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Abstract: Human action recognition (HAR) is the foundation of human behavior comprehension. It
is of great significance and can be used in many real-world applications. From the point of view of
human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains
a great deal of information. In addition, for different movements, the HAR algorithm provides
important, multifaceted attention to each joint. Based on the above analysis, this paper proposes
a HAR algorithm, which adopts two attention modules that work together to extract the coordination
characteristics in the process of motion, and strengthens the attention of the model to the more
important joints in the process of moving. Experimental data shows these two modules can improve
the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).

Keywords: human action recognition; graph neural network; attention module

1. Introduction

With the rapid development of artificial intelligence algorithms, motion-recognition
technology, which is an important part of artificial intelligence, is being studied for its
application in many fields, such as human–computer interaction, video surveillance, film
and television production, and other areas [1–3]. Many researchers [4–6] have invested
a great deal of energy in this field and designed many excellent algorithms. Among them,
most of the traditional algorithms use manual feature extraction, and these algorithms
have made a breakthrough [7]. With the rapid development of machine learning and deep
learning, many end-to-end motion recognition algorithms have appeared. These methods
do not need to consume a lot of manpower and can achieve high recognition accuracy [8,9].

On the one hand, with deep learning and the rapid development of computer hard-
ware, especially GPU, the performance of action-recognition algorithms is getting better
and better. These algorithms can recognize more and more complex actions. Action-
recognition algorithms based on deep learning can be roughly divided into the following
two categories.

(1) The first category is the motion-recognition algorithm based on traditional CNN,
RNN, and LSTM networks, for example, two-stream [10], C3D [11], and LSTM [12],
and so on. These algorithms use end-to-end methods to train the model, which can
effectively reduce the number of parameters and improve the accuracy of model recog-
nition. Karens et al. [13] designed a two-stream model, which can extract the features of
space and time latitude at the same time. They creatively fused the models of the two
branches, effectively improving the recognition accuracy of the model. Du et al. [11] applied
3D convolution to action-recognition tasks. The model proposed by them can effectively
extract the features of spatial and temporal latitude, and proved that 3 × 3 × 3 convolution
is more suitable for action-recognition tasks through experiments. Jeff et al. [12] applied the
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LSTM model to the action-recognition task and proved through experiments that LSTM is
more prominent in the features with time series.

(2) Secondly, with the rise of the graph convolution model, a large number of bone-
based motion-recognition models have emerged. These models use human bones as the
data of the training model. This type of data is not affected by environmental occlusion,
complex background, and optical flow interference, which makes the model more robust.
Yan et al. [14] used the graph convolution network in the task of action recognition for the
first time. They used the graph convolution model to extract the features in the human
skeleton map, and combined with the time convolution to extract the features in the time
latitude. Kalpit et al. [15] proposed a bone-partition strategy. They use a partition strategy,
which effectively fits the task of local graph convolution. Shi et al. [16] creatively proposed
an adaptive graph convolution method based on the spatio–temporal graph convolution,
which can adaptively learn bone features and further extract the hidden length, direction,
and other features in bones.

On the other hand, coordination is not only the key to improving athletes’ technical
ability, but also is an essential part of everyday human physical activities. Coordination
refers to the ability of each part of an organism to cooperate with other parts in time
and space, and to complete actions in an effective manner. Coordination ability can
make movements more accurate and subtle, especially periodic movements. Therefore,
athletes attach great importance to the training of coordination ability and regard it as
an indispensable and important physical quality to develop in order to more effectively
compete and improve. Body coordination also includes three categories: force coordination,
movement coordination, and space coordination. First, force coordination refers to the
coordination ability of each muscle during tension and contraction. The coordination
among the active, antagonistic, and supportive muscles is an important factor in muscle
tension and contraction. Therefore, strength coordination training is mainly performed to
improve the ability of the nervous system, to get more athletes to participate, to improve
the degree of muscle fiber synchronization, to improve the coordination of muscles, and to
make athletes exert their maximum potential when exerting strength. Secondly, movement
coordination refers to the coordination ability that all humans shows when completing a
certain action. Strengthening coordination training can improve human sports performance.
Therefore, athletes with good movement coordination ability demonstrate the timeliness
and economy of sports technology when they complete technical movements. Finally,
spatial coordination refers to the body’s coordination and adaptability with regard to its
ability to maintain balance when changing its position. The training of spatial coordination
ability is mainly performed to improve people’s adaptability to their three-dimensional
sense of space (up and down, left and right, front and back), so as to enhance their spatial
awareness or position perception [17]. In terms of coordination in motion theory, we
associate coordination features with motion-recognition algorithms. Therefore, this paper
proposes a coordinated attention module based on coordination theory.

Through the research and learning of the existing algorithms, the author found the
following two problems:

(1). According to the theory of human body-motion balance, the body will produce
a coordination feature to maintain balance in the process of moving. Learning about this
coordination feature was very helpful for understanding action, but the existing models
did not make full use of this feature.

