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Abstract: The successful emergence of real-time positioning systems in the maritime domain has
favored the development of data infrastructures that provide valuable monitoring and decision-aided
systems. However, there is still a need for the development of data mining approaches oriented to
the detection of specific patterns such as unusual ship behaviors and collision risks. This research
introduces a CSBP (complex ship behavioral pattern) mining model aiming at the detection of ship
patterns. The modeling approach first integrates ship trajectories from automatic identification
system (AIS) historical data, then categorizes different vessels’ navigation behaviors, and introduces
a visual-oriented framework to characterize and highlight such patterns. The potential of the model
is illustrated by a case study applied to the Jiangsu and Zhejiang waters in China. The results show
that the CSBP mining model can highlight complex ships’ behavioral patterns over long periods,
thus providing a valuable environment for supporting ship traffic management and preventing
maritime accidents.

Keywords: complex behavioral pattern; CSBP mining; AIS data; spatiotemporal analysis

1. Introduction

Maritime transportation has long been a vital mode of international trade, accounting
for more than 80% of worldwide exchanges. The continuous increase in maritime traffic and
flows has led to critical stakeholder navigation monitoring and security challenges in many
overcrowded maritime areas [1]. This entails the need for data mining approaches that
can provide decision-aided solutions for extracting unusual and dangerous ship behaviors.
Ship behavior pattern mining is an important means to ensure the safety of the navigation
environment, but the existing ship behavior pattern mining models are mostly limited to
one or several data mining algorithms when conducting trajectory mining research, such as
clustering, classification, outlier analysis, or frequent patterns. So, the excavated behavior
patterns are not comprehensive enough, not accurate enough, and lack a certain correlation
between the behavior patterns; thus, it is difficult to fully grasp the navigation status of
ships. In order to improve the situational awareness of maritime supervisors, deter illegal
and criminal acts at sea, and maintain the safety of maritime navigation, it is necessary to
study the theory and method of situational analysis that can mine the complex behavior
patterns of ships. Based on this, this paper introduces a dynamic model in which, first,
ship trajectory data is used to summarize ship trajectory characteristics, including temporal
and spatial properties. Moreover, ship behaviors are expressed from the macrolevels to
the microlevels according to the above characteristics. Secondly, basic ship behaviors are
combined by minimum and combination operators to derive complex behaviors, which are
mathematically expressed and then visualized. The objective of the modeling approach is
to provide a decision-aided system to supervisors when grasping complex ship behaviors,
reducing the difficulty of supervision and improving navigation safety.
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The rest of the paper is organized as follows. The next section introduces the mathe-
matical modeling of the behavioral and combinatorial patterns. The third section develops
the visual component of the model. The fourth section illustrates the potential of the
approach through an application example. Finally, the last section summarizes the paper
and outlines a few directions for further research.

2. Related Work

Previous research oriented toward ship trajectory analysis mainly focused on cluster-
ing, classification, outlier analysis, and frequent patterns mining. For instance, Gao et al. [2]
proposed a pattern recognition method for the analysis and clustering of ship trajectories
and behaviors based on AIS trajectories. Pan et al. [3] introduced a multidimensional
trajectory mining and clustering algorithm based on the ship’s type, position, speed, and
heading. Zhao et al. [4] applied a DBSCAN algorithm to large AIS trajectory data for char-
acterizing and clustering ship trajectories, which has proven to be successful in determining
maritime traffic patterns. Murray et al. [5] developed a specific Gaussian mixture pattern
to cluster and classify ship trajectories in a particular sea area. Zhou et al. [6] introduced
a ship trajectory pattern analysis whose objective is to reveal complete ship behavioral
patterns through changes in ship speed. Zhu et al. [7] incrementally extended the DBSCAN
to efficiently classify ship behavioral patterns still at the local level. Wang et al. [8] de-
tected unusual ship behavioral patterns based on K-nearest neighbors (KNN) clustering
according to ship attributes and motion context data. Rong et al. [9] introduced a data
mining method for probabilistic analysis and anomaly detection of maritime behaviors
applied to historical data and based on AIS trajectories and associated data on the Por-
tuguese coast. Karatas et al. [10] extended a Traffic Route Extraction for Anomaly Detection
(TREAD) algorithm and applied it to the extraction of trajectories and the detection of
unusual patterns. Chen et al. [11] proposed a grid generation method that applied the
vertical projection distance and a trajectory frequency pattern mining algorithm based
on a vague grid sequence. Shou et al. [12] developed an activity and frequent pattern
classification applied to maritime trajectories. Van Hage et al. [13] constructed a simple
event model (SEM) for identifying simple motion events, such as stops and movements,
and complex motion and event patterns, such as trajectory sequences. Wen et al. [14]
introduced a ship behavior semantic model to represent and characterize and annotate
specific trajectory patterns. Zhong et al. [15] developed a knowledge-based model of ship
behavior according to the COnvention of the internationaL REGulations for preventing
collisions at sea (COLREGs) rules. Patroumpas et al. [16] developed a real-time tracking
system for the online monitoring of maritime trajectories and the detection of suspicious
and dangerous patterns. Such an approach can also provide immediate notification of
emergencies, such as suspicious movements in the protected area, to maritime authorities.
Huang et al. [17] introduced a topic modeling latent Dirichlet allocation (LDA) to explore
the semantic similarity of maritime trajectories.

