order to solve the problem of monocular scale uncertainty,
UDeepVO [18] used the pose consistency constraints and binocular disparity smooth
constraints to construct a loss function, which solves the scale uncertainty problem to a
certain extent. GeoNet [19] proposed to use decomposed optical flow to eliminate dynamic
objects in the scene, while the method proposed by Jia et al. [10] used the depth consistency
constraint to form a mask to achieve the same purpose.

2.3. Atrous Convolution

Atrous convolution was first proposed in [20], which can efficiently compute wavelet
transforms. It was first introduced into deep learning by Papandreou et al. [21], and
it was also called dilated convolution [22]. Since then, dilated convolutions have been
widely used in feature extraction modules in deep learning to obtain denser features.
Atrous convolutions can also expand the receptive field of convolutional layers so that the
obtained feature maps contain larger-scale information, which shows some advantages in
semantic segmentation tasks [23]. Building on this approach, Yu et al. [22] used multiple
atrous convolutional layers with different dilation rates to model the multi-scale context.
In recent years, atrous convolution techniques have also been widely used in various deep
deep learning tasks, such as object detection [24] and semantic segmentation [25]. In this
paper, we introduce atrous convolution [26] into the VO task for the first time, and we
use densely linked multi-layer atrous convolutions to capture multi-scale information
in images.

2.4. Non-Loacl Self-Attention

Self-attention mechanisms have recently been successfully applied in various tasks,
such as machine translation [27] and graph embedding [28]. Ref. [27] is one of the first
attempts to apply a self-attention mechanism to model non-local dependencies in machine
translation. NLNet [29] adopts self-attention mechanisms to model the pixel-level pairwise
relations. CCNet [30] accelerates NLNet via stacking two criss-cross blocks, and is applied
to semantic segmentation. However, NLNet actually learns query-independent attention
maps for each query position, which is a waste of computation cost to model pixel-level
pairwise relations. To model the global context features, SENet [31] rescales different
channels to recalibrate the channel dependency with a global context. However, these
methods adopt rescaling for feature fusion, which is not effective enough for non-local
modeling. GCNet [32] via addition fusion as NLNet [29], with the lightweight property as
SENet, is used to model the non-local global context. Inspired by these works, we propose
to use a non-local self-attention block to effectively model multi-scale objects in images,
thus improving the accuracy of VO.

3. Method

In this section, we introduce our method in detail. We first introduce the pipeline of
our method illustrated in Figure 1. After that, we introduce the two proposed modules for
modeling multi-scale information in Sections 3.2 and 3.3, respectively. Finally, in Section 3.4,
we introduce the loss function used for training.

3.1. Overview

Our method focuses on recovering the camera’s motion and depth of each frame from
the monocular video. We consider the network that consists of a DepthNet and a PoseNet
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as the baseline. DepthNet is the structure of U-net [33] that utilizes ResNet50 [34] as the
encoder. The decoder is composed by upsampling and deconvolution layers. PoseNet uses
ResNet18 to extract the features, and regresses the 6-DOF relative transformation by 1× 1
convolutional layers.

The input of the network is the continuous frames {It−1, It, · · · , It+N}. For simplic-
ity, we only describe the processing process of two adjacent frames {It−1, It} of a video
sequence, and multiple frames are similar. We take the concatenation of the current frame
It and the previous frame It−1 according to the channel as the input of PoseNet, and then
regress the relative transformation Tt−1,t ∈ SO(3) between It−1 and It. DepthNet takes
the previous frame It−1 as input and regresses the depth map D̂t−1. Then, we apply view
synthesis to reconstruct It by differentiable image warping:

pt ∼ KTt−1,tD̂t−1(pt−1)K−1 pt−1 (1)

where pt−1 and pt are the coordinates of a pixel in It−1 and It, respectively. K denotes the
camera intrinsics. With the view synthesis described above, we obtain the reconstructed
image Ît. If the relative transformation Tt−1,t and depth D̂t−1 are accurate enough, then the
reconstructed image Ît and the real image It should be the same, so we use the difference∥∥ Ît − It

∥∥ as supervisory information to guide the optimization.
On this basis, we improve the DepthNet and PoseNet by integrating multi-scale

information into the network. In particular, we use densely linked dilated convolution
layers to increase the receptive field size for the encoders of DepthNet and PoseNet, and
use a non-local self-attention mechanism to make the network notice pixel-level long-
range dependencies.