(2). Although the graph convolution neural network was successful in the field of ac-
tion recognition, the limitation of its adjacency matrix led to the model that can only extract
features at the neighbor nodes, and cannot extract features from the global perspective.

To solve the above problems, we improve the Two-Stream Adaptive Graph Convolu-
tional Network (2S-AGCN) algorithm and propose a novel multiple attention mechanism
graph convolution action-recognition model based on coordination theory (MA-CT). In this
paper, a coordinated attention module (CAM) and an important attention module (IAM)
are proposed. The important takeaways from these developments are as follows.
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(1). The CAM effectively extracts coordination features generated during motion,
and simulate the coordination of human movement through the covariance matrix. This
module could effectively improve the accuracy of the basic model.

(2). In addition, the IAM directly started from the feature level, captured the changes
of features on nodes, and gave more weight to the more important joints. The module
could realize plug and play and effectively improve the accuracy of the basic model.

The structure of this paper is as follows. In the first section, this paper briefly intro-
duces the development of action recognition and the previous methods. Section 2 briefly
introduces the graph convolution neural network and the related knowledge of attention
mechanism. Section 3 introduces the graph convolution action recognition model based
on multiple attention modules, and introduces the details of the two attention modules in
detail. In Section 4, experiments are carried out on two large public datasets to verify the
effectiveness of the module proposed in this paper, and the model in this paper is compared
with the existing model. Section 5 is the summary and prospect of this paper.

2. Related Works
2.1. Graph Convolution Neural Network

The graph convolution neural network (GCN) [18–21] summarized the convolution
operation from grid image data to graph data with a topological structure. Its main idea was
to aggregate the characteristics of its nodes and the characteristics of neighbor nodes, cou-
pled with the natural constraints of the topological graph so that new node characteristics
could be generated. The motivation of GCN comes from the combination of convolutional
neural networks (CNN) [22–24] and topological graphs. With the further development of
GCN, graph convolution neural networks could be divided into graph convolution neural
networks based on spectral method and graph convolution neural networks based on
the spatial method. Kipf et al. proposed a convolution formula combined with a graph
Laplacian under the background of spectrum graph theory; however, the spatial-based
method was intended to directly convolute the structure of the graph and its neighborhood,
and then extract and normalize it according to the manually designed rules. After that,
more and more scholars devoted themselves to the task of studying graph convolution neu-
ral networks. The fundamental reason is human bone data is topology type data, whereas
CNN can only deal with two-dimensional grid data-like images, which is not competent
for most tasks in human life. Therefore, in the field of action recognition, more and more
people are engaged in the research of graph neural networks because the skeleton data is
represented as a topological graph structure rather than a sequence or 2D grid structure.

2.2. Study on Action Coordination

Sports cannot be played without the intensively cultivated body coordination of
athletes. To improve sports performance, athletes also need to carry out coordination
training. Existing algorithms in the field of action recognition do not make full use of the
coordination features of the body. Therefore, after consulting many books and papers on
basic theories and training methods related to coordination, we chose the skeleton-based
action-recognition dataset to deeply study the specific expression of body coordination.
Among our findings, we learned that the coordination of the human body requires the
sense of space when moving. This sense of space refers to the orientation of each part
of the body when moving. Take running as an example. As shown in Figure 1, when
a human is running, his hands and legs always swing alternately one after the other,
and the arms and legs on the same side must be one after the other. According to the
characteristics of the sense of motion space in the coordination of body movement, we
studied how to extract the coordination features in the process of movement. To this end,
we roughly divide the human body into five areas, including the left arm, the right arm,
the left leg, the right leg, and the trunk, which includes the head. The position feature
is expressed through appropriate expression, and the position relationship between two
pairs is calculated. The coordination feature generated by human motion is calculated
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through this relationship. In this paper, the local center of gravity theory in physics and the
covariance matrix in mathematics are used to express the coordination characteristics of
the body.

Figure 1. Running: position diagram of arms, legs and body.

3. Proposed Methods

In recent years, GCN has been used successfully in the field of motion recognition.
On the one hand, because human bone data is not affected by interference information such
as optical flow and occlusion, the data is purer. On the other hand, the topology of human
bone data is a beat set with a graph neural network. The first section investigates the
advantages and disadvantages of the existing algorithms in detail. When dealing with the
task of human motion recognition based on bone data, these models ignore the coordination
features of human action and cannot pay good attention to the more important joints in
the process of motion due to the limitation of GCN. On the one hand, the theory of human
movement balance [17] describes how the body acts in order to prevent the act of falling
and the body’s need to constantly adjust its posture to keep the position of the center of
gravity unchanged. In particular, athletes can maintain their balance by swinging their
arms and stretching their legs. For ordinary people, everyday actions are also needed to
maintain balance, and the cooperation of limbs and trunk is needed to ensure that people
will not fall to the ground. Therefore, in the process of completing a certain action, people’s
limbs have roughly fixed movement tracks. For example, in the action of running, when
the left foot moves forward, the right arm must swing back to keep the position of the
body’s center of gravity unchanged; otherwise, there will be a risk of falling. On the other
hand, the importance of different joints in different human actions is different, and these
more important joints often number more than one. The existing models fail to pay good
attention to the extraction of this part of the features. In addition, due to the fixity of the
physical connection of the human body, the GCN is often fixed when extracting features
and fails to pay better attention to the mutual features of several more important joints from
a global perspective. These joints are often not connected in most actions. For example,
in the action of clapping hands, from the perspective of the human skeleton map, the nodes
of both hands are not directly connected and are far apart. However, both hands are an
important part of the action of clapping hands, and the changes of various characteristics
also focus on both hands. To solve the above problems, we propose two attention modules,
namely the coordination attention module and the importance attention module, to solve
the above two problems.

