On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data
Abstract
:1. Introduction
2. Optimization Procedure
2.1. Forward Model SAFE
2.2. Inversion Optimizer PSO
- Lower Bound: −40% of literature values;
- Upper Bound: +60% of literature values;
- Maximum Iterations—50;
- Swarm Size—50;
- Maximum Stall Iterations—20;
- Interior-point Algorithm (fmincon);
- Maximum Iterations (fmincon)—1000.
2.3. Inversion Procedure
3. Data Generation and Conditioning
3.1. Simulation Data—COMSOL
3.2. Experimental Data—3D IR SLDV
3.3. Matrix Pencil Decomposition Method (MPDM)
4. Results and Discussion
4.1. Numerical Case Study 1: Homogeneous Wooden Plate
4.2. Numerical Case Study 2: Homogeneous C/E Plate
4.3. Effect of Noise
4.4. Experimental Case Study 1: Homogenized C/E Plate
4.5. Experimental Case Study 2: Homogenized G/F Woven Plate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staszewski, W.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Tam, J.H.; Ong, Z.C.; Ismail, Z.; Ang, B.C.; Khoo, S.Y. Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review. Mech. Adv. Mater. Struct. 2017, 24, 971–986. [Google Scholar] [CrossRef]
- Longo, R.; Laux, D.; Pagano, S.; Delaunay, T.; Le Clézio, E.; Arnould, O. Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): A comprehensive study. Wood Sci. Technol. 2018, 52, 383–402. [Google Scholar] [CrossRef] [Green Version]
- Tam, J.H.; Ong, Z.C.; Lau, C.L.; Ismail, Z.; Ang, B.C.; Khoo, S.Y. Identification of material properties of composite plates using Fourier-generated frequency response functions. Mech. Adv. Mater. Struct. 2019, 26, 119–128. [Google Scholar] [CrossRef]
- Dahmen, S.; Ketata, H.; Ghozlen, M.H.B.; Hosten, B. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave. Ultrasonics 2010, 50, 502–507. [Google Scholar] [CrossRef]
- Castellano, A.; Foti, P.; Fraddosio, A.; Marzano, S.; Piccioni, M.D. Ultrasonic immersion tests for mechanical characterization of multilayered anisotropic materials. In Proceedings of the 2014 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems Proceedings, Naples, Italy, 17–18 September 2014; pp. 1–6. [Google Scholar]
- Martens, A.; Kersemans, M.; Daemen, J.; Verboven, E.; Van Paepegem, W.; Delrue, S.; Van Den Abeele, K. Characterization of the orthotropic viscoelastic tensor of composites using the Ultrasonic Polar Scan. Compos. Struct. 2019, 230, 111499. [Google Scholar] [CrossRef]
- Sale, M.; Rizzo, P.; Marzani, A. Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli. Mech. Syst. Signal Process. 2011, 25, 2241–2256. [Google Scholar] [CrossRef]
- Marzani, A.; De Marchi, L. Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms. J. Intell. Mater. Syst. Struct. 2013, 24, 2135–2147. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Fiborek, P.; Wandowski, T. Elastic constants identification of woven fabric reinforced composites by using guided wave dispersion curves and genetic algorithm. Compos. Struct. 2020, 249, 112569. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Fiborek, P.; Wandowski, T. Elastic constants identification of fibre-reinforced composites by using guided wave dispersion curves and genetic algorithm for improved simulations. Compos. Struct. 2021, 272, 114178. [Google Scholar] [CrossRef]
- Takahashi, V.; Lematre, M.; Fortineau, J.; Lethiecq, M. Elastic parameters characterization of multilayered structures by air-coupled ultrasonic transmission and genetic algorithm. Ultrasonics 2022, 119, 106619. [Google Scholar] [CrossRef]
- Rokhlin, S.; Chimenti, D.; Nagy, P. Physical Ultrasonics of Composites; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Martens, A.; Kersemans, M.; Daemen, J.; Verboven, E.; Van Paepegem, W.; Degrieck, J.; Delrue, S.; Van Den Abeele, K. Numerical study of the Time-of-Flight Pulsed Ultrasonic Polar Scan for the determination of the full elasticity tensor of orthotropic plates. Compos. Struct. 2017, 180, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Polytec PSV-500-3D Operating Instructions Manual. Operating Instructions of Polytec Scanning Vibrometer PSV-500-3D. Available online: https://www.polytec.com (accessed on 20 June 2022).
