
����������
�������

Citation: Qiu, S.; Li, A. Application

of Chaos Mutation Adaptive Sparrow

Search Algorithm in Edge Data

Compression. Sensors 2022, 22, 5425.

https://doi.org/10.3390/s22145425

Academic Editor: Evangelos

Kranakis

Received: 14 June 2022

Accepted: 18 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Application of Chaos Mutation Adaptive Sparrow Search
Algorithm in Edge Data Compression
Shaoming Qiu * and Ao Li

Communication and Network Laboratory, Dalian University, Dalian 116622, China; liao@s.dlu.edu.cn
* Correspondence: qiushaoming@dlu.edu.cn

Abstract: In view of the large amount of data collected by an edge server, when compression
technology is used for data compression, data classification accuracy is reduced and data loss is
large. This paper proposes a data compression algorithm based on the chaotic mutation adaptive
sparrow search algorithm (CMASSA). Constructing a new fitness function, CMASSA optimizes the
hyperparameters of the Convolutional Auto-Encoder Network (CAEN) on the cloud service center,
aiming to obtain the optimal CAEN model. The model is sent to the edge server to compress the
data at the lower level of edge computing. The effectiveness of CMASSA performance is tested
on ten high-dimensional benchmark functions, and the results show that CMASSA outperforms
other comparison algorithms. Subsequently, experiments are compared with other literature on the
Multi-class Weather Dataset (MWD). Experiments show that under the premise of ensuring a certain
compression ratio, the proposed algorithm not only has better accuracy in classification tasks than
other algorithms but also maintains a high degree of data reconstruction.

Keywords: computer application technology; edge computing; chaotic adaptive sparrow search
algorithm; convolutional auto-encoder network; data compression; hyperparameter optimization

1. Introduction

As devices become more and more interconnected, sensor nodes will collect massive
amounts of data, which not only have a lot of redundancy but also occupy massive com-
munication bandwidth resources during the transmission process. Compressing data in
advance on the edge server close to the data source can not only improve the efficiency
of data transmission but also enable more flexible data processing in the cloud service
center [1].

Deep learning has achieved good results in the field of data compression. Especially
in the case of large amounts of data, it is better than traditional machine learning methods.
Previous literature has described the shortcomings of machine learning in the field of
neural network data compression [2]. In one such example, recurrent neural networks
were used for data compression [3]. Although the compression rate was improved and the
compression time was reduced, the quality of data recovery was reduced. Jalilian et al. [4]
thoroughly studied the compression performance of deep convolutional neural networks
(CNN) in iris image compression for the first time and proved that this technology is
superior to all other related compression technologies. The Convolutional Auto-Encoder
Network (CAEN) is a kind of deep neural network that learns without supervision and
encodes data effectively. Liu et al. [5] proposed a simple and efficient CAEN structure for
data compression in wireless sensor networks (WSN). In Lee et al. [6], a CAEN compression
model based on frequency selection was proposed, which improved reconstruction quality
while maintaining the compression ratio (CR). In an edge server, CAEN is used to encode
and compress the data and send it to the cloud service center, which can be directly used
for machine learning tasks, or the convolution decoder of CAEN is used to reconstruct the
data in the cloud service center [7].

Sensors 2022, 22, 5425. https://doi.org/10.3390/s22145425 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0916-2087
https://doi.org/10.3390/s22145425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145425?type=check_update&version=1

Sensors 2022, 22, 5425 2 of 22

The hyperparameters of the network have a great impact on the quality of the final
model. The setting of traditional hyperparameters usually requires a lot of manpower
to tune, and it is difficult to find the optimal solution. In recent years, many researchers
have been looking for suitable methods to construct optimal network hyperparameters
to improve model performance. Ezzat et al. [8], using a gravitational search algorithm
to determine the optimal hyperparameters of the DenseNet121 architecture, achieved
high accuracy in diagnosing COVID-19 from chest X-ray images. Roselyn et al. [9] used
particle swarm optimization (PSO) to optimize feature selection to improve the classification
performance of the classifier. Liu et al. [10] proposed a learning algorithm based on an
evolutionary membrane algorithm to optimize the neural structure and network parameters
of a liquid state machine (LSM). Guo et al. [11] proposed a distributed particle swarm
optimization (DPSO) method for optimizing hyperparameters to find high-performance
convolutional neural networks but only compared this with a particle swarm algorithm, not
with other algorithms. Tuba et al. [12] used the bare-bones fireworks algorithm to optimize
the hyperparameters of the convolutional neural network and achieved good classification
results in multiple network structures, proving the feasibility of the evolutionary algorithm
to optimize a deep neural network, but the characteristics of the datasets used are obvious,
and the practical application is not fully considered.

The Sparrow Search Algorithm (SSA) [13] is a swarm intelligence optimization algo-
rithm proposed in recent years which has been widely used in many fields. Compared with
traditional algorithms, the sparrow algorithm is simple in principle, easy to implement, and
has strong optimization ability. However, the sparrow algorithm still has some limitations
in aspects such as population initialization and location update strategy, resulting in the
inconsistency of global search ability and local optimization ability and a weak ability to
jump out of local optima. Wu et al. [14] proposed an improved Sparrow Search Algorithm
(ISSA) to optimize some parameters in a Fast Random Configuration Network (FSCN) to
make it have better classification performance. Liu et al. [15] proposed an improved SSA
called CASSA to solve the UAV route planning problem. Nguyen et al. [16] proposed a new
and improved enhanced SSA (ESSA) for optimal operation planning of power microgrids.
Although these improved methods have improved the performance of the SSA to a certain
extent, further research is needed to enhance the global and local search capabilities of the
algorithm, improve the algorithm convergence speed, and help the algorithm escape from
local optima.

Based on the above research, this paper proposes a chaotic mutation adaptive spar-
row search algorithm (CMASSA), which uses the improved Circle Map to initialize the
individual sparrow population to enhance the diversity of the population. Sine and cosine
operators are introduced into the alerters equation to improve searchability. In the sparrow
search algorithm, the ratio of discoverers and followers is generally fixed, which leads to
the inconsistency between global search ability and local optimization ability. An adaptive
population adjustment strategy is proposed to balance the global search ability and local
optimization ability of CMASSA; In the field of compression, a new fitness function is
proposed by combining the CMASSA with CAEN, and the hyperparameters are encoded
with real numbers. Finally, the optimal CAEN structure is obtained under the premise of
ensuring a certain data compression ratio.

The contributions of this paper are:

1. A chaotic mutation adaptive sparrow search algorithm (CMASSA) is proposed.
2. A new fitness function is proposed to apply CMASSA to CAEN data compression

under edge computing architecture.
3. The simulation results show that the CMASSA outperforms other algorithms of

the same type when optimizing 10 benchmark functions. In the data compression
problem, the performance of CMASSA on MWD far outperforms other optimization
algorithms.

The rest of the paper is structured as follows. Section 2 summarizes related techniques.
Section 3 describes the relevant details of CMASSA. Section 4 presents the specific details

Sensors 2022, 22, 5425 3 of 22

of CMASSA optimizing CAEN in the context of edge computing. Section 5 discusses the
experimental results. Section 6 concludes this paper.

2. Related Work
2.1. Convolutional Auto-Encoder Network

The idea of the Auto-Encoder Network (AEN) comes from sparse coding. It trains
the network model through backpropagation to make the output of the model equal to
the input. It is a data compression algorithm. This paper combines the idea of the AEN
with a CNN and uses a convolution layer instead of a full connection layer to retain the
image feature information better and build the CAEN. The network consists of two parts: a
Convolutional Coding Network (CCN) and a Convolutional Decoding Network (CDN).

Figure 1 shows the network structure of CAEN.

Convolutional Coding Network Convolutional Decoding Network

Output LayerInput Layer

Figure 1. Schematic diagram of CAEN structure.

CCN uses the convolution operation of the convolution layer to extract features from
data and uses a pooling layer to reduce the number of parameters in the network. CDN is
the inverse process of CCN, which consists of a deconvolution layer and an upper sampling
layer. The upper sampling layer is opposite the pooling layer in the convolution encoder.
It can make the size of the output data of each layer larger than the size of the input data,
restore the feature map extracted by the encoder to the same size as the original data, and
realize data reconstruction. The deconvolution layer controls the recovery of data features
corresponding to the convolution layer in the convolution encoder.