3.1. Multiple Attention Mechanism Graph Convolution Action-Recognition Model Based on
Action Coordination Theory

Based on the 2S-AGCN algorithm, we propose a multiple attention mechanism
graph convolution action-recognition model based on action coordination theory (MA-CT).
The model solves some problems and helps the model to better identify the categories
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of human actions. On the one hand, the coordinated attention module (CAM) is mainly
used to extract the coordination features generated in the process of human movement,
and use this coordination feature to further strengthen the input of the model. On the
other hand, the importance of attention module (IAM) aims to solve the problem that the
model is limited by the graph convolution neural network, which makes the model unable
to observe the more important joints in the movement process through the global field
of vision. This section mainly introduces the original adaptive graph convolution model
structure, the multiple attention mechanism graph convolution action-recognition model
structure based on action coordination theory, and the structure of two attention modules.

3.1.1. Adaptive Graph Convolution Module

We take 2S-AGCN as the basic model that was introduced in detail in our other pa-
per [5]. This article will briefly introduce the prominent contents. As shown in Figure 2,
an adaptive graph convolution network is used to stack the above adaptive graph con-
volution modules. There are nine modules in total. The numbers of output channels of
each module are 64, 64, 64, 128, 256, 256, and 256. Before the beginning of the network,
add a BN layer to standardize the input data, add global average pooling after the ninth
module, and finally input the results into the softmax layer to obtain the predicted result.
The calculation formula of adaptive graph convolution is shown in Equation (1),

fout =
Kv

∑
k

Wk fin(Ak + Bk + Ck), (1)

where Kv is the kernel size of the spatial dimension and set to 3, Wk is the weight matrix.
Ak, Bk, and Ck is three kinds of the adjacency matrix.

Here we will focus on the calculation process of Ck. Ck can learn a unique graph for
each sample. To determine whether there is a connection between two adjacent nodes and
how strong the connection is, we use the normalized Gaussian embedding function to
calculate the similarity of the two nodes, as shown in Equation (2):

f (vi, vj) =
eθ(vi)

TΦ(vj)

N
∑

j=1
eθ(vi)

TΦ(vj)

. (2)

Figure 2. Original adaptive graph convolution module (left) and adaptive graph convolution model
(right) [7].

3.1.2. Multiple Attention Mechanism Graph Convolution Action-Recognition Model Based
on Action Coordination Theory

In this section, aiming at the existing models cannot effectively use the coordination
characteristics of the body in the process of human movement, and due to the limitations
of the graph convolution network, it is impossible to obtain the importance of joints from
the global field of vision; therefore, a multiple attention mechanism graph convolution
action-recognition model based on motion coordination theory is proposed. The overall
framework of the model is shown in Figure 3. The light blue square in Figure 3 represents
the CAM proposed in this paper, and the highlighted part in yellow represents the new
adaptive graph convolution network after inserting IAM.
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Figure 3. Multiple attention mechanism convolution action-recognition model based on action
coordination theory (MA-CT).

The multi-attention mechanism graph convolution action-recognition model based
on the action coordination theory proposed in this paper is an end-to-end training model.
The overall framework can be roughly divided into three parts: coordination attention
module, dual flow adaptive graph convolution model, and importance attention module.
The model is based on the 2S-AGCN algorithm. After inputting the action sequence, the co-
ordination attention module is used to preprocess the original data, mine the coordination
characteristics of human action, and obtain a group of action sequences with coordination
characteristics, which effectively integrates the concept of body coordination in human
motion theory into the deep learning model. Then, according to the idea of the dual flow
adaptive graph convolution model, the new action sequence is decomposed into two parts;
one is a node feature, and the other is bone feature. Among them, the node characteristics
include the coordinates on the node, confidence, and so on. Bone length, orientation,
and other features are included. The two sets of data are used as the input of two identical
adaptive graph convolutions for feature extraction. After the ninth layer of the adaptive
graph convolution model, the features are input into the importance attention module,
which can pay attention to the more important joints in the movement process, which
effectively solves the deficiency that the existing models cannot obtain the important joints
through the global field of view. Finally, through the softmax layer, two classification results
are obtained, respectively. Finally, the two classification results are fused to obtain the final
classification result of this model.