Despite the interest in the above approach and research, most of the emerging tra-
jectories that have been identified so far do not provide a complete and extensive charac-
terization of the behavioral patterns that encompass all spatial, temporal, and semantic
maritime trajectory properties. Most of the existing research on ship behavior patterns has
focused on various single mining model algorithms, using clustering, classification, outlier
analysis, or frequent patterns to mine the behavior patterns of ships during navigation.
However, the single mining model algorithm has some shortcomings, such as the mining
ship behavior patterns not being comprehensive and accurate enough to clearly show the
correlation between ship behavior patterns. In particular, the identification of complex
events and patterns and their associated semantics is still required for many maritime
monitoring and prediction activities [18]. To overcome the above-mentioned challenges,
this paper combines single behavior patterns to form semantics, and constructs a mining
model suitable for complex behavior patterns through visualization and combined with
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the established similarity model. The goal is to identify frequent and abnormal behavior
patterns and discover suspicious ships.

3. Ship Behavior and Trajectory Representation

This section formally introduces a representation of ship trajectory and behavioral
patterns, and a series of potential combinations of these patterns.

3.1. Ship Trajectory Representation

A ship’s behavioral pattern can be derived from its trajectory and changes in speed,
course, and location [19]. A ship’s behavior can be revealed by its trajectory and associated
semantics. Ship trajectory data derived from AIS samples include the timestamp, longi-
tude, latitude, speed over ground, and course over ground [20]. In addition, each ship
is associated to a maritime mobile service identity to distinguish it uniquely [21]. A ship
track is composed of track segments and track points. Let us more formally introduce these
notions [22]:

Definition 1.1. (Trajectory Point, P): A ship trajectory point P is represented by a maritime mobile
service identification code MMSI, timestamp, longitude, latitude, speed over ground (SOG), and
course over ground (COG) P(MMSI) = {Timestamp, Lon, Lat, SOG, COG}.

Definition 1.2. (Track Segment, TS): A continuous track segment TS is a subset of a track TR and
denoted as follows: TS = {Pi, P(i+1), . . . , P(j−1), Pj}, where i < j, P_(i ≤ m ≤ j)∈ TR.

Definition 1.3. (Track, TR): A track TR is a set of track points arranged in chronological order,
that is, TR = {P1, P2, . . . , Pi, P(i+1), . . . , Pn}, with 0 < I < n.

3.2. Ship Behavior Characteristics

A ship’s behavior should be derived from spatial and temporal properties that charac-
terize a given trajectory explicitly represented by its trajectory properties [23].

3.2.1. Time Characteristics

The temporal characteristics of ship trajectory can be derived by the following proper-
ties: time series, series of short time intervals, time persistence, and time interval.

1. Time series: T = { ta, tb, . . . , tc} is a set of timestamps with ∀tm, tn ∈ T, and m < n;
then, tm < tn.

2. A series of short time intervals: T = { ta, tb, . . . , tc} is a time series where any two of its
adjacent timestamps tm, tm+1 ∈ T satisfy |tm − tm+1| ≥ l, where g is a time threshold.

3. A series of persistent short time intervals: T = { ta, tb, . . . , tc} is a series of short
time intervals with an additional constraint, that is, any of its adjacent timestamps
tm, tm+1 ∈ T satisfy |tm − tm+1| ≥ l, where l is a time threshold.

4. A long interval of time: T = { ta, tb, . . . , tc} denotes the timestamps set of the trajectory
of the moving object, and there are two adjacent timestamps T in tm, tm+1 ∈ T,
m ≤ c − 1, satisfying |tm − tn| ≥ h, where h is the ss of the long interval of time.

3.2.2. Spatial Characteristics

The spatial characteristics of a ship trajectory mainly include the following definitions
which are as follows [24]:

Definition 2.1. (d-neighborhood): Given a distance threshold d, the d-neighborhood of a trajectory
point p is expressed as NHd(P) = {q ∈ S|d(p,q) ≤ d}, where d(p,q) denotes the distance between
two trajectory points p and q of S the set of trajectory points.
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Definition 2.2. (Minimum trajectory point core): A minimum trajectory point core mpso(p,MinPts)
of a trajectory point p of S is given when its d-neighborhood contains at least MinPts samples, where
MinPts denotes a threshold value.