3.2. Densely Connected Atrous Convolution

Atrous convolution that can increase receptive field while keeping the feature map
resolution unchanged was first introduced in [23]. In the one-dimensional case, let y(i)
denote the output signal and x(i) denote the input signal, and atrous convolution can be
formulated as follows:

y(i) =
T

∑
k=1

x(i + d× k)×ω(k) (2)

where d is the dilation rate, ω(k) denotes the k-th parameter of filter, and T is the filter
size. This equation reduces to a standard convolution when d = 1. Atrous convolution
is equivalent to convolving the input x with up-sampled filters produced by inserting
d− 1 zeros between two consecutive filter values. Thus, a large dilation rate means a large
receptive field. For an atrous convolutional layer with the dilation rate d and the kernel
size T, the equivalent receptive field size R is

R = (d− 1)× (T − 1) + T (3)

In the actual scene of VO, there are usually objects of different scales, which are very
important for depth estimation and pose estimation. However, previous unsupervised
methods simply used encoder to extract features for pose regression, resulting in the multi-
scale information not being well modeled. To make use of multi-scale information, the
feature maps must be able to cover different scales of receptive field. To this end, we
add the densely linked atrous convolutional layers with different dilation rates [25] to
the backbone of the encoder. The network details are shown in Figure 2. We cascade
5 convolutional layers with different dilation rates, and the smaller dilation rate is located
in a lower layer. The input of this module is the feature maps, and the input for each atrous
convolutional layer is the concatenation of the original feature maps and the previous
atrous convolutional layers’ output. The formula is expressed below:
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yl = HT,dl
( concat [yl−1, yl−2, ..., y0]) (4)

where HT,dl
represents the atrous convolutional layer, dl represents the dilation rate of layer

l, yl represents the output feature maps of layer l, and [...] represents the concatenation
operation. Finally, we concatenate the output of each atrous convolutional layer with the
original feature maps as the final output of the entire module. Considering the influence of
the gradual reduction of feature resolution, the entire module is embedded after stage1 of
the encoder.

The advantages to densely link the atrous convolutional layers are double fold. First,
it can not only make the receptive field significantly larger, but also can utilize more pixel
information involved in feature extraction for large-scale objects. In the design, we set the
kernel size be 3 ∗ 3 for the atrous convolutional layer, and the dilation rates are 3, 6, 12 and
18, respectively. Therefore, the final receptive field size is

Rmax = R3,3 + R3,6 + R3,12 + R3,18 − 3 = 79 (5)

This illustrates that the size of the receptive field almost reaches the size of the feature
maps. Accordingly, the use of more pixels for modeling large-scale objects can be realized.
Although the dilated convolution can effectively increase the size of the receptive field, the
number of pixels used in the calculation process is the same as the standard convolution,
which will lose a lot of pixel information. For example, the receptive field of size 13 contains
only 3 pixels of information, as shown in Figure 3a. However, after densely linking, the
input of a large dilation rate convolutional layer contains the output of the lower layers, as
shown in Figure 3b. This is equivalent to first using a smaller dilation rate convolutional
layer to compute the dense pixels, and then using the convolutional layer with a large
dilation rate on this basis. Obviously, it leads to realizing the use of more pixels. The
second benefit is that objects of different scales can be modeled. As shown in Figure 2,
the final output of the module is obtained by concatenating the output of each dilated
convolutional layer. Consequently, the output contains different level information, from
small to large scales.

Figure 2. The structure of densely connected atrous convolution. The output of each dilated con-
volutional layer is concatenated with input feature maps, and then feed into the next dilated layer.
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(a) (b)

Figure 3. (a) Standard one-dimensional atrous convolution with dilation rate of 6. (b) Stacking an
atrous convolution layer with different dilation rates.

3.3. Non-Local Self-Attention

The non-local self-attention mechanism [29] is an effective way to make the current
position contain the information of distant features by aggregating the information of other
positions. Let x = {xi}

Np
i=1 represent the input feature map of the non-local module, where

Np is the number of positions in the feature map. Additionally, let z = {zi}
Np
i=1 denote the

output of a non-local module, which has the same dimensions as x. Thus, the calculation
process of the entire module can be formulated as

zi = xi + Wz

Np

∑
j=1

f
(
xi, xj

)
C(x)

(
Wvxj

)
(6)

where f
(

xi, xj
)

represents the relationship between the features xi and xj, and C(x) is
the corresponding normalization factor. Wz and Wv denote linear transform matrices

(e.g., 1× 1 convolution). For simplification, let ωij =
f (xi ,xj)

C(x) represent the normalized
relationship between xi and xj, where the widely used form is embedded Gaussian, defined

as ωij =
exp(<Wqxi ,Wkxj>)

∑m exp(<Wqxi ,Wkxj>)
.