3.2. Coordination Attention Module

In the process of movement, people are always maintaining balance, which requires
the cooperation of limbs and the trunk. Therefore, in the process of movement, the position
and trajectory of each body part are roughly fixed. Inspired by this idea, the coordination
of human motion is introduced into the action-recognition model. Therefore, this paper
proposes a coordinated attention module, which is a computing unit, which is composed
of the bone-partition strategy, matrix calculation, covariance matrix, and so on. The bone-
partition strategy of the coordinated attention module proposed in this paper is shown in
Figure 4. According to the structure of the human body, the human bone map is divided
into five partitions, including the head, left arm, right arm, left leg, and right leg, and five
subgraphs are obtained.



Sensors 2022, 22, 5259 7 of 18

Figure 4. Partition strategy of human skeleton map. (a) shows the unprocessed human skeleton
diagram, in which the red connecting part represents the divided connecting line, and (b) shows the
human skeleton diagram after being divided into five partitions.

Then the model calculates the center-of-gravity point of each region. Mathematically
and physically, it is stipulated that the center of gravity is closely related to the balance of the
object, the motion of the object, and the internal force distribution of the constituent object.
The author considers that to reduce the calculation amount of the model, the module uses
the center of gravity of each region to calculate the coordination, which will be much less
than the calculation amount of directly using joints, and can effectively avoid the problem
of inconsistent nodes of each part. According to Equation (3), the center of gravity points
on the five sub-graphs are calculated, respectively, and the center-of-gravity coordinates of
each part are calculated to represent the general position of the area. The general motion
trajectory of each area can be obtained by tracking the motion trajectory of the center of
gravity. Let the center-of-gravity matrix be (w1, w2, w3, w4, w5). n in Equation (3) represents
the number of nodes, and xn represents the value of the abscissa of the nth node. Here,
to simplify the expression, only the calculation formula of abscissa is shown, and the
calculation of the other two coordinates is consistent with Equation (3):

w =
(x1 + x2 + . . . + xn)

n
, n = 1, 2, . . . , n. (3)

As shown in Figure 5, according to Equation (3), the center-of-gravity points in five
zones can be obtained. Then calculate the body coordination matrix. Covariance is widely
used in statistics and machine learning. Statistically, covariance is generally used to describe
the similarity between two variables, and variance is a special case of covariance. The author
believes that the covariance matrix can be used to calculate the similarity between various
regions, and the similarity between two barycenters can be used to express the coordination
of the body. The module introduces the covariance matrix into the action-recognition
module to calculate the coordination relationship between two regions. The following
will introduce the specific calculation methods of covariance and variance and rewrite the
calculation of the covariance matrix according to the characteristics of the data used in this
paper to make it more consistent with said data. The standard variance and covariance are
calculated as shown in Equations (4) and (5).

s2 =

n
∑

i−1
(Xi − X)

2

n− 1
, i = 1, 2, . . . , n (4)

cov(X, Y) =

n
∑

i−1
(Xi − X)(Yi −Y)

n− 1
, i = 1, 2, . . . , n (5)
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Figure 5. Coordination attention module.

Here, s represents variance, X and Y represent two groups of random variables,
cov(X, Y) represents the covariance of variables X and Y, i represents the ith variable in X
or Y, and n represents the number of samples. According to the characteristics of the data
in this paper, combined with Equations (4) and (5), we rewrite the covariance matrix into
a form suitable for application in this paper. Here, n is set to 5, samples X and Y are set
to the same sample, and the values are consistent, which is the center-of-gravity matrix.
Let Xi = Yj = (w1, w2, w3, w4, w5), i = j = 1, 2, 3, 4, 5. Rewrite Equation (5) to obtain the
calculation formula of coordination matrix used in this module, as shown in Equation (6):

cov(X, Y) =

5
∑

i−1
(Xi − X)(Yi −Y)

4
, i = 1, 2, 3, 4, 5. (6)

According to Equation (6) and the center-of-gravity matrix, the coordination matrix
related to each other can be calculated. The matrix form is shown in Equation (7). Similarly,
the coordination matrix of the remaining two coordinates can be calculated by using
Equation (6).

cov(X, Y) =
cov(w1, w1) cov(w1, w2) cov(w1, w3) cov(w1, w4)
cov(w2, w1) cov(w2, w2) cov(w2, w3) cov(w2, w4)
cov(w3, w1) cov(w3, w2) cov(w3, w3) cov(w3, w4)
cov(w4, w1) cov(w4, w2) cov(w4, w3) cov(w4, w4)

cov(w1, w5)
cov(w2, w5)
cov(w3, w5)
cov(w4, w5)

cov(w5, w1) cov(w5, w2) cov(w5, w3) cov(w5, w4) cov(w5, w5)

 (7)

According to Equation (7), three groups of coordination matrices can be obtained.
These three groups of coordination matrices are expressed as wx, wy, and wz, respectively.
These three groups of matrices can be used to represent the coordination characteristics
of the body. Compress wx, wy, and wz to the same size as the dimension of the center-
of-gravity matrix. The compression method here is in the form of column-by-column
addition, as shown in Equation (8). Take the first column as an example to illustrate the
compression method.