2.2. Sparrow Search Algorithm

The SSA simulates the three foraging behaviors of sparrows and performs global
search and local optimization in the search space to ensure the accuracy of the algorithm.
The sparrows are divided into discoverers, followers, and alerters. The discoverer is
responsible for searching the places with dense food in the space to provide direction for
the whole population. Other sparrows, as followers, gain food by following the discoverer.
In addition, 10–20% of the sparrows in the population are selected as the discoverer or
follower, and at the same time, they act as alerters responsible for giving early warning in
case of danger, updating their location, and flying to a better location.

Suppose there are n sparrow individuals in a sparrow population, and these sparrows
search for food in a d-dimensional space.

X =

x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
...

...
...

xn,1 xn,2 . . . xn,d

 (1)

where xi,d represents the spatial position of the i-th sparrow in the d th solution dimension.

Sensors 2022, 22, 5425 4 of 22

The discoverers location is updated as follows:

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·Tmax

)
if AT < ST

Xt
i,j + Q · L if AT ≥ ST

(2)

where Xt
i,j is the position of sparrow i in iteration t in dimension j of the search space. Tmax

indicates the maximum number of iterations of the sparrow algorithm. α is a random
number within [0, 1) subject to a uniform distribution. Q is a random number in [0, 1) that
obeys a normal distribution. L is a one-dimensional vector of length d whose elements are
all ones. AT and ST represent the warning value and the safety value, respectively. AT is a
random number in [0, 1). ST is used as a warning threshold. Once AT exceeds ST, sparrow
individuals will update their positions to other safer places at a pace that conforms to the
normal distribution.

The followers’ location is updated as follows:

Xt+1
i,j =

Q · exp
(

Xt
worst−Xt

i,j
i2

)
if i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L otherwise
(3)

where Xt
worst is the global worst position in the current iteration, XP is the optimal position

currently occupied by the discoverer, A+ = AT(AAT)−1, and A is a one-dimensional
vector of length d whose elements are all 1 or −1. When i > n/2, it means that the sparrow
individual gets little food as a follower; in such a case, the sparrow individual will update
its position with the law of normal distribution to get more food. Otherwise, they jump to
the status of discoverer for food.

The alerters’ location is updated as follows:

Xt+1
i,j =

Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ if fi > fg

Xt
i,j + K ·

(
|Xt

i,j−Xt
worst |

(fi− fw)+ε

)
if fi = fg

(4)

where fi is the fitness value of the individual sparrow i, fg is the optimal individual fitness
value of sparrow in this iteration, fw is the worst individual fitness value of the sparrow
in this iteration, Xt

best is the global optimal position in this iteration, β is a set of random
numbers of length d, mean 0, and variance 1, normally distributed within [0, 1), K is a
random number in the interval [−1, 1], and ε is a minimum constant to prevent the current
individual’s fitness from being the worst global fitness value, resulting in a denominator
of 0. When fi > fg, the individual sparrow is in the outermost part of the whole sparrow
population. At this time, the individual will move to the best position. When fi = fg, it
indicates that the sparrow individuals in the middle of the population have realized the
danger and will move to other positions.

3. Chaos Mutation Adaptive Sparrow Search Algorithm
3.1. Improved Circle Map Initialization Population

The population initialization of SSA adopts a set of random sample values that obey a
uniform distribution in [0, 1). Chaos theory is widely used in swarm intelligence algorithms
due to its randomness and non-repetition. Compared with random search, chaos theory
can make full use of the search space, so it is often used to enhance the diversity of the
initial population and improve the algorithm to achieve optimized performance [17–20].
Circle Map maps the variables to the value interval of the chaotic variable space and finally
transforms the solution linearly into the optimization variable space. It has the characteris-
tics of unpredictability and aperiodicity, which can be used to improve the performance of
the algorithm. Circle Map values are between [0, 1].This paper considers introducing the
Circle Map into the population initialization of SSA, so that sparrow individuals can search
the search space more thoroughly. However, as shown in Figure 2a, the Circle Map still has

Sensors 2022, 22, 5425 5 of 22

the problem of dense values between [0.2, 0.5] and uneven distribution, so the Circle Map
is slightly improved to make the chaotic value distribution more uniform.

The mathematical model for introducing the Circle Map into the SSA population
initialization is:

at
i,j = rand

(
X j

lb, X j
ub

)
Xt

i,j =

(
at

i,j + 0.2−
(

0.5
2π

sin
(

2π · at
i,j

)))
mod 1.

(5)

where X j
lb and X j

ub represent the lower and upper bounds of the j-th sparrow search space,
respectively. at

i,j is the position of the ith sparrow in SSA in dimension j of the search space
at iteration t.

The improved Circle Map expression is:

Xt
i,j =

(
3.845at

i,j −
(

0.69
3.845π

sin
(

3.84π · at
i,j

)))
mod 1. (6)

where the newly added parameters are obtained through experiments and manual tuning,
and Figure 2 demonstrates the effectiveness of the results.

The Frequency distribution histogram of the Circle Map mapping function before and
after improvement is shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
The Chaos Map Values

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Circle Map

(a) Circle Map

0.0 0.2 0.4 0.6 0.8 1.0
The Chaos Map Values

0

10

20

30

40

50

Fr
eq

ue
nc

y
Improved Circle Map

(b) Improved Circle Map

Figure 2. Histogram of Circle Map Frequency distribution before and after improvement.

As can be seen from the Figure 2, the improved Circle Map value Frequency distribu-
tion is more uniform. Therefore, the improved Circle Map is used to initialize the population
to enhance the diversity of the population and increase the algorithm optimization ability.

3.2. Sine and Cosine Mutation Operator Update Position

The Sine-Cosine Algorithm (SCA) [21] is a new global optimization algorithm pro-
posed in recent years. It is different from other swarm intelligence optimization algorithms
inspired by biological mechanisms. It mainly uses the mathematical properties of sine and
cosine functions to find the optimal solution. Previous studies [22–25] introduced the sine
and cosine mutation operator to strengthen the population position update and achieved
good results. In the later stage of SSA iteration, the sparrow population will quickly gather
near the optimal solution, resulting in serious population convergence and stagnation
of the algorithm, thereby increasing the probability of the algorithm falling into a local
optimum. To resolve this problem, the sine-cosine algorithm is introduced into the sparrow
alerters equation to improve the local search ability of the sparrow alerters; that is, the
position update in Equation (4) is changed to Equation (7):

Sensors 2022, 22, 5425 6 of 22

Xt+1
i,j =

(

Xt
best + β ·

∣∣∣Xt
i,j − Xt

best

∣∣∣) · sin r1 + 2 sin r1 ·
∣∣∣r2Xt

best − Xt
i,j

∣∣∣ · (1− t
Tmax

)
if fi > fg(

Xt
i,j + K ·

(
|Xt

i,j−Xt
worst |

(fi− fw)+ε

))
· cos r1 + 2 cos r1 ·

∣∣∣r2Xt
best − Xt

i,j

∣∣∣ · (1− t
Tmax

)
if fi = fg

(7)

where r1 is a random number with uniform distribution on [0, 2π], which is used to control
the search distance of the algorithm, r2 is a random number with uniform distribution
on [0, 2];

3.3. Adaptive Population Adjustment Strategies

In SSA, the location update of sparrows is mainly determined by the discoverers in
the sparrow population, and the number of discoverers in SSA is fixed, usually set to
10–20%. In early iterations, if the number of discoverers is relatively small, the search space
cannot be fully searched globally; in the later stage of iteration, if the number of discoverers
is relatively large and the number of followers is relatively small, it is easy to fall into
a local optimum. To this end, this paper proposes an adaptive update of the numbers
of discoverers and followers. In the early stage of algorithm iteration, more sparrow
individuals are allocated as discoverers for extensive global search; in the later stage
of algorithm iteration, more sparrow individuals are allocated as followers for accurate
local search.