Definition 2.3. (d-neighborhood Density): The d-neighborhood density of a trajectory point is
given by the number of points of its d-neighborhood.

Definition 2.4. (Directly density-reachable): If the trajectory point pj is situated in the d-
neighbourhood of pi , and pi is a trajectory point core, pj is directly obtained from the density
of pi.

Definition 2.5. (Density-reachable): Let us consider the trajectory points pi , pj , if there is a
sample sequence {P1, P2 . . . , Pn }, where P1 = p1 and Pn = pn ,Pi+1 by pi is called the pj by pi
density reachable.

Definition 2.6. (Density-connected): If objects Pm , andPn are composed of Pk density values and
can be estimated, then Pm and Pn are density connected.

The spatial characteristics of several ship trajectories that can then be studied are as
follows [25]:

Definition 2.7. (Density connectivity): Let us consider moving objects in a sequence of trajectories
oi , and oj ∈ ODB , where ODB is the set of all moving objects. If the trajectory point Poi (t) of the
moving object oi is connected with the density Poj(t) of the moving object oj at time t, then we say
that oi and oj are density connectivity at time t.

Definition 2.8. (Spatial proximity): Let P denote a location point and oi ∈ ODB a moving object,
if Poi (t) is in the neighborhood of position point P at time t, then we say that the moving object oi is
in the spatial proximity of target position point P at time t.

Definition 2.9. (Positional deviation): Let us consider a moving object oi ∈ ODB, if there is a time
t of its spatiotemporal trajectory point sequence in which the neighbourhood of its trajectory point
is NHd(Poi (t)) and that it is not in the proximity of other moving objects, then we say that the
moving object oi is in positional deviation at time t.

3.3. Ship’s Basic Behaviors

A basic ship behavioral pattern can be expressed as a triple <N, E, T> where N denotes
an event (i.e., a basic behavior), E is the event object, and T is the time of the event. We
identify a difference between the microlevel where the basic movement of a moving object
is analyzed from trajectory data and the macrolevel where moving object trajectories are
globally mined.

3.3.1. Microlevel Basic Behavior Patterns

At the microlevel, the basic behavior patterns of ships include the mobile behavior
pattern, stay behavior pattern, jumping behavior pattern, and deviation behavior pattern.

(1) Mobile behavior pattern [26] (<Mobile, oi, (ta, tc)>)

An object oi is likely to move at a certain speed, and its trajectory can be either a
straight line or a curve composed of a series of spatial points. A mobile behavior pattern is
expressed as a sequence of spatiotemporal trajectory points:

oi.TR : 〈(Poi (ta), ta, Soi (ta), Coi (ta)), (Poi (tb), tb, Soi (tb), Coi (tb)), . . . , (Poi (tc), tc, Soi (tc), Coi (tc))〉 (1)
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Given a short time interval threshold g, a duration threshold L, a low-speed movement
threshold ε low, and a high-speed movement threshold εhigh, the following conditions should
be satisfied: (1) time series; (2) short time interval; (3) time duration; and (4) speed stability.
The mathematical expression is shown as follows:

tm < tn

|tm − tn| ≤ g

|te − td| ≥ L

ε low ≤ Soi (tm) ≤ εhigh

∀tm, tn ∈ T = {ta, tb, . . . tc}, m < n

tm, tm+1 ∈ T = {ta, tb, . . . tc}, m ≤ c− 1

∀T′ = {td, td+1, . . . te} ⊂ T = {ta, tb, . . . tc}
oi ∈ ODB, tm ∈ T′, ∀T′ = {td, td+1, . . . te} ⊂ T

(2)

(2) Stay behavioral pattern (<STAY, oi,(ta, tc)>)

Maritime objects are likely to move at a relatively low speed, thus leading to potential
low-speed running areas. A stay pattern highlights a comprehensive behavioral pattern,
which not only shows the approximate stillness of motion but also the dense motion
of objects in a given area [27]. A stay behavior pattern is expressed as a sequence of
spatiotemporal trajectory points:

oi.TR : 〈(Poi (ta), ta, Soi (ta), Coi (ta)), (Poi (tb), tb, Soi (tb), Coi (tb)), . . . , (Poi (tc), tc, Soi (tc), Coi (tc))〉 (3)

Given the low speed threshold ε low, the following conditions are met: (1) time series;
(2) short time interval; (3) time duration; and (4) low speed retention. The mathematical
expression is as follows:

tm < tn

|tm − tn| ≤ g

|te − td| ≥ L

Soi(tm) ≤ ε low

∀tm, tn ∈ T = {ta, tb, . . . tc}, m < n

tm, tm+1 ∈ T = {ta, tb, . . . tc}, m ≤ c− 1

∀T′ = {td, td+1, . . . te} ⊂ T = {ta, tb, . . . tc}
oi ∈ ODB, tm ∈ T′, ∀T′ = {td, td+1, . . . te} ⊂ T