Xi = cov(w1, w1) + cov(w2, w1) + cov(w3, w1) + cov(w4, w1) + cov(w5, w1) (8)

Add the barycentric matrix and the compressed coordination matrix to obtain the
barycentric matrix (ẇ1, ẇ2, ẇ3, ẇ4, ẇ5) with coordination characteristics. Here, we consider
the operation of matrix multiplication, but the coordinate values of most points are less
than 1. If the matrix is multiplied, it will be smaller, and even lead to the loss of features.
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Finally, the center-of-gravity matrix is added to each node according to the region, so that
a set of bone data with coordination characteristics can be obtained.

3.3. Importance Attention Module

The graph volume model processes the data of the topology structure, which is in good
agreement with the action-recognition task based on the human skeleton graph. At present,
many models have achieved very good results. However, these models still have some
shortcomings in the global field of view. Due to the limitation of human body topology, it is
difficult for the graph volume model to learn the relationship between various end nodes,
which is often an important part of the action. In addition, the deep graph convolution
model easily leads to the phenomenon of excessive smoothing of features [25–27], so it
is not suitable to use the deep model [28–30]. Inspired by the dual attention network
(DA-net) [31,32], an attention module is proposed. DA-net can capture the global feature
dependencies in both spatial and channel dimensions. The model uses the location at-
tention module to learn the spatial interdependence of features and designs the channel
attention module to simulate the interdependence between channels. Inspired by this
idea, the location attention mechanism is embedded into the adaptive graph convolution
model to obtain the important features of nodes in the feature graph and transfer them
to the original feature graph. This paper proposes an important attention module. When
extracting features, the module operates directly on the feature map, which can effectively
overcome the limitations of the graph convolution neural network. The important attention
module proposed in this paper is shown in Figure 6. The input of this module is the feature
map obtained after spatial map convolution sampling and time convolution sampling,
and the output is the feature map with attention characteristics.

Figure 6. Importance attention module (IAM).

Because the number of channels in the ninth layer of the adaptive graph convolution
model has reached 256, the value is too large, and the calculation size in the process of
parameter transmission is large. To reduce the computational burden, use the convolution
of 11 reduces the dimension of the feature channel, which effectively reduces the amount
of calculation. First, the characteristic diagram in Figure·6 is divided into three branches,
A ∈ R(N×M)×C×T×V , where (N × M) represents the product of the batch size and the
number of characters, C indicates the number of channels, T indicates the number of
action frames, and V indicates the number of nodes. Then, A is sent into two convolution
layers of 11 to obtain two new feature maps B and C, {B, C} ∈ R(N×M)×C×T×V . Then
the characteristic figure B and C are reconstituted into RC×D, D = (NM)TV, where D
represents the number of feature points on each channel. Then the transposition of B and C
is matrix-multiplied, and the position attention feature map S is calculated by the softmax
layer, S ∈ RD×D. The calculation formula of the attention characteristic map is shown in
Equation (9). where sji represents the influence of the ith position on the jth position:

Sji =
exp(Bi · Cj)

N
∑

i=1
exp(Bi · Cj)

. (9)

At the same time, the feature map S is reorganized and multiplied by a scale coefficient
α, which is added to the feature map a to obtain the final output D, D ∈ R(N×M)×C×T×V .
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The initial value of α is set to 0 and can gradually learn greater weight. The feature D of each
position is the weighted sum of all position features and the original features. Therefore,
it has a global vision and can selectively aggregate context information according to the
spatial attention map:

Ej = α
N

∑
i=1

sji + Aj. (10)

Here, the initial value of α is set to 0, and the corresponding weight can be gradually
obtained through training.

The importance attention module proposed in this paper can realize plug and play.
The author puts it after the space graph convolution and time convolution in the adaptive
graph convolution model. As shown in Figure 7, the more important joints in the process
of human motion are extracted from the space dimension and time dimension respectively.

Figure 7. Adaptive graph convolution model with importance attention module.

In order to better explain the algorithm proposed in this paper, we simply provide an
algorithm flow chart, as shown in Figure 8.

Figure 8. Flowchart of the methodology.

4. Experimental Results and Analysis

This section verifies the effectiveness of the coordination attention module and im-
portance attention module proposed in this paper through experiments. To facilitate the
comparison with the initial model 2S-AGCN, experimental verification is carried out on
two large datasets: Kinetics-Skeleton and NTU-RGB + D. When verifying the coordination
attention module, this section compares each branch of the two-stream network and then
compares the results of the two-stream fusion. When verifying the importance attention
module, because this paper inserts the importance attention module in two positions,
to verify its effectiveness this section verifies the effectiveness of the importance attention
module in space and time dimensions respectively. Then the two modules are fused to ver-
ify the effectiveness of the spatio–temporal importance attention module. Finally, the graph
convolution motion recognition model based on multiple attention modules proposed in
this paper is compared with the model on the same dataset to verify its effectiveness.
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4.1. Datasets and Experimental Details
4.1.1. NTU-RGB + D

NTU-RGB + D [33] is one of the largest datasets in the human action-recognition task
and contains 56,000 action clips in 60 action classes. Each action is taken with three cameras.
The dataset gives the position information of nodes in each frame. There are 25 nodes in
each frame. The author of this dataset two proposed benchmarks—cross-subject (X-Sub)
and cross-view (X-View)—in his paper [33]. The former divides the training set and the test
set according to the subject, and the latter divides the training set and the test set according
to the camera number.