The equation for adjusting the number of discoverers and followers is:

r = 0.15 ·
(

2e−(2t/Tmax) − 0.1k
)
+ 0.1

pNum = r · N
sNum = (1− r) · N

(8)

where N is the total population, k is a random number in [0, 1), used to disturb the nonlinear
decreasing r, pNum is the number of discoverers, and sNum is the number of followers.
As shown in Figure 3, the ratio of the number of discoverers and followers proposed in this
paper gradually converges to 0.1 with the iteration, which can achieve a balance between
the early global search and the later local optimization.

0 100 200 300 400 500
0.05

0.10

0.15

0.20

0.25

0.30
Ratio in this paper
Ratio in the basic SSA

(a) Ratio of Discoverers

0 100 200 300 400 500

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ratio in this paper
Ratio in the basic SSA

(b) Ratio of Followers

Figure 3. Changes in the ratio of discoverers and followers of CMASSA.

Algorithm 1 provides pseudocode for CMASSA.

Sensors 2022, 22, 5425 7 of 22

Algorithm 1 Pseudo Code of CMASSA

Input: Objective function f (x), sparrow population size N, Maximum number of iterations
Tmax, Warning threshold of ST, Number of alerters vNum.

1: Initialization population using Equation (6)
2: while t < Tmax do
3: Calculate pNum and sNum using Equation (8)
4: Calculate Random number AT
5: for i = 0: pNum do
6: Update position using Equation (2)
7: end for
8: for i = 0: sNum do
9: Update position using Equation (3)

10: end for
11: for i = 0: vNum do
12: Update position using Equation (7)
13: end for
14: end while
Output: the global optimal solution

4. Data Compression Model
4.1. Cloud Edge Data Compression Architecture

Edge computing transfers part or all of the data processing tasks on traditional terminal
devices to edge devices for execution. While ensuring low latency, it avoids uploading all
data to the cloud service center and reduces bandwidth pressure. It has a better effect than
the cloud computing model on tasks with high real-time response requirements, as shown
in Figure 4 for the edge computing architecture diagram.

Wireless Sensor Node

Edge

Cloud

Figure 4. Edge computing architecture diagram.

Due to the high cost of optimizing deep learning networks by swarm intelligence opti-
mization algorithms, the processing capacity and storage space of sensor networks under
edge computing are limited. Therefore, the algorithm should be trained and optimized
based on historical data in the resource-rich cloud service center, and then the trained
model should be delivered to the edge server close to the lower layer of edge computing.
The edge server collects massive data from the underlying wireless sensor network nodes
and performs data compression on the edge server according to the network model issued
by the cloud service center. Sending the compressed data to the cloud service center can be
directly used for machine learning tasks, or it can be used for storage or other tasks after
the compressed data is restored and reconstructed in the cloud service center.

The cloud-edge data compression model is shown in Figure 5.

Sensors 2022, 22, 5425 8 of 22

Sensor Node Data
CMASSA-CAEN

Convolutional Coding Network

1. Machine learning tasks
2. Storage operation
3. Other processing

CMASSA-CAEN
Convolutional Decoding Network

Edge Computing Lower Layer
Wireless Sensor Network

Edge Server

Cloud Service Center

Sensor Node Data

Sensor Node Data

Data Compression

Data Recovery And Reconstruction

Sensor Node Data

CMASSA Optimizes CAEN

Distribute the model

Distribute the model

Figure 5. Cloud edge data compression model diagram.

4.2. CMASSA-CAEN

The data compressed by CCN will be transmitted to the cloud service center, per-
form other tasks, or be restored and reconstructed in the CDN. During the mathematical
modeling, considering that the CMASSA selects the sparrow individual with a low fitness
function value as the optimal individual of the algorithm and uses this to carry out the
next update iteration, it is decided to place attention on the following two aspects when
performing the modeling.

The Loss of the CCN classification task on the test set in the CAEN model is selected
as one of the important indicators of the fitness function. The Loss equation is:

Loss = 1− TP + TN
TP + TN + FP + FN

(9)

where TP, FP, TN, and FN, respectively, represent the number of true positive, false
positive, true negative, and false negative samples. The lower the value of Loss, the higher
the classification accuracy, which proves that the data loss after compression is less.

Using the cosine similarity equation, the difference between the CDN output data
and the original data is used as another important index of fitness function to measure the
degree of data reconstruction. The corresponding equation is:

Rate = 1− ∑n
i=1(xi · yi)√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

(10)

where xi and yi are data vectors before and after compression, respectively.
Considering the accuracy of the classification task after data compression and the

accuracy of data recovery and reconstruction, the fitness function of the CMASSA is set as:

Fitness = a · Loss + b · Rate (11)

where a, b are constants, and a + b = 1.
The main steps of applying CMASSA to edge computing data compression are as

follows:

Sensors 2022, 22, 5425 9 of 22

1. Set the number of sparrow populations, the maximum proportion coefficient between
the discoverer and the follower, the maximum number of iterations, the sparrow
position dimension, and other basic parameters.

2. Use the floating point encoding method to encode the CAEN hyperparameters such
as the kernel size of the convolutional layer in CAEN, the kernel size of the pooling
layer, the proportion of loss neurons in the dropout layer, and so on. Use each
hyperparameter as a dimension of the sparrow search space, and set the upper and
lower bounds of the dimension.

3. Calculate the initial fitness of each individual sparrow by using the initial position
of the sparrow and record the information of the current optimal and worst individ-
ual sparrows.

4. Adjust the number of adaptive populations according to Equation (8). In the current
iteration cycle, the sparrow individuals with the best fitness value are selected as
discoverers, and the remaining sparrow individuals are selected as followers. The
position of the sparrow individual is updated by Equations (2) and (3), and the fitness
value of the discoverers and the followers is calculated and recorded by Equation (11).

5. Randomly select 20% of the current sparrow population as the guards or alerter
sparrows. The position is updated by Equation (8), and the fitness value of the guards
is calculated by Equation (11).

6. After one iteration cycle is completed, store the information of the optimal sparrow
individual.

7. Execute the algorithm to reach the maximum number of iterations. Output and store
the optimization result.

The flowchart of CAEN optimization of CMASSA is shown in Figure 6.

Build the initial network structure of the CAEN

START

Encode and set the CAEN hyperparameter
as the initial population of CMASSA

CMASSA Follower CMASSA VigilantCMASSA Finder

Pass the hyperparameters found
by CMASSA into the CAEN

Calculate and update the fitness fit
of each sparrow individual

Save the optimal network model
obtained by training

END

t<M?
Yes

No

Use the constructed new fitness function
to calculate the initial fitness of the population

Figure 6. CMASSA-CAEN algorithm flow chart.

Sensors 2022, 22, 5425 10 of 22

5. Simulation
5.1. Benchmark Function

Table 1 shows the benchmark functions used in this paper. F1–F5 are high-dimensional
unimodal functions, and F6–F10 are high-dimensional multimodal functions. The high-
dimensional unimodal functions have only one global optimal point and no local extreme
points, mainly to test the convergence speed of the function. The multimodal function has
multiple local extreme points, which are used to compare the ability of the optimization
algorithm to jump out of the local optimum point and the optimization speed.

Table 1. Benchmark functions.

Function Equation Search Space and Dimension Best Value

F1(x) =
d
∑

i=1
x2

i
[−500, 500, 30] 0

F2(x) =
d
∑

i=1
x2

i +

(
d
∑

i=1
0.5ixi

)2

+

(
d
∑

i=1
0.5ixi

)4
[−5, 10, 30] 0

F3(x) =
d
∑

i=1
i · x2

i
[−5.12, 5.12, 30] 0

F4(x) =
d
∑

i=1
(bxi + 0.5c)2 [−5.12, 5.12, 30] 0

F5(x) =
d
∑

i=1

(
d
∑

j=1
xj

)2
[−100, 100, 30] 0

F6(x) =
d
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12, 30] 0

F7(x) =
d−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−600, 600, 30] 0

F8(x) = 1
4000

d
∑

i=1
x2

i −
d
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600, 30] 0

F9(x) =
π

n

{
10 sin(πy1) +

d

∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
d

∑
i=1

u(xi, 10, 100, 4)

where: yi = 1 +
xi + 1

4
, u(xi, a, k, m) =

k(xi − a)mxi > a
0− a < xi < a
k(−xi − a)mxi < −a

[−50, 50, 30] 0

F10(x) = −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
− exp

(
1
d

d
∑

i=1
cos(2πxi)

)
+ 20 + exp(1) [−32, 32, 30] 0

5.2. CMASSA Performance Comparison and Analysis

The operating environment used in the experiment is the 64-bit Windows 10 operating
system, the processor type is Intel Core i5-6300H 2.3GHz, the running memory is 16 GB,
and Python is used for programming.