(4)

(3) Jumping behavioral pattern (<Jump, oi, (ta, tc)>)

During the movement of the ship, the AIS equipment is turned off for a long time [28],
and a long track point disappears on the track, and the track that is originally a whole
segment is divided into two segments. A jumping behavioral pattern is expressed as a
sequence of spatiotemporal trajectory points as follows:

oi.TR : 〈(Poi (ta), ta, Soi (ta), Coi (ta)), (Poi (tb), tb, Soi (tb), Coi (tb)), . . . , (Poi (tc), tc, Soi (tc), Coi (tc))〉 (5)

Given the long-time interval threshold h, the following conditions are met: (1) time series;
(2) long-time interval; and (3) time duration. The mathematical expression is shown
as follows: 

tm < tn

|tm − tn| ≥ h

|te − td| ≥ L

∀tm, tn ∈ T = {ta, tb, . . . tc}, m < n

tm, tm+1 ∈ T = {ta, tb, . . . tc}, m ≤ c− 1

∀T′ = {td, td+1, . . . te} ⊂ T = {ta, tb, . . . tc}
(6)

(5) Deviation behavioral pattern (<Dev, oi, (ta, tc)>)

A deviation behavioral pattern is defined to convey that a ship motion deviates from
most ship motion routes, which is manifested by the distance from the track point of the
target object to a typical track exceeding a certain threshold, that is, the track point is
outside the main route. The deviation behavioral pattern is expressed as a sequence of
position deviation trajectories:

oi.TR = {aoi (t1), aoi (t2), . . . , aoi (tn)}, aoi

(
tj
)
=
(

Poi

(
tj
)
, tj, Soi

(
tj
)
, Coi

(
tj
))

(7)
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Given the quantity scale threshold m, the following conditions are met: (1) time series;
(2) short time interval; (3) time duration; and (4) position deviation. The mathematical
expression is given as follows:

tm < tn

|tm − tn| ≤ g

|te − td| ≥ L

Num(Po ∈ N(oi)) ≤ m,

∀tm, tn ∈ T = {ta, tb, . . . tc}, m < n

tm, tm+1 ∈ T = {ta, tb, . . . tc}, m ≤ c− 1

∀T′ = {td, td+1, . . . te} ⊂ T = {ta, tb, . . . tc}
N(oi) ∈ {NHd(aoi (t1)), NHd(aoi (t2)), . . . , NHd(aoi (tn))}

(8)

3.3.2. Macrolevel Basic Behavioral Patterns

At the macrolevel, basic ship behavior patterns can be extracted at the target location
of a ship’s arrival, by multi-ship aggregation, and other behaviors [29]. We identify a
difference between the gathering and origin destinations and turn back behavioral patterns.

(1) Gather behavioral pattern [30] (<Gather, (oi, oj, . . .), (ta, tc)>)

A gather behavioral pattern combines nearby ships from a space-time perspective
through density-based clustering, with objects connected by density for a continuous
period [31,32] with all ships remaining at low speed. A gather behavioral pattern is
represented as a sequence of snapshot clusters, which is composed of multiple objects oi,
oj, . . . from a valid snapshot cluster, i.e., <cta , ctb . . . , ctc >, C =

{
cta , ctb . . . , ctc

}
is the set of

effective snapshot clusters, and T= { ta, tb, . . . , tc} is the timestamp set of effective snapshot
clusters, and which meets the following conditions: (1) time series; (2) short time interval;
(3) time persistence; (4) density connectivity, and its characteristics are mapped in effective
snapshot clusters; (5) mobility stability; and (6) low speed retention. The mathematical
expression is shown as follows:

tm < tn

|tm − tn| ≤ g

|te − td| ≥ L

cti ∼ cti+1 ,

Sc(tm) ≤ ε low

∀tm, tn ∈ T = {ta, tb, . . . tc}, m < n

tm, tm+1 ∈ T = {ta, tb, . . . tc}, m ≤ c− 1

∀T′ = {td, td+1, . . . te} ⊂ T = {ta, tb, . . . tc}
cti , cti+1 ∈ Cti (oi) =

{
cta , ctb , . . . , ctc

}
, ti ∈ T = {ta, tb, . . . tc}

c ∈ CDB, tm ∈ T′, ∀T′ = {td, td+1, . . . te} ⊂ T

(9)

(2) Origin destination behavioral pattern [33] (<OD(place1,place2), oi, (ta, tb)>)

A behavioral pattern of the starting and destination points is considered from a macro
perspective. Let T = { ta, tb} represent the set of time stamps when the moving object
reaches the target location, Poi