4.1.2. Kinetics-Skeleton

Kinetics [34] is another of the largest human action datasets, and contains 400 action
categories. These video clips are taken from YouTube. We use the OpenPose toolbox to
extract bone data from these videos, and extract bone data with 18 key points from the
video sequence. In this paper, we use their released data (Kinetics-Skeleton) to evaluate the
model in this paper. This dataset can be divided into a training set and a verification set.
The training set has 240,000 segments, and the verification set includes 20,000 segments.

4.1.3. Training Details

All the experiments in this paper were completed under the same equipment. The hard-
ware condition of the device was the ninth-generation Intel CPU, 64 g RAM and two
2080 Ti GPUs. The software condition was based on the Pytoch framework. The optimiza-
tion algorithm was the stochastic gradient descent (SGD). Its momentum was set to 0.9.
The cross-entropy loss function was used, and the initial learning rate was set to 0.1. For the
NTU-RGBD and Kinetics-Skeleton datasets, due to the limitations of the experimental
conditions in this paper, we set the batch size of the model to 16. The learning rate is set
as 0.1 and is divided by 10 at the 30th epoch and the 40th epoch. The training process is
ended at the 50th epoch [16]. For the Kinetics-Skeleton dataset, the size of the input tensor
of Kinetics is set the same as [16], which contains 150 frames with two bodies in each frame.
We perform the same data-augmentation methods as in [16]. In detail, we randomly choose
300 frames from the input skeleton sequence and slightly disturb the joint coordinates
with randomly chosen rotations and translations. The learning rate is also set as 0.1 and is
divided by 10 at the 45th epoch and 55th epoch. The training process is ended at the 65th
epoch [16]. To enhance the accuracy of the experimental results, we did 10 experiments
and took the average value as the final experimental results.

4.2. Ablation Experiment
4.2.1. Effectiveness Analysis of Coordination Attention Module

To verify the effectiveness of the coordination attention module (CAM) proposed in
this paper, this section uses two large datasets—NTU-RGB + D and Kinetics-Skeleton—and
compares the effectiveness of the coordination module by controlling variables. Under the
same hardware conditions and the same parameter settings, the results shown in Table 1 are
obtained, in which “J-Stream” and “B-Stream” respectively represent the joint stream and
bone stream of the 2S-AGCN, and “CAM” represents the abbreviation of the coordinated
attention module proposed in this paper. On the CV index of the NTU-RGB + D dataset,
the accuracy of “J-Stream” of the initial 2S-AGCN is 93.1%, the accuracy of “B-Stream” is
93.3%, and the accuracy after two-stream fusion is 95.1%. In terms of CS index, the accuracy
of “J-Stream” in the experimental environment is 86.3%, the accuracy of “B-Stream” is
86.7%, and the accuracy after two-stream fusion is 88.5%. In the Kinetics-Skeleton dataset,
the accuracy of “J-Stream” in the experimental environment is 34.0%, that of “B-Stream” is
34.3%, and that of 2S-AGCN is 36.1%.
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Table 1. Effectiveness analysis of coordination attention module on NTU-RGB + D and Kinetics-
Skeleton datasets.

Methods
NTU-RGB + D

Kinetics-Skeleton (%)
CV (%) CS (%)

J-Stream 93.1 86.3 34.0
B-Stream 93.3 86.7 34.3
2s-AGCN 95.1 88.5 36.1

CAM + J-Stream 94.0 86.9 35.4
CAM + B-Stream 93.5 87.5 34.5
CAM + 2s-AGCN 95.3 88.8 36.5

Under the same test conditions, the CAM proposed in this paper is inserted into
the adaptive graph convolution model. In the CV index of the NTU-RGB + D dataset,
the accuracy of “CAM + J-Stream” is 94%, which is 0.9% higher than the original accuracy.
The accuracy of “CAM + B-Stream” is 93.5%, which is 0.2% higher than the original accuracy.
The accuracy of two-stream fusion is 95.3%, which is 0.2% higher than the original accuracy.
In terms of CS index, the accuracy of “CAM + J-Stream” is 86.9%, which is 0.6% higher
than the original accuracy. The accuracy of “CAM + B-Stream” is 87.5%, which is 0.8%
higher than the original accuracy. The accuracy of two-stream fusion is 88.8%, which is
0.3% higher than the original accuracy. In the Kinetics-Skeleton dataset, the accuracy of
“CAM + J-Stream” is 35.4%, which is 1.4% higher than the original accuracy. The accuracy of
“CAM + B-Stream” is 34.5%, which is 0.2% higher than the original accuracy. The accuracy
of two-stream fusion is 36.5%, which is 0.4% higher than the original accuracy.