- Bartoli, I.; Marzani, A.; di Scalea, F.L.; Viola, E. Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 2006, 295, 685–707. [Google Scholar] [CrossRef]
- Ahmad, Z.; Vivar-Perez, J.M.; Gabbert, U. Semi-analytical finite element method for modeling of lamb wave propagation. Ceas Aeronaut. J. 2013, 4, 21–33. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, K.; Ta, D. High-resolution Lamb waves dispersion curves estimation and elastic property inversion. Ultrasonics 2021, 115, 106427. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Lanza di Scalea, F. On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm. Compos. Struct. 2019, 223, 110969. [Google Scholar] [CrossRef]
- Orta, A.H.; Segers, J.; Vandendriessche, J.; Roozen, N.; Paepegem, W.V.; Kersemans, M.; Abeele, K.V.D. Characterization of the orthotropic elastic tensor of composites using full-field Lamb waves. In Proceedings of the Forum Acusticum, Lyon, France, 20–24 April 2020; pp. 3319–3326. [Google Scholar] [CrossRef]
- Eberhart; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27–30 May 2001; Volume 1, pp. 81–86. [Google Scholar]
- Wirgin, A. The inverse crime. arXiv 2004, arXiv:0401050. [Google Scholar]
- Leckey, C.A.; Wheeler, K.R.; Hafiychuk, V.N.; Hafiychuk, H.; Timuçin, D.A. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment. Ultrasonics 2018, 84, 187–200. [Google Scholar] [CrossRef]
- Predoi, M.V.; Castaings, M.; Hosten, B.; Bacon, C. Wave propagation along transversely periodic structures. J. Acoust. Soc. Am. 2007, 121, 1935–1944. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- Niethammer, M.; Jacobs, L.J.; Qu, J.; Jarzynski, J. Time-frequency representations of Lamb waves. J. Acoust. Soc. Am. 2001, 109, 1841–1847. [Google Scholar] [CrossRef] [Green Version]
- Draudviliene, L.; Tumsys, O.; Mazeika, L.; Zukauskas, E. Estimation of the Lamb wave phase velocity dispersion curves using only two adjacent signals. Compos. Struct. 2021, 258, 113174. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, L.; Lin, J. Lamb wave mode decomposition and reconstruction based on the viscoelastic propagation model. Struct. Health Monit. 2021, 20, 25–45. [Google Scholar] [CrossRef]
- Harley, J.B.; Moura, J.M. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves. J. Acoust. Soc. Am. 2013, 133, 2732–2745. [Google Scholar] [CrossRef] [PubMed]
- Geslain, A.; Raetz, S.; Hiraiwa, M.; Abi Ghanem, M.; Wallen, S.; Khanolkar, A.; Boechler, N.; Laurent, J.; Prada, C.; Duclos, A.; et al. Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems. J. Appl. Phys. 2016, 120, 135107. [Google Scholar] [CrossRef] [Green Version]
- Berthaut, J.; Ichchou, M.; Jezequel, L. K-space identification of apparent structural behaviour. J. Sound Vib. 2005, 280, 1125–1131. [Google Scholar] [CrossRef]
- Marchetti, F.; Roozen, N.; Segers, J.; Ege, K.; Kersemans, M.; Leclère, Q. Experimental methodology to assess the dynamic equivalent stiffness properties of elliptical orthotropic plates. J. Sound Vib. 2021, 495, 115897. [Google Scholar] [CrossRef]
- Hua, Y.; Sarkar, T.K. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. In Proceedings of the 1991 IEEE International Sympoisum on Circuits and Systems, Singapore, 11–14 June 1991; pp. 2780–2783. [Google Scholar]