The aforementioned non-local block can be regarded as a global context modeling
block, which aggregates the information between the features of other positions and
the current position. However, on the downside, this method has high time and space
complexity, as it needs to calculate an attention map for each position. As a result, adding
it directly to the network will dramatically slow down the training speed. In other words,
it cannot be applicable for the real-time VO task. To reduce the problem, we calculate
only a position-independent attention map based on the finding that attention maps
corresponding to different positions are similar [32]. Thus, to improve the training and
testing speed without losing too much accuracy, we simplify the formula as the following:

zi = xi +
Np

∑
j=1

exp
(
Wkxj

)
∑m exp(Wkxm)

(
Wvxj

)
(7)

where Wk and Wv denote linear transformation matrices. We show the simplified ver-
sion of the non-local self-attention module in Figure 4b. Moreover, in order to further
reduce the time complexity, we also apply the distributive law to move Wv outside of the
attention pooling

zi = xi + Wv

Np

∑
j=1

exp
(
Wkxj

)
∑m exp(Wkxm)

(
xj
)

(8)

At this time, the calculation complexity can be still large due to linear transform
matrices Wk, which includes a 1× 1 convolution with C× C parameters. In order to realize
real-time processing, we replace the 1× 1 convolution by a bottleneck transform mod-
ule [31], which significantly reduces the number of parameters from C × C to 2× C× C/r,
where r is the bottleneck ratio and C/r denotes the hidden representation dimension of the
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bottleneck. For instance, with default reduction ratio r = 16, the number of parameters for
transform module can be reduced to 1/8 of the original block. To ease optimization, we
add layer normalization inside the bottleneck transform, which also can act as a regularizer
that can benefit generalization. The final module structure is shown in Figure 4c, and the
formula is as follows:

zi = xi + Wv2 ReLU

(
LN

(
Wv1

Np

∑
j=1

exp
(
Wkxj

)
∑m exp(Wkxm)

xj

))
(9)

where Wv1 and Wv2 denote linear transform matrices (e.g., 1× 1 convolution), and LN
denotes layer normalization.

As can be seen from the final formula, all positions on a channel of the feature map
share the same weight, which is equivalent to weighting the channels. The module therefore
has the ability to select features adaptively. It can select features that are appropriate for
different movement patterns and thus make better use of the multi-scale information that
has been learned to enhance the results. It is worth noting that the non-local module that
can effectively model the global context information is very lightweight. Thus, to better
capture the long-range dependency and select high-dimensional features, we embed the
non-local module after stage4 of the encoder in DepthNet and PoseNet, which results in a
slight increase in computation cost.

(a) (b) (c)

Figure 4. The structure of non-local self-attention. (a) The architecture of original non-local attention
version (embedded Gaussian), (b) its simplified version, and (c) the final version that we used. ⊗
denotes matrix multiplication, ⊕ denotes broadcast elementwise addition.

3.4. Loss Function

Appearance loss As explained in Section 3.1, if both the pose and depth estimation
of our method are accurate enough, the reconstructed image Îa by differentiable warping
should have the same appearance as the real image Ia. Therefore, we construct an appear-
ance loss to measure the difference between them. The appearance loss is formulated as
the following:

LP =
1
|V| ∑

p∈V

(
α||Ia(p)− Îa(p)||1 + (1− α)

1− SSIMIa Îa
(p)

2

)
(10)
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where V stands for the set of points that are co-visible in images Ia and Îa, and p stands
for a generic point in V. || · ||1 stands for 1-norm, a is the timestamp, and α is the balance
factor. SSIMIa Îa

(p) [35] is the structural similarity measure between images Ia and Îa, which
measures the similarity between two images in terms of brightness, contrast and structure.
This means that SSIM can better handle situations such as lighting changes. To be specific,
the formula of SSIM is

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (11)

where x, y represents the 3 ∗ 3 windows on the two images, respectively. C1 and C2
are constants. Additionally, µ and σ stand for the mean and variance of the image
color, respectively.

