Microsphere Coupled Off-Core Fiber Sensor for Ultrasound Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, G.; Cho, T.; Hwang, K.; Lee, K.; Lee, K.S.; Han, Y.G.; Lee, S.B. Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer. Opt. Express 2009, 17, 2481–2486. [Google Scholar] [CrossRef] [PubMed]
- Sirkis, J.S.; Brennan, D.D.; Putman, M.A.; Berkoff, T.A.; Kersey, A.D.; Friebele, E.J. In-line fiber etalon for strain measurement. Opt. Lett. 1973, 18, 1973–1975. [Google Scholar]
- Shi, Q.; Li, F.; Wang, Z.; Jin, L.; Hu, J.J.; Liu, J.; Kai, G.; Dong, X. Environmentally stable Fabry-Perot-type strain sensor based on hollow-core photonic bandgap fiber. IEEE Photon. Technol. Lett. 2008, 20, 237–239. [Google Scholar] [CrossRef]
- Kim, D.W.; Zhang, Y.; Cooper, K.L.; Wang, A. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Appl. Opt. 2005, 44, 5368–5373. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2009, 18, 141–149. [Google Scholar] [CrossRef]
- Chen, D.; Liu, W.; Jiang, M.; He, S. High-resolution strain/temperature sensing system based on a high-finesse fiber cavity and time-domain wavelength demodulation. J. Lightw. Techol. 2009, 27, 2477–2481. [Google Scholar] [CrossRef]
- Frazao, O.; Aref, S.H.; Baptista, J.M.; Santos, J.L.; Latifi, H.; Farahi, F.; Kobelke, J.; Schuster, K. Fabry-Perot cavity based on a suspended-core fiber for strain and temperature measurement. IEEE Photon. Technol. Lett. 2009, 21, 1229–1231. [Google Scholar] [CrossRef]
- Deng, M.; Tang, C.P.; Zhu, T.; Rao, Y.J. PCF-based Fabry-Perot interferometric sensor for strain measurement at high temperatures. IEEE Photon. Technol. Lett. 2011, 23, 700–702. [Google Scholar] [CrossRef]
- Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.C.; Lee, B.H.; Choi, E.S. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008, 33, 2455–2457. [Google Scholar] [CrossRef]
- Rao, Y.J.; Deng, M.; Duan, D.W.; Yang, X.C.; Zhu, T.; Cheng, G.H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123–14128. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, F.; Song, L.; Wang, X.; Wang, A. Multiplexed fiber Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings. IEEE Photon. Technol. Lett. 2007, 19, 622–624. [Google Scholar] [CrossRef]
- Morris, P.; Hurrell, A.; Shaw, A.; Zhang, E.; Beard, P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 2009, 125, 3611–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Lin, C.; Jiang, L.; Xiao, H.; Chai, Y.; Chen, H.; Tsai, H. Fabry–Perot interferometer embedded in a glass chip fabricated by femtosecond laser. Opt. Lett. 2009, 34, 2408–2410. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Jang, H.S.; Lee, K.S.; Kim, J.C.; Lee, B.H. Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Opt. Lett. 2004, 29, 346–348. [Google Scholar] [CrossRef]
- Kim, Y.J.; Paek, U.C.; Lee, B.H. Measurement of refractive-index variation with temperature by use of long-period fiber gratings. Opt. Lett. 2002, 27, 1297–1299. [Google Scholar] [CrossRef]
- Ding, J.-F.; Zhang, A.P.; Shao, L.-Y.; Yan, J.-H.; He, S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett. 2005, 17, 1247–1249. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Lee, B.H.; Eom, J.B.; Park, K.S.; Park, S.J.; Ju, M.J. Specialty fiber coupler; Fabrications and applications. J. Opt. Soc. Korea 2010, 14, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Baharin, N.; Azmi, A.; Abdullah, A.; Noor, M. Refractive index sensor based on lateral-offset of coreless silica interferometer. Opt. Laser Technol. 2018, 99, 396–401. [Google Scholar] [CrossRef]