- Bucur, V.; Rocaboy, F. Surface wave propagation in wood: Prospective method for the determination of wood off-diagonal terms of stiffness matrix. Ultrasonics 1988, 26, 344–347. [Google Scholar] [CrossRef]
- Deschamps, M.; Hosten, B. The effects of viscoelasticity on the reflection and transmission of ultrasonic waves by an orthotropic plate. J. Acoust. Soc. Am. 1992, 91, 2007–2015. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Spronk, S.; Verboven, E.; Gilabert, F.; Sevenois, R.; Garoz, D.; Kersemans, M.; Van Paepegem, W. Stress-strain synchronization for high strain rate tests on brittle composites. Polym. Test. 2018, 67, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Raghavalu Thirumalai, D.P.; Løgstrup Andersen, T.; Lystrup, A. Influence of moisture absorption on properties of fiber reinforced polyamide 6 composites. In Proceedings of the 26th Annual Technical Conference of the American Society for Composites 2011 and the 2nd Joint US-Canada Conference on Composites, Montreal, QC, Canada, 26–28 September 2011. [Google Scholar]
C-Tensor Component | Actual Values | In-Plane Motion | Deviation (%) | Out-of-Plane Motion | Deviation (%) | Full-Field Motion | Deviation (%) |
---|---|---|---|---|---|---|---|
17.33 | 17.48 (±0.00) | 0.90 | 17.17 (±0.00) | 0.90 | 17.58 (±0.00) | 1.45 | |
3.03 | 3.10 (±0.00) | 2.48 | 3.00 (±0.00) | 0.51 | 3.11 (±0.00) | 2.75 | |
1.69 | 1.87 (±0.00) | 10.47 | 1.74 (±0.00) | 3.22 | 1.90 (±0.00) | 12.22 | |
3.26 | 3.29 (±0.00) | 0.96 | 3.32 (±0.00) | 1.64 | 3.28 (±0.00) | 0.55 | |
0.74 | 0.82 (±0.00) | 9.87 | 0.87 (±0.00) | 17.47 | 0.80 (±0.00) | 7.17 | |
1.64 | 1.79 (±0.00) | 9.36 | 1.93 (±0.00) | 17.47 | 1.76 (±0.00) | 7.61 | |
0.62 | 0.62 (±0.00) | 0.03 | 0.62 (±0.00) | 0.13 | 0.62 (±0.00) | 0.03 | |
1.09 | 1.09 (±0.00) | 0.08 | 1.09 (±0.00) | 0.07 | 1.09 (±0.00) | 0.13 | |
1.52 | 1.52 (±0.00) | 0.07 | 1.54 (±0.00) | 1.23 | 1.52 (±0.00) | 0.07 |
C-Tensor Component | Actual Values | In-Plane Motion | Deviation (%) | Out-of-Plane Motion | Deviation (%) | Full-Field Motion | Deviation (%) |
---|---|---|---|---|---|---|---|
17.33 | 17.29 (±0.00) | 0.20 | 17.29 (±0.00) | 0.17 | 17.28 (±0.00) | 0.25 | |
3.03 | 3.02 (±0.00) | 0.17 | 3.02 (±0.00) | 0.08 | 3.02 (±0.00) | 0.28 | |
1.69 | 1.69 (±0.00) | 0.10 | 1.70 (±0.00) | 0.42 | 1.69 (±0.00) | 0.06 | |
3.26 | 3.26 (±0.00) | 0.05 | 3.26 (±0.00) | 0.04 | 3.26 (±0.00) | 0.05 | |
0.74 | 0.74 (±0.00) | 0.44 | 0.74 (±0.00) | 0.32 | 0.74 (±0.00) | 0.13 | |
1.64 | 1.64 (±0.00) | 0.01 | 1.64 (±0.00) | 0.14 | 1.64 (±0.00) | 0.01 | |
0.62 | 0.62 (±0.00) | 0.05 | 0.62 (±0.00) | 0.09 | 0.62 (±0.00) | 0.05 | |
1.09 | 1.09 (±0.00) | 0.04 | 1.09 (±0.00) | 0.01 | 1.09 (±0.00) | 0.02 | |
1.52 | 1.52 (±0.00) | 0.01 | 1.52 (±0.00) | 0.14 | 1.52 (±0.00) | 0.00 |
C-Tensor Component | Actual Values | In-Plane Motion | Deviation (%) | Out-of-Plane Motion | Deviation (%) | Full-Field Motion | Deviation (%) |
---|---|---|---|---|---|---|---|
132 | 132.64 (±0.02) | 0.48 | 132.31 (±0.02) | 0.23 | 132.05 (±0.02) | 0.04 | |
6.9 | 7.43 (±0.01) | 7.73 | 7.25 (±0.01) | 5.12 | 7.21 (±0.02) | 4.43 | |
5.9 | 6.80 (±0.03) | 15.21 | 7.06 (±0.03) | 19.71 | 6.41 (±0.03) | 8.69 | |
12.3 | 12.69 (±0.01) | 3.19 | 12.38 (±0.02) | 0.63 | 12.71 (±0.02) | 3.32 | |
