Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference
Abstract
:1. Introduction
2. Literature Review
3. Methods and Materials
3.1. Slip Analysis
3.2. System Architecture
3.3. Gripper Construction
3.4. Sensor Integration
3.5. Learning-Based Slip Perception
3.6. Closed-Loop Grasp Manipulation
4. Experiment and Discussion
4.1. Neural Network Architecture
4.2. Data Collection
4.3. Data Pre-Processing, Labelling and Training
4.4. Slip Detection Result
4.5. Experiment on Grasp Manipulation
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LSTM | Long-short term memory |
COM | Center of mass |
DPU | Data processing unit |
DOF | Degree of freedom |
TPU | Thermoplastic polyurethane |
FFC | Flat flex cables |
RNN | Recurrent neural network |
CNN | Convolutional neural network |
FLOPs | Floating point operations |
References
- Schertz, C.; Brown, G. Basic considerations in mechanizing citrus harvest. Trans. ASAE 1968, 11, 343–346. [Google Scholar]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T.; et al. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef]
- Bogue, R. Fruit picking robots: Has their time come? Ind. Robot. 2020, 47, 141–145. [Google Scholar] [CrossRef]
- Kang, H.; Zhou, H.; Wang, X.; Chen, C. Real-time fruit recognition and grasping estimation for robotic apple harvesting. Sensors 2020, 20, 5670. [Google Scholar] [CrossRef]
- Wu, F.; Duan, J.; Ai, P.; Chen, Z.; Yang, Z.; Zou, X. Rachis detection and three-dimensional localization of cut-off point for vision-based banana robot. Comput. Electron. Agric. 2022, 198, 107079. [Google Scholar] [CrossRef]
- Fu, L.; Yang, Z.; Wu, F.; Zou, X.; Lin, J.; Cao, Y.; Duan, J. YOLO-Banana: A Lightweight Neural Network for Rapid Detection of Banana Bunches and Stalks in the Natural Environment. Agronomy 2022, 12, 391. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Xu, X.; Chen, Z.; Wu, Z.; Tang, Y. A Study on Long-Close Distance Coordination Control Strategy for Litchi Picking. Agronomy 2022, 12, 1520. [Google Scholar] [CrossRef]
- Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [Google Scholar] [CrossRef]
- Bachche, S.; Oka, K. Performance testing of thermal cutting systems for sweet pepper harvesting robot in greenhouse horticulture. J. Adv. Mech. Des. Syst. 2013, 7, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, H.; Kang, H.; Au, W.; Chen, C. Bio-inspired soft bistable actuator with dual actuations. Smart Mater. Struct. 2021, 30, 125001. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, X.; Au, W.; Kang, H.; Chen, C. Intelligent robots for fruit harvesting: Recent developments and future challenges. Precis. Agric. 2022, 1–52. [Google Scholar] [CrossRef]
- Au, W.; Chung, H.; Chen, C. Path planning and assembly mode-changes of 6-DOF Stewart-Gough-type parallel manipulators. Mech. Mach. Theory 2016, 106, 30–49. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Cui, G.; Liu, Y.; Cui, Y.; Fu, L.; Gejima, Y. Design and simulation of an integrated end-effector for picking kiwifruit by robot. Inf. Process. Agric. 2020, 7, 58–71. [Google Scholar] [CrossRef]
- Miao, Y.; Zheng, J. Optimization design of compliant constant-force mechanism for apple picking actuator. Comput. Electron. Agric. 2020, 170, 105232. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Y.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Silwal, A.; Davidson, J.; Karkee, M.; Mo, C.; Zhang, Q.; Lewis, K. Design, integration, and field evaluation of a robotic apple harvester. J. Field Robot. 2017, 34, 1140–1159. [Google Scholar] [CrossRef]
- Bac, C.; Hemming, J.; Van Tuijl, B.; Barth, R.; Wais, E.; Henten, E. Performance evaluation of a harvesting robot for sweet pepper. J. Field Robot. 2017, 34, 1123–1139. [Google Scholar] [CrossRef]
- Brown, J.; Sukkarieh, S. Design and evaluation of a modular robotic plum harvesting system utilizing soft components. J. Field Robot. 2021, 38, 289–306. [Google Scholar] [CrossRef]
- Wei, J.; Dawei, L.; Junle, L.; Jun, Y.; Dean, Z. Compliance grasp force control for end-effector of fruit-vegetable picking robot. Trans. Chin. Soc. Agric. Eng. 2014, 30, 19–26. [Google Scholar]
- Muscato, G.; Prestifilippo, M.; Abbate, N.; Rizzuto, I. A prototype of an orange picking robot: Past history, the new robot and experimental results. Ind. Robot Int. J. 2005, 32, 128–138. [Google Scholar] [CrossRef]
- Tian, G.; Zhou, J.; Gu, B. Slipping detection and control in gripping fruits and vegetables for agricultural robot. Int. J. Agric. Biol. Eng. 2018, 11, 45–51. [Google Scholar] [CrossRef]