Depth loss Because the depth and pose have a strong coupling relationship, the
result of the depth estimation directly affects the authenticity of the reconstructed image.
The discontinuity of depth usually happens where strong image gradients are present.
To enforce discontinuity and local smoothness in depth, an edge-aware smoothness loss [10]
is introduced. The formula is expressed as follows:

LD =
1
N ∑

x,y

∥∥∥∇xD̂(x, y)
∥∥∥e−‖∇x I(x,y)‖ +

∥∥∥∇yD̂(x, y)
∥∥∥e−‖∇y I(x,y)‖ (12)

where I(x, y) represents the image, and D̂(x, y) represents the predicted depth correspond-
ing to I(x, y). N represents the size of the image.

Geometry consistency loss Because the depth predicted by the learning-based monoc-
ular VO method has per-frame scale ambiguity, there will be a scale-inconsistency issue in
the results of long sequence videos, which affects the accuracy of the VO. For this reason,
we introduce the geometric consistency loss proposed by [10]. For any two consecutive
frames sampled from a video, we convert the predicted depth map in one frame to 3D space,
then project it to the other frame using the estimated ego-motion. Finally, we minimize the
inconsistency of the projected and the estimated depth maps. That is,

LGC =
1
|V| ∑

p∈V

∣∣Da
b(p)− D′b(p)

∣∣
Da

b(p) + D′b(p)
(13)

where Da
b is the computed depth map of Ib by warping Da using Ta,b, and D

′
b is the

interpolated depth map from the estimated depth map Db (note that we cannot directly
use Db because the warping flow does not lie on the pixel grid).

Finally, the overall loss function is

Loss = λ1LP + λ2LD + λ3LGC (14)

where λ1, λ2, λ3 are trade-off parameters.

4. Experiments

In this section, we first introduce the implementation details of our method and the
dataset, and then we perform a numerical comparison between our and other methods.
Finally, we use ablation experiments to verify the effectiveness of each of our modules.

4.1. Implementation Details

The overall framework of our network is shown in Figure 1, which consists of Depth-
Net and PoseNet. For PoseNet, we use ResNet18 [34] to extract features, and we modify
the first layer of ResNet18 to accept the concatenate image as input. Finally, we use four
1 ∗ 1 convolutions layers to regress 6DOF relative transformation. DepthNet’s encoder is
ResNet50, and the decoder adopts the structure of DispNet [36]. The input is a single-frame
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image, and the output is the depth map of four scales, where we calculate the loss on the
four scales to improve the multi-scale learning ability of the network. For the activation
function of the input layer, we use the sigmoid function, while for the activation function
of all other layers, we use the ELU nonlinearities function.

Our method is implemented using the Pytorch framework on a single NVIDIA 3090
GPU. The two sub-networks are jointly trained through the loss. The network accepts
three consecutive frames, and obtains the reconstructed images of the adjacent frames
by warping the intermediate images. The input image is resized to 832 × 256 to balance
accuracy and training time, and data augmentation, such as random scaling, cropping,
and horizontal, is used to prevent over-fitting. We use the ADAM optimizer in training,
and the decay rate is set to 10−4. The hyper-parameters λ1, λ2, and λ3 in Equation (14) are
1, 0.1, and 0.5, respectively. We train 200 epochs with batch size = 4, and to ensure fast
convergence, we use the pre-trained model on ImageNet [37].

The KITTI dataset [38] is used to train and evaluate the performance of the network.
This dataset is currently the largest evaluation dataset for autonomous driving scenarios,
which contains real image data collected from scenes such as urban areas, villages, and
highways. There are, in total, 22 video sequences, of which 11 video sequences have
ground-truth labels. The dataset is collected at a frequency of 10 Hz, where each sequence
has up to 15 cars and 30 pedestrians with various degrees of occlusion and truncation.

4.2. Pose Estimation

We train the entire network using the 00–08 sequences and evaluate the pose estimation
results using the 09–10 sequences. We measure our results using the standard measurement
tools and translational and rotational errors are averaged over the entire sequence [39].