5.2.1. Effectiveness Analysis of Improvement Strategies

To prove that several strategies have a certain effect on the performance improvement
of the sparrow algorithm, this paper selects the improved sparrow algorithm with a single
strategy for comparison, that is: only SSA1, which improves the initialized population
of the Circle Map, is introduced; only SSA2, which updates the position of the sparrow
alerter by the sine and cosine mutation operator; and only SSA3, which is an adaptive
population adjustment strategy. The three improved algorithms are compared with SSA
and CMASSA on the benchmark function in Table 1 to verify the effectiveness of their
respective strategies. The population number of the optimization algorithm is set to 30, the
number of iterations is 500, the dimension and search space range are set according to the

Sensors 2022, 22, 5425 11 of 22

benchmark function in Table 1, and the number of alerters is set to 20% of the population,
except for the CMASSA, which is set to 10%. To reduce the variability of the experiment
and increase the persuasiveness of the experimental results, each function is tested 30 times,
and the standard deviation (STD), the mean value (MEAN), the best value (BEST), the
worst value (WORST), and the running time (TIME) are calculated from the optimal value
of each run of the function.

In Table 2, STD reflects the degree of dispersion of the optimization results, MEAN
reflects the stability of the algorithm, and BEST and WORST reflect the optimization
ability of the algorithm. It can be seen from the data in Table 2 that in the optimization
process of the benchmark function in Table 1, all improvement strategies have improved
the performance of SSA to varying degrees. Among them, the improved alerter update
strategy in SSA2 plays a decisive role, which not only far exceeds SSA in the calculation
of the optimal value, but also has the lowest STD and MEAN except CMASSA, which
proves that the algorithm has high robustness and stability. At the same time, it can be
seen that other strategies also have a certain auxiliary effect on the optimization of the
function. The stability of SSA1 in the benchmark function is not stronger than that of SSA,
which is the result of chaotic randomness, but it is stronger than SSA in optimization ability.
Although SSA3 is weaker than SSA2, it still performs better than SSA in various indicators,
including time. The effectiveness of the proposed improvement strategy is proved. In the
optimization process of F4 and F6 functions, various algorithms for improving the strategy
can find the optimal value of the function.

Table 2. Ablation experiment comparison table.

ID INDEX CMASSA SSA SSA1 SSA2 SSA3

STD 1.0705× 10−85 6.5600× 10−05 5.9768× 10−05 4.5491× 10−70 8.9619× 10−20

MEAN 2.1479× 10−86 1.5155× 10−05 1.3201× 10−05 8.5759× 10−71 1.6833× 10−20

F1 BEST 0.0000× 10+00 1.1051× 10−35 2.1040× 10−17 0.0000× 10+00 0.0000× 10+00

WORST 5.9615× 10−85 3.5868× 10−04 3.3458× 10−04 2.5353× 10−69 4.9942× 10−19

TIME 1.2221× 10+00 1.1846× 10+00 1.1841× 10+00 1.2154× 10+00 1.1568× 10+00

STD 2.0090× 10−61 9.4905× 10−10 1.8694× 10−07 8.5809× 10−48 5.7652× 10−16

MEAN 3.7340× 10−62 2.5074× 10−10 3.5786× 10−08 1.5934× 10−48 1.0751× 10−16

F2 BEST 0.0000× 10+00 5.3019× 10−149 1.2225× 10−26 4.3399× 10−110 8.7699× 10−119

WORST 1.1192× 10−60 4.3303× 10−09 1.0421× 10−06 4.7803× 10−47 3.2122× 10−15

TIME 2.1157× 10+00 2.0658× 10+00 2.0742× 10+00 2.0835× 10+00 2.0402× 10+00

STD 2.7895× 10−82 6.5093× 10−11 9.3050× 10−13 1.8913× 10−69 1.0286× 10−23

MEAN 5.1824× 10−83 2.9111× 10−11 4.6638× 10−13 3.6717× 10−70 5.3750× 10−24

F3 BEST 0.0000× 10+00 3.9000× 10−28 7.9414× 10−20 3.9929× 10−221 6.2726× 10−90

WORST 1.5540× 10−81 1.7466× 10−10 2.3274× 10−12 1.0546× 10−68 2.5935× 10−23

TIME 1.6982× 10+00 1.6567× 10+00 1.6550× 10+00 1.6880× 10+00 1.6347× 10+00

STD 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

MEAN 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

F4 BEST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

WORST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

TIME 1.2673× 10+00 1.2138× 10+00 1.2133× 10+00 1.2650× 10+00 1.2006× 10+00

STD 1.5747× 10−69 1.0348× 10−07 1.6461× 10−07 6.8243× 10−63 2.6072× 10−14

MEAN 2.9242× 10−70 5.3185× 10−08 5.2568× 10−08 1.4476× 10−63 1.0942× 10−14

F5 BEST 0.0000× 10+00 3.4167× 10−22 1.5463× 10−88 0.0000× 10+00 1.1767× 10−81

WORST 8.7725× 10−69 2.8275× 10−07 6.6255× 10−07 3.7801× 10−62 8.7516× 10−14

TIME 4.2571× 10+00 4.2185× 10+00 4.2133× 10+00 4.2526× 10+00 4.1772× 10+00

Sensors 2022, 22, 5425 12 of 22

Table 2. Cont.

ID INDEX CMASSA SSA SSA1 SSA2 SSA3

STD 0.0000× 10+00 3.4843× 10−09 1.8214× 10−05 0.0000× 10+00 6.0585× 10−15

MEAN 0.0000× 10+00 8.0047× 10−10 3.3824× 10−06 0.0000× 10+00 1.1250× 10−15

F6 BEST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

WORST 0.0000× 10+00 1.8935× 10−08 1.0147× 10−04 0.0000× 10+00 3.3751× 10−14

TIME 3.0034× 10+00 2.9302× 10+00 2.9384× 10+00 2.9666× 10+00 2.9140× 10+00

STD 1.6476× 10−03 2.8969× 10−02 3.8748× 10+00 7.6422× 10−01 3.9448× 10−01

MEAN 7.8224× 10−03 2.2073× 10−02 5.2807× 10+00 5.1171× 10−01 3.8762× 10−01

F7 BEST 8.1175× 10−12 1.1745× 10−06 8.0121× 10−02 5.9266× 10−12 2.3565× 10−07

WORST 7.0049× 10+00 7.4449× 10+00 9.2716× 10+00 2.7046× 10+00 1.0360× 10+00

TIME 2.5757× 10+00 2.5306× 10+00 2.5235× 10+00 2.5548× 10+00 2.5001× 10+00

STD 0.0000× 10+00 1.0096× 10−06 1.2464× 10−04 0.0000× 10+00 0.0000× 10+00

MEAN 0.0000× 10+00 5.4374× 10−06 6.7123× 10−04 0.0000× 10+00 0.0000× 10+00

F8 BEST 0.0000× 10+00 3.5430× 10−10 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00

WORST 0.0000× 10+00 5.6249× 10−06 6.9438× 10−04 0.0000× 10+00 0.0000× 10+00

TIME 3.7824× 10+00 3.7233× 10+00 3.7119× 10+00 3.7636× 10+00 3.7007× 10+00

STD 9.5208× 10−07 2.3760× 10−03 1.9280× 10+01 6.7245× 10−04 1.1718× 10−03

MEAN 1.5477× 10−07 4.0611× 10−03 7.2792× 10+00 1.0828× 10−03 1.5485× 10−03

F9 BEST 1.1659× 10−13 1.5555× 10−06 4.3073× 10−11 1.1659× 10−13 1.0080× 10−10

WORST 2.9828× 10−04 1.1858× 10−02 6.4671× 10+01 2.3158× 10−03 3.5032× 10−03

TIME 2.6967× 10+00 2.6250× 10+00 2.6291× 10+00 2.6813× 10+00 2.6050× 10+00

STD 0.0000× 10+00 9.2665× 10−04 4.9267× 10−01 0.0000× 10+00 7.9115× 10−09

MEAN 4.4409× 10−16 1.7345× 10−04 3.7489× 10−01 4.4409× 10−16 5.0084× 10−09

F10 BEST 4.4409× 10−16 3.9968× 10−15 4.4409× 10−16 4.4409× 10−16 7.5495× 10−15

WORST 4.4409× 10−16 5.1636× 10−03 1.0320× 10+00 4.4409× 10−16 2.0336× 10−08

TIME 1.7532× 10+00 1.7479× 10+00 1.7102× 10+00 1.7288× 10+00 1.6958× 10+00

5.2.2. Compared with Other Intelligent Optimization Algorithms

To further test the optimized performance of the CMASSA, including Particle Swarm
Optimization (PSO) [26], Harris Hawks Optimization (HHO) [27], Multi-Verse Optimizer
(MVO) [28], Improved Sparrow Search Algorithm (ISSA) [14], Sparrow Fusion with Firefly
Algorithm Search Algorithm (ESSA) [16], the optimization comparison is performed on the
benchmark functions in Table 1.