(
tj
)

represent the position of the moving object oi at tj, and
the following conditions are met: (1) time series; (2) time interval; and (3) spatial nearest
neighbor. The mathematical expression is shown as follows:

ta < tb

|tb − ta| ≤ g

Poi (tj) ∈ NHd(ek
oi
(tj))

a < b

a < b

em
oi
∈ E =

{
e1

oi
(t1), e2

oi
(t2), . . . em

oi
(tn)

}
, T = {t1, t2, . . . tn}

(10)

(3) Turn back behavior pattern (<Tback(place1,place2 . . . ), oi, (ta, tq)>)

A turn back behavioral pattern is when a ship moving in a given direction is returning
in the reverse direction after reaching a given position, and then turns back on the track.
The turn back behavioral pattern is expressed as a target position reaching sequence, i.e.,
E =

{
e1

oi
(ta), e2

oi
(tb), . . . , em

oi
(tn), em−1

oi
(tn+1), . . . , e2

oi

(
tq−1

)
, e1

oi

(
tq
)}

, where T = {ta , tb,

. . . , tn, tn+1, . . . , tq−1, tq
}

is the timestamp set of the moving object arriving at the target
position, e1

oi
(ta) represents the moving object oi arriving at the starting position e1 at ta,

and Poi

(
tj
)

represents the position of the moving object oi at tj, meeting the following
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conditions: (1) time series; (2) time interval; (3) time persistence; and (4) spatial nearest
neighbor. The mathematical expression is given as follows:

tm < tn

|tm − tn| ≤ g

|te − td| ≥ L

Poi (tj) ∈ NHd(ek
oi
(tj))

∀tm, tn ∈ T =
{

ta, tb, . . . tq
}

, m < n

tm, tm+1 ∈ T =
{

ta, tb, . . . tq
}

, m ≤ c− 1

∀T′ =
{

tx, tx+1, . . . ty
}
⊂ T =

{
ta, tb, . . . tq

}
em

oi
∈ E =

{
e1

oi
(t1), e2

oi
(t2), . . . em

oi
(tn)

}
, T = {t1, t2, . . . tn}

(11)

Table A1 in the Appendix A summarizes the ship’s trajectory characteristics and
behavioral patterns.

3.4. Behavioral Pattern Combination

As far as basic trajectory patterns are identified at the individual levels, they can be
combined to denote behavioral patterns.

3.4.1. Minimum Operation Subset

Combination operations are categorized into logic-based operators, time series-based
operators, and other types of operators.

Logic-based operators include logical “and”, “or”, and “none” operations.
Time series-based operator: Time-series relationships are divided into timestamps and

interval timestamps operations. As most ship behaviors generally last for a period of time,
we consider temporal intervals [34,35]. Thirteen kinds of interval timestamp relationships
can be identified according to a temporal algebra. Overall, this identifies a difference
between intervals that overlap and do not overlap using different combinations (Table A2
in the Appendix A).

When the interval timestamps of two events do not overlap completely, the sequence
of events can be determined. When the interval timestamps of two events overlap com-
pletely, the two events are concurrent within the interval timestamp. When the interval
timestamps of two events overlap partially, it is difficult to determine whether the events
occur in chronological order or whether the events are concurrent, so let us cut the interval
timestamps. Figure 1 shows the time series relationship of the two events after cutting. C2
precedes C1 at t1–t2; C1 is concurrent with C2 at t2–t3; and C2 follows C1 at t3–t4. In this
case, C1 during C2 is selected for analysis. Other events with partial overlapping time can
be cut using this method to determine the sequence of events using similar principles.
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Other types of operators are mainly negative operators and time-limited operators,
whose semantics are shown in Table 1.
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Table 1. Other operators.

Operator Expression Meaning Temporal Relationship

Negative (A− B)T
B does not occur in interval
T after the occurrence of A Time limit condition T

Time limit AT A duration greater than T Time limit condition T

3.4.2. Complex Behavioral Combinatorial Operations

Atomic events are combined based on the minimum operation subset to describe
complex ship behavioral patterns, and logical combinatorial operations and temporal
combinatorial operations are applied.

A logical combinatorial operation describes complex events through an “and”, “or”,
and “non” operations, for example, (A ∧ B) ∨ C.

This example represents events A, B, and C. The following conditions must be met for
complex events: events A and B exist, or event C exists.

The sequential combinatorial temporal operations include “before”, “after”, “concur-
rent”, “negative”, and “time limit”. They are categorized into sequential combinatorial
operations, potential sequential combinatorial operations, iterative combinatorial opera-
tions, embedded combinatorial operations, and composite operations. The semantics of
these combinatorial operations are shown in Table A3 in the Appendix A.

Among these operations, the compound operation is the combination nesting of the
above four combination operations: Example: (A(B� C)− D)T .