We compare our proposed method with some state-of-the-art learning-based methods,
and the results are shown in Table 1. As monocular visual odometry has the scale ambi-
guity problem, we evaluate the monocular methods [8–11,19,40] after aligning with the
ground truth. The basic framework for unsupervised monocular visual odometry was first
proposed by SfMLearner [8]. On this basis, various methods further improve the accuracy
and robustness of monocular VO by introducing optical flow auxiliary information [9],
additional geometric constraints [10,11], RNN network structure [19], meta-learning [40],
etc. However, they all ignore the important multi-scale information, and in contrast to
them, our method achieves the state-of-the-art results because of its ability to model
multi-scale information.To obtain scale-consistent results, methods such as [41–43] use
baseline-corrected binocular image pairs for training. Compared to them, our method still
achieves competitive performance. We also compare with the methods based on super-
vised learning [7,44–46]. Although these methods have simple network structure and fast
training speed, they require ground truth to train the network. Compared to them, our
method still has the lowest rotation error.

Finally, we compare with the classic traditional method ORB-SLAM [4], which has
a strong back-end optimization system for improving the performance. As shown in the
table, our method still has higher rotation accuracy than ORB-SLAM. Figure 5 shows a
direct comparison of camera motion trajectories. As can be seen, our method is much closer
to the ground truth. The comparison results confirm the key motivation of our method that
leverages the multi-scale information contained in visual data. Thanks to the modeling of
multi-scale objects, our method can exploit both the constraints on the fundamental matrix
imposed by small-scale objects and the homography constraints imposed by large-scale
objects. Thus we obtain excellent results not only in the translation scenes, but also in the
rotation scenes where the fundamental matrix is degraded.
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Table 1. Visual odometry results on KITTI dataset. Mono/Ste stands for training on monocular/stereo
videos, Su stands for supervised learning method, and Ge stands for model-based method. The
underline represents the best result among all types of methods, and the boldface represents the best
result among the monocular methods.

Method Type
Seq.09 Seq.10

terr (%) rerr (%/100 m) terr (%) rerr (%/100 m)

SfMLearner [8] Mono 19.15 6.82 40.40 17.69
GeoNet [19] Mono 28.72 9.8 23.90 9.0

Wang et al. [9] Mono 9.88 3.40 12.24 5.2
DeepMatchVO [11] Mono 9.91 3.8 12.18 3.9

SC-Depth [10] Mono 7.31 3.05 7.79 4.9
Depth-VO-Feat [41] Ste 11.89 3.6 12.82 3.41
Shunkai Li et al. [42] Ste 6.23 2.11 12.9 3.17
Xiangyu Li et al. [43] Ste 2.26 1.06 3.00 1.28

DeepVO [7] Su 5.96 6.12 9.77 10.20
WPO-Net [46] Su 8.19 3.02 8.95 3.12

Fei Xue et al. [44] Su 3.47 1.75 3.94 1.72
DAVO [45] Su 3.91 1.46 5.37 1.64

ORB-SLAM2-M (w/o LC) [4]) Ge 9.67 0.3 4.04 0.3
ORB-SLAM2-M [4] Ge 3.22 0.4 4.25 0.3

Ours Mono 7.58 0.51 7.35 1.35

(a) (b)

Figure 5. Trajectory results of different methods in sequence 09 (a) and sequence 10 (b) of KITTI
dataset. Our method is much closer to the ground truth.

4.3. Depth Estimation

We take the split of Eigen et al. [47] to test our depth estimation. The ground truth
used for testing is obtained by projecting the point cloud obtained onto a 2D plane with the
light detection and ranging (LiDAR) sensor, where we interpolate the obtained depth map
to the same size as the ground truth for comparison. As for evaluation metrics, we use the
same evaluation tools as previous works [10], including the mean absolute relative error
(AbsRel), mean log10 error (Log10), root mean squared error (RMS), root mean squared log
error (RMSlog), and the accuracy under threshold (δi < 1.25i, i = 1, 2, 3). These metrics
provide a comprehensive evaluation of our depth estimation results. Because unsupervised
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monocular vision odometry cannot recover the absolute scale, when comparing to the
ground-truth, we multiply the acquired depth map by the scale factor to obtain a same
median of ground truth.

Table 2 shows the comparison results with other methods. Compared to unsuper-
vised monocular depth estimation methods [8,10,19,48], our method achieves the highest
accuracy, even if [19,48] jointly learn multiple tasks. Compared to the supervised meth-
ods [18,43,49] that use depth supervision or calibrated stereo images, our method is still
quite competitive. To better understand comparison results, we visualize an example in
Figure 6. As shown, our method can better predict the depth of cars and other multi-scale
objects than other methods. This again demonstrates the importance to strengthen the
multi-scale information.