To ensure the accuracy of the comparative experiments, the population number of
each algorithm is set to 30, the number of iterations is 500, and the dimension and search
space range are set according to the benchmark functions in Table 1. To increase the
persuasiveness of the experimental results, each function was tested 30 times, and the
standard deviation, average value, optimal value, worst value, and running time were
calculated from the optimal value of each function run. The final results are shown in Table 3.
For visual comparison, the convergence curves of the seven optimization algorithms on the
ten benchmark functions are shown in Figure 7.

It can be seen from the test results in Table 3 that, first of all, in terms of the execution
time of the algorithm, although the execution time of CMASSA is slightly slower than that
of SSA, it is obviously better than the comparison algorithm. Secondly, on the 10 benchmark
functions, CMASSA can reach the theoretical optimal value on F1, F2, F3, F4, F5, F6, and F8,
and the STD is much smaller than other comparison algorithms. The STD of solving F4,
F6, F8, and F10 is 0. When solving STD, MEAN and BEST on F7 and F9, it exceeds other
algorithms by at least two orders of magnitude.

Therefore, it is demonstrated that in the scenarios tested, CMASSA has stronger
optimization ability, higher stability, and relatively faster execution speed than the compar-
ison algorithms.

Sensors 2022, 22, 5425 13 of 22

Table 3. Comparison of results of optimization algorithm test benchmark functions.

ID INDEX CMASSA SSA ISSA ESSA HHO MVO PSO

STD 1.0705× 10−85 6.5600× 10−05 5.0970× 10−18 5.4102× 10−14 2.5505× 10−40 3.4103× 10−01 5.4014× 10+03

MEAN 2.1479× 10−86 1.5155× 10−05 1.5132× 10−18 1.4515× 10−14 5.3741× 10−41 1.1173× 10+00 5.0247× 10+03

F1 BEST 0.0000× 10+00 1.1051× 10−35 1.0385× 10−90 1.8330× 10−94 8.8868× 10−67 6.6420× 10−01 6.3746× 10+01

WORST 5.9615× 10−85 3.5868× 10−04 2.0545× 10−17 2.8776× 10−13 1.4138× 10−39 1.9594× 10+00 2.1421× 10+04

TIME 1.2221× 10+00 1.1846× 10+00 1.3623× 10+00 1.3747× 10+00 6.9779× 10+00 7.2620× 10+00 1.0651× 10+01

STD 2.0090× 10−61 9.4905× 10−10 9.8620× 10−15 3.6959× 10−06 1.0269× 10+02 2.1911× 10−01 1.8001× 10+02

MEAN 3.7340× 10−62 2.5074× 10−10 3.2257× 10−15 6.8805× 10−07 4.7583× 10+02 4.6434× 10−01 4.3397× 10+02

F2 BEST 0.0000× 10+00 5.3019× 10−149 4.5545× 10−30 1.0942× 10−28 3.0137× 10+02 1.8423× 10−01 1.0650× 10+02

WORST 1.1192× 10−60 4.3303× 10−09 4.7048× 10−14 2.0591× 10−05 6.2415× 10+02 1.3057× 10+00 7.5349× 10+02

TIME 2.1157× 10+00 2.0658× 10+00 2.5193× 10+00 2.4678× 10+00 1.1002× 10+01 8.1206× 10+00 1.1883× 10+01

STD 2.7895× 10−82 6.5093× 10−11 4.4623× 10−18 1.9940× 10−11 2.3194× 10−44 2.3126× 10−01 2.0029× 10+02

MEAN 5.1824× 10−83 2.9111× 10−11 1.2281× 10−18 3.8592× 10−12 5.5736× 10−45 2.3559× 10−01 1.7617× 10+02

F3 BEST 0.0000× 10+00 3.9000× 10−28 2.0856× 10−25 3.9675× 10−26 3.0741× 10−62 6.3075× 10−02 9.9219× 10+00

WORST 1.5540× 10−81 1.7466× 10−10 2.3858× 10−17 1.1117× 10−10 1.2302× 10−43 1.0659× 10+00 1.0805× 10+03

TIME 1.6982× 10+00 1.6567× 10+00 2.0883× 10+00 2.0787× 10+00 7.6067× 10+00 8.1141× 10+00 1.1672× 10+01

STD 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 1.9400× 10+01 9.4794× 10+04

MEAN 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 4.7700× 10+01 7.0315× 10+04

F4 BEST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 1.9000× 10+01 5.0350× 10+03

WORST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 1.1400× 10+02 4.4366× 10+05

TIME 1.2673× 10+00 1.2138× 10+00 1.5161× 10+00 1.4879× 10+00 1.0426× 10+01 7.5642× 10+00 1.1148× 10+01

STD 1.5747× 10−69 1.0348× 10−07 1.1735× 10−14 2.6894× 10−08 3.1017× 10+04 1.1204× 10+02 1.1643× 10+04

MEAN 2.9242× 10−70 5.3185× 10−08 2.3675× 10−15 5.5321× 10−09 1.1793× 10+05 2.3648× 10+02 2.6290× 10+04

F5 BEST 0.0000× 10+00 3.4167× 10−22 8.8437× 10−90 1.2052× 10−88 5.3578× 10+04 8.2378× 10+01 7.0251× 10+03

WORST 8.7725× 10−69 2.8275× 10−07 6.5477× 10−14 1.4952× 10−07 1.9696× 10+05 6.0401× 10+02 4.9277× 10+04

TIME 4.2571× 10+00 4.2185× 10+00 5.3255× 10+00 5.2709× 10+00 1.3209× 10+01 1.0619× 10+01 1.4266× 10+01

STD 0.0000× 10+00 3.4843× 10−09 3.1887× 10−16 2.3918× 10−10 6.3773× 10−16 3.1278× 10+01 3.3572× 10+01

MEAN 0.0000× 10+00 8.0047× 10−10 5.9212× 10−17 9.5296× 10−11 1.1842× 10−16 1.3775× 10+02 1.5238× 10+02

F6 BEST 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 8.4781× 10+01 8.5800× 10+01

WORST 0.0000× 10+00 1.8935× 10−08 1.7764× 10−15 8.0990× 10−10 3.5527× 10−15 2.1294× 10+02 2.4324× 10+02

TIME 3.0034× 10+00 2.9302× 10+00 3.4896× 10+00 3.4849× 10+00 1.1015× 10+01 8.9346× 10+00 1.2328× 10+01

Sensors 2022, 22, 5425 14 of 22

Table 3. Cont.