- Zhou, M.; Shenglai, Z.; Lui, F.; Peng, J.; Li, L. Single-mode fiber sensor based on core-offset splicing. In Proceedings of the International Conference on Optical Instruments and Technology: Optical Sensors and Applications, Beijing, China, 6–9 November 2011; p. 8199. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Shen, J.; Zhang, S.; Xu, D.; Zhang, Y.; Li, C. Study of the Vernier Effect Based on the Fabry–Perot Interferometer: Methodology and Application. Photonics 2021, 8, 304. [Google Scholar] [CrossRef]
- Fan, H.; Chen, L.; Bao, X. Fiber-Optic Sensor Based on Core-Offset Fused Unequal-Length Fiber Segments to Improve Ultrasound Detection Sensitivity. IEEE Sens. J. 2020, 20, 9148–9154. [Google Scholar] [CrossRef]
- Hao, X.; Tong, Z.; Zhang, W.; Cao, Y. A fiber laser temperature sensor based on SMF core-offset structure. Opt. Commun. 2015, 335, 78–81. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Yang, Y.; Wang, Y.; Lu, J.; Jiacheng, L. High-Sensitive All-Fiber Fabry-Perot Interferometer Gas Refractive Index Sensor Based on Lateral offset Splicing and Vernier Effect. In Proceedings of the 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5–8 August 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Fan, H.; Chen, L.; Bao, X. Temperature-Insensitive Strain Sensor Based on Microsphere-Embedded Core-Offset Fiber with High Sensitivity. J. Lightwave Technol. 2021, 39, 2547–2551. [Google Scholar] [CrossRef]
- Yongfeng, W.; Zhang, Y.; Wu, J.; Yuan, P. Fiber-Optic Hybrid-Structured Fabry–Perot Interferometer Based on Large Lateral Offset Splicing for Simultaneous Measurement of Strain and Temperature. J. Lightwave Technol. 2017, 35, 4311–4315. [Google Scholar]
- Fan, H.; Zhang, L.; Gao, S.; Chen, L.; Bao, X. Ultrasound sensing based on an in-fiber dual-cavity Fabry–Perot interferometer. Optic Letters 2019, 44, 3606–3609. [Google Scholar] [CrossRef]
- Poiana, D.A.; Garcia-Souto, J.A.; Bao, X. Acousto-optic comb interrogation system for random fiber grating sensors with sub-nm resolution. Sensors 2021, 21, 3967. [Google Scholar] [CrossRef]
- Yang, Y.; Yongguang, W.; Juixing, J.; Zhao, Y.; He, X.; Li, L. High-sensitive all-fiber Fabry-Perot interferometer gas refractive index sensor based on lateral offset splicing and Vernier effect. Optik 2019, 196, 163181. [Google Scholar] [CrossRef]
- Bai, X.; Wand, D. An In-Fiber Coupler for Whispering-Gallery-Mode Excitation in a Microsphere Resonator. IEEE Photonics Technol. Lett. 2020, 32, 188–191. [Google Scholar] [CrossRef]
Specification | |
---|---|
Offset (h) | 11.4 µm |
1st Segment Length (L1) | 381 µm |
End Segment Length (L2) | 155 µm |
BaTiO3 Diameter | 22 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatel, G.; Bao, X. Microsphere Coupled Off-Core Fiber Sensor for Ultrasound Sensing. Sensors 2022, 22, 5328. https://doi.org/10.3390/s22145328
Tatel G, Bao X. Microsphere Coupled Off-Core Fiber Sensor for Ultrasound Sensing. Sensors. 2022; 22(14):5328. https://doi.org/10.3390/s22145328
Chicago/Turabian StyleTatel, Gerard, and Xiaoyi Bao. 2022. "Microsphere Coupled Off-Core Fiber Sensor for Ultrasound Sensing" Sensors 22, no. 14: 5328. https://doi.org/10.3390/s22145328
APA StyleTatel, G., & Bao, X. (2022). Microsphere Coupled Off-Core Fiber Sensor for Ultrasound Sensing. Sensors, 22(14), 5328. https://doi.org/10.3390/s22145328