Figure 6. Visual comparison of the estimated depth maps on the KITTI Eigen test set. Our method
shows better prediction on objects of different scales, low texture regions and clearly in both close
and distant areas.

Table 2. Single-view depth estimation results on KITTI odometry split. Mono stands for training
on stereo videos, Ste stands for supervised learning using calibrated stereo images. The boldface
represents the best result among all methods.

Method Supervision
Error Accuracy

AbsRel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [8] Mono 0.208 1.768 6.856 0.283 0.678 0.885 0.957
GeoNet [19] Mono 0.155 1.296 5.857 0.233 0.793 0.931 0.973

CC [48] Mono 0.140 1.070 5.326 0.217 0.826 0.941 0.975
SC-Depth [10] Mono 0.137 1.089 5.439 0.217 0.830 0.942 0975

Li et al. [18] Ste 0.183 1.73 6.57 0.268 – – –
Godard et al. [49] Ste 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhan et al. [41] Ste 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Pilzer et al. [50] Ste 0.1424 1.2306 5.785 0.239 0.795 0.924 0.968
Wong et al. [51] Ste 0.135 1.157 5.556 0.234 0.820 0.932 0.968

Xiangyu Li et al. [43] Ste 0.135 1.234 5.624 0.233 0.823 0.932 0.968
Ours Mono 0.125 0.992 5.192 0.208 0.844 0.947 0.977

4.4. Ablation Study

To demonstrate the effectiveness of each module, we conduct ablation experiments
and compare the experimental results. Our baseline is similar to the method [10], which
includes two sub-networks, PoseNet and DepthNet. The loss function is also the same as
that used in Section 3.4. We add the proposed modules into the baseline and consequently
evaluate the pose estimation results. The results of pose estimation are shown in Table 3.

We first evaluate the baseline. Due to the joint training of the two sub-networks and the
use of depth geometry consistency, our baseline method also outperforms other methods.
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We then add the atrous convolutions module. Since we densely linked atrous convolutional
layers with a different dilation rate, the extracted features contain information at various
scales that is useful for motion estimation. We can see from Table 3 and Figure 7 that there
is some improvement in accuracy for both translations and rotations. We next add the
non-local self-attention module. Because the non-local self-attention module can calculate
the pixel-level pairwise relation as well as model the long-range dependency, thus our
network can make better use of the multi-scale information in the image. In addition, our
simplified self-attention mechanism can weight the channels of the feature map, meaning
that it can automatically select features that are more suitable for translation or rotation,
thus improving accuracy. Finally, we add both the atrous convolutions and the non-local
self-attention module. As shown in Table 3 and Figure 7, the experimental results are further
enhanced by the simultaneous use of the two modules. We guess that this is because the
features extracted by the network contain more multi-scale information, which further
contributes to the motion estimation.

(a) (b)

Figure 7. Trajectory results of ablation studies in sequence 09 (a) and sequence 10 (b) of KITTI dataset.

Table 3. Ablation study for various versions of our method on KITTI sequence 09 and 10. The least
error results are highlighted in bold text. The boldface represents the best result.

Method
Seq.09 Seq.10

terr (%) rerr (%/100 m) terr (%) rerr (%/100 m)

baseline 14.43 4.23 10.93 2.53
atrous 9.14 1.15 10.17 1.54

attention 7.67 0.69 8.16 1.55
baseline + atrous + self-attention 7.58 0.51 7.35 1.35

5. Conclusions

In this paper, we propose a novel unsupervised deep learning method for pose es-
timation and depth estimation from monocular video. We use densely linked atrous
convolutional layers to model multi-scale objects in images, and use a non-local attention
mechanism to learn long-range dependencies in images. Both of these modules enable our
network to better utilize multi-scale information, thereby improving the performance of
depth estimation and pose estimation. Extensive experiments have proven that our method
achieves competitive results in monocular visual odometry. In particular, we achieve
state-of-the-art accuracy in rotation estimation. Our results are still quite competitive, even



Sensors 2022, 22, 5193 14 of 16

compared with supervised methods, stereo methods, and model-based methods. In the
future, we plan to employ the domain generalization or domain adaptation techniques to
improve the performance of our method on datasets that are different from the training
scenarios. In addition, we plan to extend our method to the complete SLAM algorithm,
including back-end optimization, dense mapping and other steps, and truly apply it to the
fields of autonomous driving, AR, and robotics.