ID INDEX CMASSA SSA ISSA ESSA HHO MVO PSO

STD 1.6476× 10−03 2.8969× 10−02 2.3439× 10−02 9.7064× 10−02 4.9368× 10+00 9.8644× 10+06 1.3224× 10+11

MEAN 7.8224× 10−03 2.2073× 10−02 1.3104× 10−02 4.6946× 10−02 9.2151× 10−01 6.9597× 10+06 6.0178× 10+10

F7 BEST 8.1175× 10−12 1.1745× 10−06 2.1312× 10−09 1.3492× 10−07 6.3521× 10−04 3.9736× 10+04 5.0400× 10+06

WORST 7.0049× 10+00 7.4449× 10+00 9.4335× 10−02 4.6223× 10−01 2.7507× 10+01 3.1250× 10+07 6.6952× 10+11

TIME 2.5757× 10+00 2.5306× 10+00 2.9729× 10+00 2.9691× 10+00 1.0661× 10+01 8.4577× 10+00 1.2021× 10+01

STD 0.0000× 10+00 1.0096× 10−06 1.2324× 10−16 6.1255× 10−14 1.6126× 10−01 4.9967× 10−02 3.5283× 10+01

MEAN 0.0000× 10+00 5.4374× 10−06 4.0708× 10−17 1.8404× 10−14 4.2527× 10−02 8.7066× 10−01 2.6632× 10+01

F8 BEST 0.0000× 10+00 3.5430× 10−10 0.0000× 10+00 0.0000× 10+00 0.0000× 10+00 7.7220× 10−01 1.7997× 10+00

WORST 0.0000× 10+00 5.6249× 10−06 4.4409× 10−16 3.0975× 10−13 7.3933× 10−01 9.6112× 10−01 1.2635× 10+02

TIME 3.7824× 10+00 3.7233× 10+00 4.3969× 10+00 4.3939× 10+00 1.1562× 10+01 9.6292× 10+00 1.3236× 10+01

STD 9.5208× 10−07 2.3760× 10−03 3.8391× 10−04 6.1844× 10−04 6.2743× 10−06 4.5672× 10+01 3.5721× 10+01

MEAN 1.5477× 10−07 4.0611× 10−03 5.4870× 10−04 8.8340× 10−04 9.1995× 10−06 7.4421× 10+01 4.9296× 10+01

F9 BEST 1.1659× 10−13 1.5555× 10−06 4.2957× 10−08 1.8224× 10−06 4.8412× 10−07 8.5071× 10+00 1.5856× 10+00

WORST 2.9828× 10−04 1.1858× 10−02 1.5917× 10−03 2.1675× 10−03 2.5875× 10−05 1.8366× 10+02 1.4479× 10+02

TIME 2.6967× 10+00 2.6250× 10+00 3.1554× 10+00 3.1611× 10+00 1.1256× 10+01 8.9603× 10+00 1.2629× 10+01

STD 0.0000× 10+00 9.2665× 10−04 8.4020× 10−08 3.0140× 10−07 2.6718× 10−15 6.5020× 10−01 5.1978× 10+00

MEAN 4.4409× 10−16 1.7345× 10−04 3.2309× 10−08 1.2430× 10−07 3.8784× 10−15 2.0168× 10+00 1.5961× 10+01

F10 BEST 4.4409× 10−16 3.9968× 10−15 4.3077× 10−14 7.5495× 10−15 4.4409× 10−16 4.9196× 10−01 3.5382× 10+00

WORST 4.4409× 10−16 5.1636× 10−03 4.1298× 10−07 1.4627× 10−06 7.5495× 10−15 3.7274× 10+00 1.9967× 10+01

TIME 1.8432× 10+00 1.7479× 10+00 2.0979× 10+00 2.0850× 10+00 9.9648× 10+00 8.0676× 10+00 1.1584× 10+01

Sensors 2022, 22, 5425 15 of 22

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5 (f) F6

(g) F7 (h) F8

(i) F9 (j) F10

Figure 7. Convergence curves of seven algorithms on ten test functions.

Sensors 2022, 22, 5425 16 of 22

Figure 7 clearly shows the changes in the fitness value of each algorithm during the
optimization process. It can be clearly seen that the convergence speed of CMASSA is faster
than other algorithms. On the high-dimensional test function, as shown in Figure 7f,h,j,
SSA has obvious faults, while CMASSA’s faults are not obvious. It shows that after a small
number of iterations, CMASSA jumps out of the local optimum, indicating that CMASSA
has a stronger ability to jump out of the local optimum.

To sum up, the optimization performance of CMASSA on high-dimensional multi-
peak benchmark functions is significantly stronger than other optimization algorithms,
and the stability is the strongest. The decreasing speed of the low-dimensional benchmark
function is obvious, which proves that CMASSA enhances the local search ability of the
standard SSA algorithm and improves the optimization speed.

5.3. Data Compression and Reconstruction on Multi-Class Weather Dataset
5.3.1. Initialization of the Optimization Algorithm

This experiment compares CAEN hyperparameter optimization based on CMASSA
(CMASSA-CAEN), CAEN hyperparameter optimization based on particle swarm optimiza-
tion (PSO-CAEN) [29], and CAEN hyperparameter optimization based on a sparrow search
algorithm (SSA-CAEN).

The initial parameters of the CMASSA are set as shown in Table 4.

Table 4. CMASSA initial parameters.

Parameter Value

Population size 100
Iterations 30

Proportion of alerters 20%

The initial parameters of the PSO are set as shown in Table 5.

Table 5. PSO initial parameters.

Parameter Value

Population size 100
Iterations 30

c1 = c2 2
Inertia weight w 0.7

5.3.2. CAEN Model Structure

The experiments in this paper compare the performance of the CAEN models output
by each optimization algorithm on the Multi-class Weather Dataset (MWD) [30] of Shenzhen
University. MWD, which contains 65,000 images in six common categories of sunny, cloudy,
rainy, snowy, haze, and thunderstorms. For each model training, 70% are randomly selected
as the training set, and the remaining 30% are used as the test set. The experiment relies on
the SCM artificial intelligence cloud platform of Dalian University, uses the Python deep
learning library Keras framework to build the CAEN model structure.

Considering the training cost of deep learning, this paper does not set too many
CAEN layers. The CCN in CAEN consists of two convolution pooling layers, and the CDN
consists of two deconvolution upsampling layers. To ensure that the input is reconstructed
as much as possible. Therefore, the convolutional layer in CCN is set to be the same as the
deconvolutional layer hyperparameters of CDN, and the pooling layer of CCN is set to be
the same as the upsampling layer hyperparameters of CDN.

The structure of CAEN is shown in Figure 8.

Sensors 2022, 22, 5425 17 of 22

Convolutional Coding Network Convolutional Decoding Network

Output Input

Pool2 and UpSampling2

Pool1 and UpSampling1

Conv1 and De_conv1

Conv2 and De_conv2

Figure 8. The structure of CAEN.

As shown in Table 6, in the above CAEN model, since CCN and CDN are inverse
processes of each other, it is necessary to set the parameters of the convolutional layer of
CCN and the deconvolutional layer of CDN to be the same; likewise, the parameters of the
pooling layer of CCN and the upsampling layer of CDN need to be set to be the same. As
the pooling kernel size hyperparameter of the pooling layer determines the compression
ratio of the data, as shown in Equation (12), the compression ratio of the CAEN model
established in this paper is between 1/4 and 1/64.

Cr = 1/
s

∏
k

k (12)

where Cr represents the compression ratio of CAEN, s represents the number of pooling
layers of CAEN, and k represents the size of the pooling kernel in the current pooling layer.

Table 6. The optimization range of some relevant parameters of the CAEN.

Index Hyperparameters Search Space

X1 The number of convolution kernels in Conv1 and De_conv1 [1, 128]
X2 The size of the convolution kernel in Conv1 and De_conv1 [2, 4]
X3 Pooling kernel size in Pool1 and UpSampling1 2, 4, 8
X4 The number of convolution kernels in Conv2 and De_conv2 [1, 64]
X5 Convolution kernel size in Conv2 and De_conv2 [2, 4]
X6 Pooling kernel size in Pool2 and UpSampling2 2, 4, 8
X7 Activation function in Conv1 and De_conv1 ReLU, ELU, tanh
X8 Activation function in Conv2 and De_conv2 ReLU, ELU, tanh
X9 proportion of deactivated neurons [0.1, 0.5]
X10 Batch Size [16, 128]
X11 Optimizer Adam, AdaGrad, SGD

5.3.3. Time Complexity Analysis of Optimization Algorithm

To verify that the performance benefits of CMASSA are not gained at the expense of
time, CMASSA and SSA are compared. According to the literature [31], the time complexity
of SSA is:

T = O(D + f (D)) (13)

where D represents the dimension, f (D) represents the time required to solve the objec-
tive function.