5.5 | 6.09 (±0.03) | 10.78 | 5.83 (±0.04) | 6.00 | 6.24 (±0.03) | 13.49 | |
12.1 | 12.81 (±0.05) | 5.89 | 13.09 (±0.11) | 8.21 | 13.37 (±0.07) | 10.53 | |
3.32 | 3.31 (±0.00) | 0.34 | 3.32 (±0.00) | 0.13 | 3.31 (±0.00) | 0.26 | |
6.21 | 6.20 (±0.00) | 0.12 | 6.21 (±0.00) | 0.05 | 6.20 (±0.00) | 0.10 | |
6.15 | 6.15 (±0.00) | 0.04 | 6.18 (±0.00) | 0.41 | 6.15 (±0.00) | 0.04 |
C-Tensor Component | Actual Values | In-Plane Motion | Deviation (%) | Out-of-Plane Motion | Deviation (%) | Full-Field Motion | Deviation (%) |
---|---|---|---|---|---|---|---|
132 | 131.97 (±0.00) | 0.02 | 131.73 (±0.00) | 0.20 | 131.87 (±0.00) | 0.10 | |
6.9 | 6.91 (±0.00) | 0.18 | 6.87 (±0.00) | 0.47 | 6.90 (±0.00) | 0.02 | |
5.9 | 5.90 (±0.00) | 0.01 | 5.89 (±0.00) | 0.16 | 5.89 (±0.00) | 0.10 | |
12.3 | 12.28 (±0.00) | 0.18 | 12.28 (±0.00) | 0.13 | 12.28 (±0.00) | 0.18 | |
5.5 | 5.48 (±0.00) | 0.36 | 5.48 (±0.00) | 0.29 | 5.48 (±0.00) | 0.35 | |
12.1 | 12.10 (±0.00) | 0.03 | 12.10 (±0.00) | 0.03 | 12.10 (±0.00) | 0.03 | |
3.32 | 3.32 (±0.00) | 0.04 | 3.32 (±0.00) | 0.05 | 3.32 (±0.00) | 0.05 | |
6.21 | 6.21 (±0.00) | 0.02 | 6.21 (±0.00) | 0.04 | 6.21 (±0.00) | 0.02 | |
6.15 | 6.15 (±0.00) | 0.00 | 6.15 (±0.00) | 0.01 | 6.15 (±0.00) | 0.00 |
C-Tensor Component | Homogenized Estimated Values Based on Literature [7] | In-Plane Motion | Out-of-Plane Motion | Full-Field Motion |
---|---|---|---|---|
51.70 | 50.83 (±0.09) | 45.46 (±0.14) | 55.99 (±0.02) | |
18.40 | 24.28 (±0.06) | 29.44 (±0.00) | 26.18 (±0.01) | |
6.70 | 7.97 (±0.04) | 4.05 (±0.03) | 8.78 (±0.01) | |
51.70 | 60.63 (±0.08) | 47.59 (±0.05) | 62.64 (±0.01) | |
6.69 | 9.97 (±0.07) | 4.03 (±0.02) | 10.33 (±0.00) | |
13.73 | 8.91 (±0.04) | 21.76 (±0.21) | 8.48 (±0.00) | |
4.22 | 2.56 (±0.00) | 2.75 (±0.00) | 2.69 (±0.00) | |
4.22 | 2.54 (±0.00) | 2.73 (±0.00) | 2.63 (±0.00) | |
16.65 | 17.27 (±0.00) | 9.99 (±0.00) | 16.57 (±0.00) |
C-Tensor Component | Homogenized Estimated Values Based on Literature [38] | In-Plane Motion | Out-of-Plane Motion | Full-Field Motion |
---|---|---|---|---|
24.84 | 25.19 (±1.78) | 22.11 (±0.04) | 22.87 (±0.00) | |
5.10 | 9.38 (±0.11) | 9.51 (±0.08) | 9.34 (±0.00) | |
5.41 | 6.25 (±0.53) | 4.97 (±0.01) | 5.22 (±0.00) | |
24.84 | 23.53 (±0.45) | 23.58 (±0.04) | 23.55 (±0.00) | |
5.41 | 5.62 (±0.83) | 5.62 (±0.01) | 5.62 (±0.00) | |
12.30 | 11.22 (±1.40) | 11.18 (±0.01) | 11.26 (±0.00) | |
3.28 | 2.80 (±0.01) | 3.12 (±0.01) | 2.81 (±0.00) | |
3.28 | 2.75 (±0.07) | 2.84 (±0.01) | 2.78 (±0.00) | |
3.04 | 6.84 (±0.00) | 6.77 (±0.06) | 6.84 (±0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orta, A.H.; Kersemans, M.; Van Den Abeele, K. On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data. Sensors 2022, 22, 5314. https://doi.org/10.3390/s22145314
Orta AH, Kersemans M, Van Den Abeele K. On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data. Sensors. 2022; 22(14):5314. https://doi.org/10.3390/s22145314
Chicago/Turabian StyleOrta, Adil Han, Mathias Kersemans, and Koen Van Den Abeele. 2022. "On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data" Sensors 22, no. 14: 5314. https://doi.org/10.3390/s22145314
APA StyleOrta, A. H., Kersemans, M., & Van Den Abeele, K. (2022). On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data. Sensors, 22(14), 5314. https://doi.org/10.3390/s22145314