Author Contributions: Conceptualization, H.Z. and H.L.; methodology, H.Z.; software, H.Z. and
C.Y.; validation, H.Z. and H.L.; formal analysis, H.Z. and S.P.; investigation, H.Z. and C.Y.; resources,
H.L.; data curation, H.Z.; writing—original draft preparation, H.Z.; writing—review and editing,
H.Z., H.L. and S.P.; visualization, H.Z.; supervision, H.L.; project administration, H.L.; funding
acquisition, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No.
61976173), MoE-CMCC Artificial Intelligence Project (Grant MCM20190701), National Key Research
and Development Program of China (Grant 2018AAA0102201), Development Program of Shaanxi
(Grant 2020GY-002).

Data Availability Statement: The KITTI Dataset [38] used for this study can be accessed at http:
//www.cvlibs.net/datasets/kitti/ (accessed on 27 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DeSouza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267.

[CrossRef]
2. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. Deepdriving: Learning affordance for direct perception in autonomous driving. In

Proceedings of the IEEE International Conference on Computer Vision, Boston, MA, USA, 8–10 June 2015; pp. 2722–2730.
3. Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [CrossRef]
4. Mur-Artal, R.; Montiel, J.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot.

2015, 31, 1147–1163. [CrossRef]
5. Engel, J.; Schops, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on

Computer Vision, Zurich, Switzerland, 6–12 September 2015; pp. 834–849.
6. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [CrossRef]

[PubMed]
7. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. Deepvo: Towards end-to-end visual odometry with deep recurrent convolutional neural

networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3
June 2017; pp. 2043–2050.

8. Zhou, T.; Brown, M.; Snavely, N.; Lowe, D.G. Unsupervised learning of depth and ego-motion from video. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Bangalore, India, 17–19 August 2017; pp. 1122–1131.

9. Wang, R.; Pizer, S.M.; Frahm, J.M. Recurrent neural network for (un-) supervised learning of monocular video visual odometry
and depth. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 5555–5564.

10. Bian, J.W.; Zhan, H.; Wang, N.; Li, Z.; Zhang, L.; Shen, C.; Cheng, M.M.; Reid, I. Unsupervised Scale-consistent Depth Learning
from Video. Int. J. Comput. Vis. 2021, 129, 1–17. [CrossRef]

11. Shen, T.; Luo, Z.; Zhou, L.; Deng, H.; Zhang, R.; Fang, T.; Quan, L. Beyond photometric loss for self-supervised ego-motion
estimation. In Proceedings of the 2019 International Conference on Robotics and Automation, Virtual Conference, 31 May–31
August 2020; pp. 6359–6365.

12. Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 2938–2946.

13. Pandey, T.; Pena, D.; Byrne, J.; Pandey, T.; Moloney, D. Leveraging deep learning for visual odometry using optical flow. Sensors
2021, 21, 1313. [CrossRef]

14. Costante, G.; Mancini, M. Uncertainty Estimation for Driven Visual Odometry. IEEE Trans. Robot. 2020, 99, 1–20. [CrossRef]
15. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; van der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning

optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 13–16 December 2015; pp. 2758–2766.

16. Almalioglu, Y.; Saputra, M.R.U.; de Gusmao, P.P.B.; Markham, A.; Trigoni, N. Ganvo: Unsupervised deep monocular visual
odometry and depth estimation with generative adversarial networks. In Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5474–5480.

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
http://doi.org/10.1109/34.982903
http://dx.doi.org/10.1162/pres.1997.6.4.355
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://dx.doi.org/10.1007/s11263-021-01484-6
http://dx.doi.org/10.3390/s21041313
http://dx.doi.org/10.1109/TRO.2020.3001674


Sensors 2022, 22, 5193 15 of 16

17. Li, S.; Xue, F.; Wang, X.; Yan, Z.; Zha, H. Sequential adversarial learning for self-supervised deep visual odometry. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 2851–2860.

18. Li, R.H.; Wang, S.; Long, Z.Q.; Gu, D.B. Undeepvo: Monocular visual odometry through unsupervised deep learning. In
Proceedings of the 2018 IEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018;
pp. 7286–7291.

19. Yin, Z.C.; Shi, J.P. Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1983–1992.

20. Holschneider, M.; Kronland-Martinet, R.; Morlet, J.; Tchamitchian, P. A real-time algorithm for signal analysis with the help
of the wavelet transform. In Wavelets: Time-Frequency Methods and Phase Space; Tchamitchian, P., Ed.; Publishing House:
Berlin/Heidelberg, Germany, 1989; pp. 289–297.