Assuming that the population size in the algorithm is N, the dimension is Dim, the
maximum number of iterations is Tmax, the time to randomly initialize the population
parameters is s1, and the time to find the individual fitness value is t(Dim), explore The

Sensors 2022, 22, 5425 18 of 22

number of followers is pNum, the update time of each dimension is s2, the number of
followers is sNum, the update time of each dimension is s3, and the update time of each
dimension of the alerter is s4.

In CMASSA, Assuming to improve the Circle Map to enhance the diversity of the
population, the time required is u1, so the time complexity of the initial stage is T1 =
O(s1 + N(u1 + t(Dim) + s1Dim)), executing the finder and The time required to up-
date the formula for the number of followers is u3. The update time complexity of
the discoverer is: T2 = O(s2 pNumDim + u3Tmax), the update time complexity of the fol-
lower is: T3 = O(s3sNumDim + u3Tmax), the update time complexity of the alerter is:
T4 = O(s4(N − pNum− sNum)Dim).

To sum up, the time complexity of CMASSA is: T = T1 + (T2 + T3 + T4)Tmax =
O(Dim + t(Dim)), indicating that the time complexity of CMASSA does not increase.

5.3.4. Experimental Results

The results shown in Table 7, the optimal hyperparameters of CAEN output by each
optimization algorithm on MWD. It can be seen from Equation (12) that the optimal CAEN
network structure output by CMASSA can achieve a maximum compression ratio of 1/32
when balancing the performance of the model to perform the classification task and the
degree of data reconstruction.

According to the two items of X3 and X6 in Table 7, the maximum compression ratio
that can be achieved by CAEN of the output of each optimization algorithm is calculated,
as shown in Table 8.

Table 9 shows the highest accuracy of each optimization algorithm to optimize the
CAEN model on the MWD test set. Compared with other optimization algorithms, the
optimization effect of the CMASSA-CAEN algorithm is remarkable.

Table 7. For each optimization algorithm on MWD, the obtained CAEN optimal hyperparameters.

Index CMASSA Result SSA Result PSO Result

X1 124 98 106
X2 2 2 2
X3 4 4 4
X4 64 54 40
X5 2 4 2
X6 8 4 8
X7 ReLU ReLU ReLU
X8 ReLU ReLU ReLU
X9 0.1 0.1 0.3

X10 32 44 85
X11 Adam Adam SGD

Table 8. The maximum compression ratio of the optimization algorithm on the MWD.

Index the Maximum Compression Ratio

CMASSA-CAEN 1/32
SSA-CAEN 1/16
PSO-CAEN 1/32

Table 9. The highest classification accuracy of the optimization algorithm on the MWD.

Algorithm Highest Accuracy Mean Accuracy

CMASSA-CAEN 0.9379 0.9295
SSA-CAEN 0.9198 0.9057
PSO-CAEN 0.8863 0.8460

Sensors 2022, 22, 5425 19 of 22

Figure 9 is a graph showing the change trend of the classification accuracy of CAEN
optimized by each optimization algorithm under 20 epochs. The network model obtained
by the CMASSA-CAEN training algorithm is characterized, and the accuracy rate on the
test set is higher than other algorithms, which proves that the performance of the CMASSA-
CAEN algorithm is indeed better than other optimization algorithms. It can also be seen
that at the beginning of training, the CAEN accuracy rate obtained by the CMASSA is
significantly higher than that of other optimization algorithms, which proves that the
network model established by CMASSA-CAEN has stronger optimization ability and more
stable performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

CMASSA-CAE
SSA-CAE
PSO-CAE

Figure 9. The accuracy of each optimization algorithm on the classification task.

In addition to the classification accuracy, the data reconstruction degree of the model
is also an important indicator to characterize the pros and cons of the CAEN model. Using
Equation (11) to calculate the data reconstruction degree, as shown in Table 10, the data
reconstruction degree of the CMASSA-CAEN algorithm is significantly higher than that
of other optimization algorithms, reaching 99.41%, indicating that when the data size is
compressed to 1/32, the data after recovery is still such that most of the information can
be retained.

To sum up, CMASSA-CAEN can still achieve the highest data reconstruction degree
and accuracy under the premise that the data compression ratio reaches 1/32. Although
the result of PSO-CAEN achieves a compression ratio of 1/32, it has the worst performance
in both performance metrics. Prove that CMASSA outperforms other algorithms.

Table 10. The data reconstruction degree of the optimization algorithm on the MWD.

Algorithm Data Reconstruction Degree

CMASSA-CAEN 99.41%
SSA-CAEN 97.28%
PSO-CAEN 93.33%

As shown in Figure 10 below, the data compression of CMASSA-CAEN performed on
MWD is compared with the original image.

Sensors 2022, 22, 5425 20 of 22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. The original image and its compressed and reconstructed image. (a) Cloudy Original
Image; (b) Cloudy Compression Reconstruction Image; (c) Rain Original Image; (d) Rain Compres-
sion Reconstruction Image; (e) Shine Original Image; (f) Shine Compression Reconstruction Image;
(g) Sunrise Original Image; (h) Sunrise Compression Reconstruction Image.

Sensors 2022, 22, 5425 21 of 22

6. Conclusions

This paper proposes a novel chaotic mutation adaptive sparrow search algorithm
(CMASSA), which is an excellent improvement on the sparrow search algorithm (SSA). The
paper applies CMASSA to data compression. The idea is to build a new fitness function,
and use the CMASSA to optimize the CAEN network hyperparameters in the cloud service
center. The optimal network model obtained by training is sent to the edge server to
compress the edge data. First, aiming at the problem of insufficient population diversity in
the later stage of SSA, an improved Circle Map is introduced to enhance the diversity of the
initial population; secondly, the sine and cosine mutation operator is introduced into the
sparrow alerters equation to enhance the local development ability. To avoid falling into a
local optimum early, an adaptive population adjustment strategy is proposed to adjust the
ratio of discoverers and followers to balance the global search ability and local optimization
ability of the sparrow search algorithm. Finally, the test results on multiple benchmark
functions are excellent. Through comparative experiments, it is demonstrated that the data
compressed by CMASSA-CAEN, with the compression ratio as high as 1/32, the accuracy
of the classification task is significantly stronger than other optimization algorithms of the
same type, and when the data is restored and reconstructed, the data reconstruction degree
is as high as 99.41%, far exceeding other algorithms.

Author Contributions: Conceptualization, S.Q. and A.L.; methodology, S.Q.; software, A.L.; valida-
tion, S.Q. and A.L.; formal analysis, A.L.; investigation, A.L.; resources, S.Q.; data curation, S.Q. and
A.L.; writing—original draft preparation, A.L.; writing—review and editing, S.Q. and A.L.; visualiza-
tion, A.L.; supervision, S.Q. and A.L.; project administration, S.Q. and A.L.; funding acquisition, S.Q.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the fund project of the Equipment Development Department
of the Central Military Commission grant number [No. 6140002010101, No. 6140001030111]. And
The APC was funded by Dalian University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The processed data required to reproduce these findings cannot be
shared as the data also forms part of an ongoing study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gia, T.N.; Qingqing, L.; Queralta, J.P.; Tenhunen, H.; Zou, Z.; Westerlund, T. Lossless Compression Techniques in Edge Computing

for Mission-Critical Applications in the IoT. In Proceedings of the 2019 Twelfth International Conference on Mobile Computing
and Ubiquitous Network (ICMU), Kathmandu, Nepal, 4–6 November 2019; pp. 1–2. [CrossRef]

2. Yang, Y.; Mandt, S.; Theis, L. An introduction to neural data compression. arXiv 2022, arXiv:2202.06533.
3. Ramalingam, P.; Mehbodniya, A.; Webber, J.L.; Shabaz, M.; Gopalakrishnan, L. Telemetry Data Compression Algorithm Using

Balanced Recurrent Neural Network and Deep Learning. Comput. Intell. Neurosci. 2022, 2022, 4886586. [CrossRef] [PubMed]
4. Jalilian, E.; Hofbauer, H.; Uhl, A. Iris Image Compression Using Deep Convolutional Neural Networks. Sensors 2022, 22, 2698.