These examples show the following: (1) within the time interval of event A, event B
and event C occur successively; and (2) event D will not occur within T after the end of
event A.

4. Ship Behavioral Pattern (CSBP)—Mining Visual Patterns
4.1. Logical Combinatorial Visualization

Figure 2 shows the visual representation of a CSBP. The abscissa is time while the
ordinate shows different patterns. The different colors in the figure represent different
behavior patterns. The logical operator does not consider the time series relationship
between the events, so the logical combination operation shown in Figure 2 can be expressed
as A∧B∧C.
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4.2. Temporal Combinatorial Visualization

(1) Sequential combinatorial visualization

Figure 3 shows the visualization diagram of the pattern sequential combination. There
is a time series relationship between these patterns, and the sequential combinatorial
operation is expressed as B� A� B� A� A.
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(2) Potential sequential combinatorial visualization

Figure 4 shows a visualization of a potential sequence of patterns, which have a
time series relationship. Potential sequential combinatorial operations can be expressed
as A � ∗ � B � ∗ � C, for unknown events, the symbol “*” is used to indicate, and
the patterns of some objects can be omitted to determine the required complex patterns
more intuitively.
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(3) Iterative combinatorial visualization

Figure 5 shows the visual diagram of the pattern iteration combination. From the
diagram, patterns A and B can be seen to repeat three times, which can be expressed as
Itr3(A� B).
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(4) Embedded combinatorial visualization

Figure 6 shows a visual diagram of the pattern embedded combination. From the fig-
ure, it can be seen intuitively that during the occurrence of pattern A, pattern B occurs three
times in chronological order, which can be expressed as A(B� B� B) or A

(
Itr3(B)

)
.
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(5) Composite visualization

Figure 7 shows a visual diagram of the composite pattern combination. The composite
combination combines the above combination operations to form a more complex event,
which can be expressed as A

(
Itr3(B� C)

)
� A

∣∣∣∣C .
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Taking the behavioral pattern of a given ship for a given period of time as a case
study, the CSBP visual analysis was carried out. Figure 8 shows the visualization diagram
of the ships’ CSBP. The abscissa is time and the ordinate is the six behavioral patterns
previously described: STAY, OD, DEV, JUMP, Gather, and Tback. The different colors
represent different behavioral patterns. The logical combination of operations can be
expressed as:

STAY ∧ OD ∧ DEV ∧ JUMP ∧ Gather (12)
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This description indicates that the ship has stayed, then it is at an origin destination,
and then a deviation, thus jumping over this period, while there is no turn back behavior
pattern. The time series composite operation on the ship can be expressed as:

STAY � (STAY
∣∣∣∣∣∣Gather)� OD � STAY

(
Itr2(JUMP)� Gather

)
� OD �

(OD||JUMP)� OD � STAY � OD � (OD||DEV)� OD
(13)

The above process shows a ship CSBP in a composite form. This method can accurately
and intuitively describe the process of ship CSBP and present in detail complex behavioral
patterns during a given navigation.

4.3. Visual Analysis of Complex Ship Behaviors
4.3.1. Visualization of a Ship Navigation Behavior

The approach was experimented in the Jiangsu and Zhejiang waters, using a cargo
ship as an example, to highlight complex behaviors through the CSBP mining model and
used the visual method to illustrate its navigation patterns in 2020. The static information
of the cargo ship studied in this experiment is shown in Table 2.

Table 2. Cargo ship static information table.

MMSI Ship Name Ship Type Ship Length (m) Ship Width(m) Draft (dm)

412270860 YUN LI 6 Cargo ship 56 9 3

Figure 9 shows the visualization of the complex behavior of the cargo during naviga-
tion and at different times. The abscissa is UTC (Coordinated Universal Time) time and the
ordinate is the five basic ship behavioral patterns previously defined.
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4.3.2. Analysis of Complex Ship Behavior

The CSBP mining model can visualize the navigation behavior of a ship during the
whole navigation process, which should denote a true reflection of the navigation status of
the ship.