It can be seen from Table 1 that the performance of the adaptive graph convolution
model combined with the coordinated attention module has improved in the two datasets.
The module calculates the barycenter positions of the five partitions of the body, then
calculates the relationship between the five locations by using the covariance matrix,
and adds it to the features as a coordination matrix, which enriches the representation
of the features. From the experimental results, this module can improve the accuracy of
the model. After the two-stream fusion, the effect is better than the model without the
coordination feature.

To further verify the effectiveness of the module, this section also records the changes
in accuracy during model training and draws a curve to compare the changes in inaccuracy,
as shown in Figures 9–11. It can be seen from the accuracy curve that the coordinated
attention module proposed in this paper is better able to help the model understand the
action semantics. In the two datasets, the initial accuracy of the model is higher than
that of the original two-stream adaptive graph convolution model, and the oscillation
amplitude of the accuracy is also small in the training process. When the final model
tends to converge, the accuracy is also improved to a certain extent, which shows that the
coordination attention module can effectively extract the coordination features of human
bones, and provide help for the discrimination of action semantics.
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Figure 9. Accuracy change curve on CV index of NTU-RGB + D.

Figure 10. Accuracy change curve on CS index of NTU-RGB + D.

Figure 11. Accuracy change curve of Kinetics-Skeleton.
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4.2.2. Effectiveness Analysis of Importance Attention Module

Aiming at the shortcomings of the existing models, this paper proposes an importance
attention module (IAM). The module can observe the changes in joints from a global
perspective and can calculate the dependencies between non-adjacent nodes from the
topology. This module can realize plug and play. Because the adaptive graph convolution
module extracts the features of the data in both space and time dimensions at the same
time, this paper places the importance module after the spatial graph convolution layer and
time convolution layer respectively. This section will verify and analyze the effectiveness
of the module on two large public datasets. All data in Table 2 are completed under the
same parameter settings and hardware conditions. “IAM-S” in the table indicates that the
importance attention module is placed after spatial map convolution, “IAM-T” indicates
that the importance attention module is placed after time convolution, and “IAM-ST”
indicates that the importance attention module is placed at both locations. To facilitate
the comparison with the 2S-AGCN, this section compares the accuracy of the importance
attention module with the “J-Stream” and “B-Stream” of the initial model and verifies its
effectiveness one by one. Then, the results of the two streams are fused to obtain the final
classification result. From the experimental results in Table 2, it can be concluded that the
IAM will improve the accuracy of the model after the spatial map convolution or time
convolution. When the two positions are placed at the same time, the accuracy of the model
will be further improved, which shows that the important attention module can effectively
observe the joints that are more important for motion understanding from the perspective
of global vision. In the CV index of the NTU-RGB + D dataset, after adding two groups of
IAMs, the accuracy of the model is 95.7%, which is 0.6% higher than the initial 2S-AGCN.
In the CS index, the accuracy of the model is improved by 0.4% compared with the initial
model. In the Kinetics-Skeleton dataset, the accuracy of the model is improved by 0.9%
compared with the initial model. The results in Table 2 illustrate the effectiveness of the
importance attention module proposed in this paper.

Table 2. Effectiveness analysis of importance attention module in NTU-RGB + D and Kinetics-Skeleton.

Methods
NTU-RGB + D

Kinetics-Skeleton (%)
CV (%) CS (%)

J-Stream 93.1 86.3 34.0
B-Stream 93.3 86.7 34.3

IAM-S + J-Stream 93.9 86.9 34.9
IAM-S + B-Stream 93.5 86.5 34.5

IAM-T + J-Stream 94.4 87.1 35.0
IAM-T + B-Stream 94.1 86.7 34.5

(IAM-ST) + J-Stream 94.6 86.9 34.8
(IAM-ST) + B-Stream 94.3 86.6 34.6

2s-AGCN 95.1 88.5 36.1
IAM-S + 2s-AGCN 95.2 88.6 36.3
IAM-T + 2s-AGCN 95.5 88.7 36.4

(IAM-ST) + 2s-AGCN 95.7 88.9 37.0

4.3. Comparison with Other Methods

This paper proposes a convolution action recognition model of multiple attention
mechanism graphs based on action coordination theory. The experiments in Section 4.3 con-
firm the effectiveness of the two attention modules proposed in this paper. This section com-
pares the MA-CT with some existing algorithms in the same datasets. The results of these
two comparisons are shown in Tables 3 and 4, in these tables, bolded data is best. The meth-
ods used for comparison include the handcrafted feature-based method [35], RNN-based
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methods [36–38], CNN-based methods [39,40], and GCN-based methods [5,14,16,41–47].
The accuracy of MA-CT in CV index on NTU-RGB + D is 95.9%, and the accuracy in the CS
index is 89.7%. Compared with the original 2S-AGCN, it is improved by 0.8% and 1.2%,
respectively. In the Kinetics-Skeleton dataset, the accuracy of MA-CT reaches 37.3%, which
is 1.2% higher than that of the original model. At the same time, compared with the model
proposed in Section 3 it is improved by 0.2%. As can be seen from Table 3, in terms of the
CV index, the model proposed in this paper is still inferior to the more advanced MV-IGNet.
However, in terms of the CS index, the accuracy of the model proposed in this paper is
0.3% higher than that of MV-IGNet. It can be seen from Table 3 that the model proposed in
this paper has improved upon the initial model, indicating that the coordination attention
module and importance attention module can improve the accuracy of model recognition
to a certain extent. In the Kinetics-Skeleton dataset, the accuracy of the proposed model
in top-1 is 37.3%, which is 1.2% higher than the original 2S-AGCN. The accuracy of this
model in top-1 is still not as good as 2S-AAGCN and 4S-AAGCN, but the accuracy of top-5
is 1% and 0.4% higher.