21. Papandreou, G.; Kokkinos, I.; Savalle, P.A. Modeling local and global deformations in deep learning: Epitomic convolution,
multiple instance learning, and sliding window detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 390–399.

22. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
23. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets

and fully connected crfs. arXiv 2014, arXiv:1412.7062.
24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
25. Dai, J.; He, K.; Li, Y.; Ren, S.; Sun, J. Instance-sensitive fully convolutional networks. In Proceedings of the European Conference

on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 534–549.
26. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. DenseASPP for Semantic Segmentation in Street Scenes. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3684–3692.
27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30, 5998–6008.
28. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 20.
29. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.
30. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 603–612.
31. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
32. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-Local Networks Meet Squeeze-Excitation Networks and Beyond. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
33. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the International Conference on Medical Image Computing and Computer-Assisted Intervention, Guangzhou, China, 26–27
September 2015; pp. 234–241.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

35. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

36. Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Vegas, NV, USA, 26 June–1 July 2016; pp. 4040–4048.

37. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceeding of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

38. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceeding of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 16–21 June 2012; pp. 3354–3361.

39. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2021, 32, 1231–1237. [CrossRef]
40. Li, S.; Wang, X.; Cao, Y.; Xue, F.; Yan, Z.; Zha, H. Self-supervised deep visual odometry with online adaptation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6339–6348.
41. Zhan, H.; Garg, R.; Weerasekera, C.S.; Li, K.; Agarwal, H.; Reid, I. Unsupervised learning of monocular depth estimation and

visual odometry with deep feature reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 340–349.

42. Li, Y.; Ushiku, Y.; Harada, T. Pose graph optimization for unsupervised monocular visual odometry. In Proceedings of the
International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 5439–5445.

43. Li, X.; Hou, Y.; Wang, P.; Gao, Z.; Xu, M.; Li, W. Transformer guided geometry model for flow-based unsupervised visual
odometry. Neural Comput. Appl. 2021, 33, 8031–8042. [CrossRef]

44. Xue, F.; Wang, Q.; Wang, X.; Dong, W.; Wang, J.; Zha, H. Guided feature selection for deep visual odometry. In Proceedings of the
Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Cham, Switzerland, 2018; pp. 293–308.

http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1007/s00521-020-05545-8


Sensors 2022, 22, 5193 16 of 16

45. Kuo, X.Y.; Liu, C.; Lin, K.C.; Lee, C.Y. Dynamic Attention-based Visual Odometry. In Proceeding of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24–30 October 2020; pp. 36–37.

46. Gadipudi, N.; Elamvazuthi, I.; Lu, C.-K.; Paramasivam, S.; Su, S. WPO-Net: Windowed Pose Optimization Network for Monocular
Visual Odometry Estimation. Sensors 2021, 21, 8155. [CrossRef] [PubMed]

47. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. Adv. Neural Inf.
Process. Syst. 2014, 27. [CrossRef]

48. Ranjan, A.; Jampani, V.; Balles, L.; Kim, K.; Sun, D.; Wulff, J.; Black, M.J. Competitive collaboration: Joint unsupervised learning of
depth, camera motion, optical flow and motion segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12240–12249.

49. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised monocular depth estimation with left-right consistency. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Bangalore, India, 17–19 August 2017; pp. 270–279.

50. Pilzer, A.; Lathuiliere, S.; Sebe, N.; Ricci, E. Refine and distill: Exploiting cycle-inconsistency and knowledge distillation for
unsupervised monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019.

51. Wong, A.; Soatto, S. Bilateral cyclic constraint and adaptive regularization for unsupervised monocular depth prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 5644–5653.

http://dx.doi.org/10.3390/s21238155
http://www.ncbi.nlm.nih.gov/pubmed/34884156
http://dx.doi.org/10.48550/arXiv.1406.2283

	Introduction
	Related Work
	Supervised Methods
	Unsupervised Methods
	Atrous Convolution
	Non-Loacl Self-Attention

	Method
	Overview
	Densely Connected Atrous Convolution
	Non-Local Self-Attention
	Loss Function

	Experiments
	Implementation Details
	Pose Estimation
	Depth Estimation
	Ablation Study

	Conclusions
	References