As shown in Figure 9, the cargo ship showed five behavioral patterns during navi-
gation: stay, origin destination, deviation, jumping, and gather. Regarding the jumping
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behavioral pattern, this occurred before period 7 and between two adjacent origin desti-
nation behaviors, indicating that the cargo ship was in a suspended state and had closed
AIS during this period. Several short-time jumping behavioral patterns between the ori-
gin destination behaviors indicate that some obstacles may have blocked the AIS signal
during the journey of the ship. The ship showed two gather behavioral patterns, and
the occurrence time was outside the occurrence period of the origin destination behavior.
Therefore, one can infer that the cargo ship could have berthed with the assistance of a
tug or overtaken other ships. The ship showed many stay behaviors. One can infer that
this location may be an anchor within the period when the behavioral pattern of the origin
destination occurred. The speed of the ship was low or zero at this location, and the ship
was in the state of anchoring. If the stay behavior was outside the period when the origin
destination behavioral pattern occurred, the ship may have berthed at the wharf. From
the complex behavioral pattern diagram of the ship, the starting point and arrival point
of the cargo ship are clear, no turn back behavior and no other abnormal behavior during
navigation was shown, so one can infer that the cargo ship was sailing normally on the
planned route. Figure 10a,b are separate representations of the basic behaviors at the
microlevel of the cargo ship. Compared with the complex behaviors denoted in Figure 9,
the separate jumping behavior and stay behavior lack comparison with the other behaviors
and cannot clearly show the state of the ship in time and space, which is not convenient for
the overall grasp of the behavior of the ship during navigation.
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5. Instance Application

The application of the CSBP mining model mining and visualization, combined with a
frequent pattern mining algorithm, suspected ships with illegal behaviors might be uncovered.

5.1. Visual Analysis of Complex Ship Behaviors

Taking Zhejiang and Fujian waters as the case study, we selected a refined oil smug-
gling ship. The CSBP mining model visually showed the navigation process of the ship in
2020 and traced the origin of the ship’s smuggling process, combined with the evidence
found by the maritime police border guards, which can provide corresponding evidence for
the conviction of offenders. The static information of the ships involved in this experimental
study is shown in Table 3.

Table 3. Smuggling ship static information table.

MMSI Ship Name Ship Type Ship Length (m) Ship Width(m) Draft (dm)

413436650 HX118 Tanker 53 9 36

Figure 11 shows the visualization of the complex ship behavior detected during its
navigation, which intuitively shows its behaviors at different times. The abscissa is the UTC
of the ship navigation while the ordinate is the six basic ship behavior patterns previously
identified. The red straight line represents that the ship passed through stay and gather
behavioral patterns at a given time in the navigation process, indicating that two behaviors
occurred simultaneously. Shifting the red line from left to right represents the behavioral
pattern of the ships in turn over time.
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Figure 11. Involved ship complex behavioral pattern diagram.

The most prominent suspicious behavior is to stay at a certain place for a long time
and frequently turning the AIS system on and off during the stay of the ship. According
to the stay behavioral pattern, the ship stayed in the sea area near Zhoushan for nearly
45 days while 81 jumping behavioral patterns occurred during the stay behavioral pattern.
This complex behavior pattern can be expressed as STAY

(
Itr81(JUMP)

)
. Accordingly,

the characteristics of this suspicious ship are set as follows: (1) the ship showed a stay
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behavioral pattern, and the stay period was more than 30 days; (2) there were multiple
jumps between the behavioral patterns of the ship during this stay period, and the threshold
of the number of jumps was set to 10. The judgement basis of suspicious ships chosen
above is subjective, which is analyzed here as an example. In practical applications, it
will be necessary to combine such patterns with professional knowledge and the relevant
evidence of marine police and supervisors to more accurately determine the behavioral
characteristics of such suspicious ships.

5.2. Frequent Behavior Patterns Uncover Suspicious Ships

First, the frequent behavior patterns of a group of ships were mined using the PrefixS-
pan algorithm. Then, the frequent behavioral pattern was set into the frequent behavior
pattern of the ship, the frequent behavioral patterns of other ships were matched with the
frequent behavior of the ship involved, and the ships that highly matched with the behavior
of the ship involved were uncovered. Figure 12 shows the overall process framework.
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Figure 12. Flow chart of ship frequent behavioral pattern matching.

The frequent behavioral patterns of the other ships were matched with the frequent
behavioral patterns of the ship involved. If the frequent behavior item set of the ship is S
and the frequent behavior item set of the ship involved is Q, the calculation formula of the
matching degree is as follows:

Match(S, Q) =
|S ∩Q|
|Q| (14)

Figure 13 shows the histogram of the matching degree of the frequent behavior patterns
between other ships and the ship involved. Due to the limited cases, the selection of the
threshold is relatively subjective. In this case, we selected the threshold M = 0.6. In fact, the
selection of the matching threshold could be combined with the actual situation of different
cases to achieve the better results. With the increase in the case database, a threshold value
is automatically obtained through intelligent algorithm learning, which is also a valuable
further research direction.
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Figure 13. Histogram of the degree of matching of frequent behavioral patterns between the ships
and the ship involved.