Table 3. Comparison of accuracy between ours model and other models on NTU-RGB + D dataset.

Methods CV (%) CS (%)

Deep LSTM [36] 67.3 60.7
Temporal ConvNet [39] 83.1 74.3

VA-LSTM [37] 87.6 79.4
Two-stream CNN [40] 89.3 83.2

GCA-LSTM [41] 82.8 74.4
ARRN-LATM [38] 89.6 81.8

MANs [42] 93.22 83.01
ST-GCN [14] 88.3 81.5

DPRL + GCNN [43] 89.8 83.5
2S-AGCN [16] 95.1 88.5
RA-GCN [44] 93.6 87.3

MV-IGNet [45] 96.3 89.2
MST-AGCN [5] 95.5 89.5

MA-CT (ours) 95.9 89.7

Table 4. Comparison of accuracy between ours model and other models on Kinetics-Skeleton dataset.

Methods CV (%) CS (%)

Feature Encoding [35] 14.9 25.8
Deep LSTM [36] 16.4 35.3

Temporal ConvNet [39] 20.3 40.0
ST-GCN [14] 30.7 52.8

2S-AGCN [16] 36.1 58.7
GCN-NAS [46] 37.1 60.0
1s-AAGCN [47] 36.0 58.4
2s-AAGCN [47] 37.4 60.4
4s-AAGCN [47] 37.8 61.0
MST-AGCN [5] 37.1 61.0

MA-CT (ours) 37.3 61.4

5. Discussion

With the rapid development of artificial intelligence and its application in various
fields, HAR has become an important area of development through deep learning to
identify human movement. There is still room for further improvement in the accuracy of
current HAR algorithms before its best engineering applications can be achieved.
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In the development of existing HAR algorithms, people are always accustomed to
introducing newly developed deep learning algorithms into HAR algorithms, which has
played a role in improving the accuracy. Compared with traditional machine learning,
deep learning essentially uses complex networks for automatic learning data features.
In order to achieve better learning of such features, the network of deep learning becomes
more and more complex, which requires more expensive hardware, and the requirement
is contradictory to engineering application. Therefore, if the network structure remains
unchanged (the requirements for hardware also remain unchanged), artificial emphasis
on some prior knowledge and enhancement of some features will enable the network to
quickly grasp these important features, and improve the accuracy to become a better choice.

Based on the coordination theory in sports kinematics, and by combining the digital
robot control theory and the attention mechanism, this study has some innovations in
feature enhancement and model structure. For feature extraction, this study uses a two-
channel scheme to extract joint and bones features, which are divided into two data streams
for analysis. In the aspect of feature enhancement, the coordination attention module and
the importance attention module are designed and used to focus on the correlation of upper
and lower frames action coordination, and finally achieve the fusion output. This study
improves the accuracy, which proves that the idea of HAR combined with the coordination
theory is correct.

In addition, we also recognize that because the learning data and validation data of
this algorithm come from generally accepted standard datasets, and most of these standard
datasets are stable movements of healthy people, this is obviously a positive sample for
whole data, and uncoordinated actions should also be the content of learning and analysis,
which is one of the defects of this study. Of course, it is easy to imagine that if human
movements were inconsistent and the center of gravity was unstable, the predictable results
are falls, so this algorithm should be used to predict the action of human falls.

6. Conclusions

In this work, we propose a multiple attention mechanism graph convolution action
recognition model based on coordination theory (MA-CT). It parameterizes the graph
structure of the skeleton data and embeds it into the network to be jointly learned and
updated with the model. This data-driven approach increases the flexibility of the graph
convolutional network and is more suitable for the action recognition task. Furthermore,
the existing methods do not make full use of the coordination features of human motion,
and because of the existence of an adjacency matrix, the model cannot extract features from
the global perspective. In this work, we propose a coordination attention module (CAM)
and importance attention module (IAM). In this paper, experiments are carried out on two
large public datasets. For the two indicators of NTU-RGB + D, the CAM improves the
accuracy of the model by 0.2% and 0.3%, and the IAM improves the accuracy of the model
by 0.6% and 0.4%. In the Kinetics dataset, the CAM improves the accuracy of the model by
0.4%, and the IAM improves the accuracy of the model by 0.9%. They are used to solve the
problems of insufficient feature extraction and the capturing of key joints. The final model
has achieved good results in NTU-RGB + D and Kinetics.
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