[CrossRef] [PubMed]
5. Liu, J.; Chen, F.; Yan, J.; Wang, D. CBN-VAE: A Data Compression Model with Efficient Convolutional Structure for Wireless

Sensor Networks. Sensors 2019, 19, 3445. [CrossRef]
6. Lee, J.; Yoon, S.; Hwang, E. Frequency Selective Auto-Encoder for Smart Meter Data Compression. Sensors 2021, 21, 1521.

[CrossRef] [PubMed]
7. Ghosh, A.M.; Grolinger, K. Deep Learning: Edge-Cloud Data Analytics for IoT. In Proceedings of the 2019 IEEE Canadian

Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–7. [CrossRef]
8. Ezzat, D.; Hassanien, A.E.; Ella, H.A. An optimized deep learning architecture for the diagnosis of COVID-19 disease based on

gravitational search optimization. Appl. Soft Comput. 2021, 98, 106742. [CrossRef] [PubMed]
9. Ogundokun, R.O.; Misra, S.; Douglas, M.; Damaševičius, R.; Maskeliūnas, R. Medical Internet-of-Things Based Breast Cancer

Diagnosis Using Hyperparameter-Optimized Neural Networks. Future Internet 2022, 14, 153. [CrossRef]
10. Liu, C.; Wang, H.; Liu, N.; Yuan, Z. Optimizing the Neural Structure and Hyperparameters of Liquid State Machines Based on

Evolutionary Membrane Algorithm. Mathematics 2022, 10, 1844. [CrossRef]

http://doi.org/10.23919/ICMU48249.2019.9006647
http://dx.doi.org/10.1155/2022/4886586
http://www.ncbi.nlm.nih.gov/pubmed/35047035
http://dx.doi.org/10.3390/s22072698
http://www.ncbi.nlm.nih.gov/pubmed/35408311
http://dx.doi.org/10.3390/s19163445
http://dx.doi.org/10.3390/s21041521
http://www.ncbi.nlm.nih.gov/pubmed/33671685
http://dx.doi.org/10.1109/CCECE.2019.8861806
http://dx.doi.org/10.1016/j.asoc.2020.106742
http://www.ncbi.nlm.nih.gov/pubmed/32982615
http://dx.doi.org/10.3390/fi14050153
http://dx.doi.org/10.3390/math10111844

Sensors 2022, 22, 5425 22 of 22

11. Guo, Y.; Li, J.Y.; Zhan, Z.H. Efficient Hyperparameter Optimization for Convolution Neural Networks in Deep Learning: A
Distributed Particle Swarm Optimization Approach. Cybern. Syst. 2020, 52, 36–57. [CrossRef]

12. Tuba, I.; Veinovic, M.; Tuba, E.; Hrosik, R.C.; Tuba, M. Tuning Convolutional Neural Network Hyperparameters by Bare Bones
Fireworks Algorithm. Stud. Inform. Control 2022, 31, 25–35. [CrossRef]

13. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,
8, 22–34. [CrossRef]

14. Wu, H.; Zhang, A.; Han, Y.; Nan, J.; Li, K. Fast stochastic configuration network based on an improved sparrow search algorithm
for fire flame recognition. Knowl. Based Syst. 2022, 245, 108626. [CrossRef]

15. Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A Modified Sparrow Search Algorithm with Application in 3d Route Planning for
UAV. Sensors 2021, 21, 1224. [CrossRef] [PubMed]

16. Nguyen, T.T.; Ngo, T.G.; Dao, T.K.; Nguyen, T.T.T. Microgrid Operations Planning Based on Improving the Flying Sparrow
Search Algorithm. Symmetry 2022, 14, 168. [CrossRef]

17. Ajibade, S.S.M.; Ogunbolu, M.O.; Chweya, R.; Fadipe, S. Improvement of Population Diversity of Meta-heuristics Algorithm
Using Chaotic Map. In International Conference of Reliable Information and Communication Technology; Springer: Cham, Switzerland,
2022; pp. 95–104.

18. Tang, C.; Sun, W.; Xue, M.; Zhang, X.; Tang, H.; Wu, W. A hybrid whale optimization algorithm with artificial bee colony. Soft
Comput. 2022, 26, 2075–2097. [CrossRef]

19. Aydilek, I.B.; Karaçizmeli, İ.H.; Tenekeci, M.E.; Kaya, S.; Gümüşçü, A. Using chaos enhanced hybrid firefly particle swarm
optimization algorithm for solving continuous optimization problems. Sādhanā 2021, 46, 1–22. [CrossRef]

20. Ramezani, M.; Bahmanyar, D.; Razmjooy, N. A New Improved Model of Marine Predator Algorithm for Optimization Problems.
Arab. J. Sci. Eng. 2021, 46, 8803–8826. [CrossRef]

21. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
22. Zhang, J.; Wang, J.S. Improved Salp Swarm Algorithm Based on Levy Flight and Sine Cosine Operator. IEEE Access 2020,

8, 99740–99771. [CrossRef]
23. Zhang, J.; Wang, J.S. Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator.

IEEE Access 2020, 8, 77013–77048. [CrossRef]
24. Muthusamy, H.; Ravindran, S.; Yaacob, S.; Polat, K. An improved elephant herding optimization using sine–cosine mechanism

and opposition based learning for global optimization problems. Expert Syst. Appl. 2021, 172, 114607. [CrossRef]
25. Xia, Q.; Ding, Y.; Zhang, R.; Liu, M.; Zhang, H.; Dong, X. Blind Source Separation Based on Double-Mutant Butterfly Optimization

Algorithm. Sensors 2022, 22, 3979. [CrossRef] [PubMed]
26. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A

Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
27. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
28. Abualigah, L. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Comput.

Appl. 2020, 32, 12381–12401. [CrossRef]
29. Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm and

Evolut. Comput. 2019, 49, 62–74. [CrossRef]
30. Lin, D.; Lu, C.; Huang, H.; Jia, J. RSCM: Region Selection and Concurrency Model for Multi-Class Weather Recognition. IEEE

Trans. Image Process. 2017, 26, 4154–4167. [CrossRef]
31. Yanqiang, T.; Chenghai, L.; Yafei, S.; Chenchen, C.B. Adaptive mutation sparrow search optimization algorithm. J. Beihang Univ.

2021, 6, 1–14.

http://dx.doi.org/10.1080/01969722.2020.1827797
http://dx.doi.org/10.24846/v31i1y202203
http://dx.doi.org/10.1080/21642583.2019.1708830
http://dx.doi.org/10.1016/j.knosys.2022.108626
http://dx.doi.org/10.3390/s21041224
http://www.ncbi.nlm.nih.gov/pubmed/33572345
http://dx.doi.org/10.3390/sym14010168
http://dx.doi.org/10.1007/s00500-021-06623-2
http://dx.doi.org/10.1007/s12046-021-01572-w
http://dx.doi.org/10.1007/s13369-021-05688-3
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1109/ACCESS.2020.2997783
http://dx.doi.org/10.1109/ACCESS.2020.2989445
http://dx.doi.org/10.1016/j.eswa.2021.114607
http://dx.doi.org/10.3390/s22113979
http://www.ncbi.nlm.nih.gov/pubmed/35684599
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1007/s00521-020-04839-1
http://dx.doi.org/10.1016/j.swevo.2019.05.010
http://dx.doi.org/10.1109/TIP.2017.2695883

	Introduction
	Related Work
	Convolutional Auto-Encoder Network
	Sparrow Search Algorithm

	Chaos Mutation Adaptive Sparrow Search Algorithm
	Improved Circle Map Initialization Population
	Sine and Cosine Mutation Operator Update Position
	Adaptive Population Adjustment Strategies

	Data Compression Model
	Cloud Edge Data Compression Architecture
	CMASSA-CAEN

	Simulation
	Benchmark Function
	CMASSA Performance Comparison and Analysis
	Effectiveness Analysis of Improvement Strategies
	Compared with Other Intelligent Optimization Algorithms

	Data Compression and Reconstruction on Multi-Class Weather Dataset
	Initialization of the Optimization Algorithm
	CAEN Model Structure
	Time Complexity Analysis of Optimization Algorithm
	Experimental Results

	Conclusions
	References