5.3. Uncovering Suspicious Ships

The mining of the suspected ship requires the illegal and criminal ship behavior as a
reference, and the CSBP mining model was used to visually analyze the behavior of the
involved ship and uncover the suspicious behavior of the ship. The PrefixSpan algorithm
was used to mine the ships closely matching the behavior of the ships involved in the case.
Combined with the above two points, suspicious ships can be uncovered. Finally, three
ships in this experiment met the above suspicious ship identification requirements, and
their visualization results are shown in Figure 14. The complex behavior visualization of
the three ships corresponds to Figure 14a–c.
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suspicious ship.
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6. Discussion and Conclusions

This paper introduces a formal and visual framework for analyzing ship behaviors
as derived from AIS trajectory data. Different behavior characteristics are modeled as
basic patterns and are combined to denote complex ship behavioral patterns and visualize
them using the CSBP mining model. The model method has broad application prospects.
For example, by the maritime police, it can be used in the detection of smuggling and
drug trafficking. After establishing a certain case database, it can be used to detect illegal
activities such as ship smuggling through the judgment of the similarity model. For fishery
administration, the corresponding illegal fishing behavior can be identified through the
construction of an illegal fishing vessel behavior database and then through the judgment
of the similarity model. For the maritime department, it can be used to detect the illegal
anchoring and anchor walking behavior. The experimental results show that the CSBP
mining model can clearly show ship behavioral patterns during navigation and efficiently
uncover suspicious ships. The reliability analysis of the suspected ships uncovered has a
higher degree of matching with the involved ship. The aim will be to combine such visual
analysis with professional knowledge and maritime law enforcement to derive relevant
evidence. A more restrictive study area can be identified before performing frequent
behavior pattern mining to reduce the number of ships involved and facilitate the discovery
of suspected ships. We also plan to implement the formal and visual principles of the CSBP
mining model in a computing architecture and interface that will be specifically designed for
maritime officers and experts. Indeed, the approach is still prone to some limitations. First,
the quality of the AIS data affects the experimental results. If there is a lot of missing data
in the data used in the experiment, some behavior models are difficult to mine, which will
affect the analysis of the final experimental results. Secondly, some discontinuous patterns
might appear due to AIS signal loss or shade. Last, although six behavioral patterns were
identified at the macro- and microlevels, additional patterns might be formally defined;
this is left to further work to extend the potential of our whole framework.
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Appendix A

Table A1. Ship trajectory characteristics and behavioral patterns.

Behavior Characteristics

Behavior Patterns Micro Behavior Patterns Macro Behavior Patterns

Mobile Stay Jumping Deviation Gather Origin
Destination

Turn
Back

Time
characteristics

Time series
√ √ √ √ √ √ √

Short time interval
√ √ √ √ √ √

Time duration
√ √ √ √ √ √

Long time interval
√

Spatial
characteristics

Density connectivity
√

Spatial nearest neighbor
√ √

Positional deviation
√

Other
characteristics

Low speed retention
√ √

Speed stability
√

Mobile stability
√

Position sequence symmetry
√

Table A2. Interval timestamp relationships.

Category Category Description Temporal
Relationship

Symbolic
Representation Inverse Notation

The timestamps between the two
events do not overlap at all

The sequence of events that can
distinguish between two events

C1 before C2 < >

C1 meets C2 m mi

The timestamps between the two
events overlap completely

There are two events in a
full-time period C1 equal C2 = =

The timestamps between the two
events overlap

Two events exist at the same
time in some time segments

C1 during C2 d di

C1 starts C2 s si

C1 finishes C2 f fi

C1 overlaps C2 o oi

Table A3. Sequential combinatorial operations.

Definition Example Example Semantics

Sequential combination
operations

The sequential combinatorial operation
requires that events that occur in the target
object be sequenced in chronological order.

A� (B)T � C‖E
1. In chronological order, events A, B, and C occur in the

order of the event. 2. Event B occurs at least T for a
period of time. 3. After event B occurs, event C and event

E occur at the same time.

Potential sequential
combinatorial operations

The potential sequence combinatorial
operation refers to the incomplete

confirmation of the sequence of events that
occur in the target object, represented by

the symbol “*“.

A� ∗ � B

Indicates that the complex event is triggered by the
potential sequence of events A and B, and its

combination operation expression semantics is as
follows: 1. Event A occurs first to the target object in

chronological order. 2. Subsequent event B. 3. After event
A and before event B, there are none, one or more events.

Embedded combinatorial
operation

The embedded combinatorial operation
refers to the existence of an event with a
large interval, during which other events

occur.

A(B� C� D)

Indicates that the complex event is composed of four
events A, B, C, and D. Among these events, events B, C,
and D are embedded in the time interval of event A. The

embedded combination operation expresses the
semantics as follows: within the time period of event A,

event B, event C, and event D occur successively.

Iterative combinatorial
operation

The iterative combinatorial operation
refers to the events that occur in the target
object, which occur iteratively in the time

series, represented by Itrn(∗).
Itrn(A� B� C)

1. Event A, event B, and event C occur in chronological
order. 2. The whole process is iterated n times.
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