- Chi, C.; Sun, X.; Xue, N.; Li, T.; Liu, C. Recent progress in technologies for tactile sensors. Sensors 2018, 18, 948. [Google Scholar] [CrossRef] [Green Version]
- Romeo, R.; Zollo, L. Methods and sensors for slip detection in robotics: A survey. IEEE Access 2020, 8, 73027–73050. [Google Scholar] [CrossRef]
- Harada, S.; Kanao, K.; Yamamoto, Y.; Arie, T.; Akita, S.; Takei, K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014, 8, 12851–12857. [Google Scholar] [CrossRef]
- Okatani, T.; Nakai, A.; Takahata, T.; Shimoyama, I. A MEMS slip sensor: Estimations of triaxial force and coefficient of static friction for prediction of a slip. In Proceedings of the 2017 19th International Conference On Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 75–77. [Google Scholar]
- Kaboli, M.; Yao, K.; Cheng, G. Tactile-based manipulation of deformable objects with dynamic center of mass. In Proceedings of the 2016 IEEE-RAS 16th International Conference On Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 752–757. [Google Scholar]
- Xin, Y.; Tian, H.; Guo, C.; Li, X.; Sun, H.; Wang, P.; Lin, J.; Wang, S.; Wang, C. PVDF tactile sensors for detecting contact force and slip: A review. Ferroelectrics 2016, 504, 31–45. [Google Scholar] [CrossRef]
- Shirafuji, S.; Hosoda, K. Detection and prevention of slip using sensors with different properties embedded in elastic artificial skin on the basis of previous experience. Robot. Auton. Syst. 2014, 62, 46–52. [Google Scholar] [CrossRef]
- Chuang, C.; Liou, Y.; Chen, C. Detection system of incident slippage and friction coefficient based on a flexible tactile sensor with structural electrodes. Sens. Actuators A Phys. 2012, 188, 48–55. [Google Scholar] [CrossRef]
- Fernandez, R.; Payo, I.; Vazquez, A.; Becedas, J. Micro-vibration-based slip detection in tactile force sensors. Sensors 2014, 14, 709–730. [Google Scholar] [CrossRef]
- Agriomallos, I.; Doltsinis, S.; Mitsioni, I.; Doulgeri, Z. Slippage detection generalizing to grasping of unknown objects using machine learning with novel features. IEEE Robot. Autom. Lett. 2018, 3, 942–948. [Google Scholar] [CrossRef]
- Romeo, R.; Rongala, U.; Mazzoni, A.; Camboni, D.; Carrozza, M.; Guglielmelli, E.; Zollo, L.; Oddo, C. Identification of slippage on naturalistic surfaces via wavelet transform of tactile signals. IEEE Sens. J. 2018, 19, 1260–1268. [Google Scholar] [CrossRef]
- Romeo, R.; Oddo, C.; Carrozza, M.; Guglielmelli, E.; Zollo, L. Slippage detection with piezoresistive tactile sensors. Sensors 2017, 17, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, R.; Ciancio, A.; Romeo, R.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. Multilevel control of an anthropomorphic prosthetic hand for grasp and slip prevention. Adv. Mech. Eng. 2016, 8, 1687814016665082. [Google Scholar] [CrossRef]
- Zollo, L.; Di Pino, G.; Ciancio, A.; Ranieri, F.; Cordella, F.; Gentile, C.; Noce, E.; Romeo, R.; Dellacasa Bellingegni, A.; Vadalà, G.; et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 2019, 4, eaau9924. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, A.; De Maria, G.; Natale, C.; Pirozzi, S. Slipping detection and avoidance based on Kalman filter. Mechatronics 2014, 24, 489–499. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Choi, J.; Lee, K.; Lee, S. Development of direct-printed tactile sensors for gripper control through contact and slip detection. Int. J. Control Autom. Syst. 2018, 16, 929–936. [Google Scholar] [CrossRef]
- Osborn, L.; Thakor, N.; Kaliki, R. Utilizing tactile feedback for biomimetic grasping control in upper limb prostheses. In Proceedings of the SENSORS, 2013 IEEE, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar]
- Cordella, F.; Gentile, C.; Zollo, L.; Barone, R.; Sacchetti, R.; Davalli, A.; Siciliano, B.; Guglielmelli, E. A force-and-slippage control strategy for a poliarticulated prosthetic hand. In Proceedings of the 2016 IEEE International Conference On Robotics In addition, Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3524–3529. [Google Scholar]
- Nacy, S.; Tawfik, M.; Baqer, I. A novel approach to control the robotic hand grasping process by using an artificial neural network algorithm. J. Intell. Syst. 2017, 26, 215–231. [Google Scholar] [CrossRef]
- Van Wyk, K.; Falco, J. Calibration and analysis of tactile sensors as slip detectors. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 2744–2751. [Google Scholar]
- Veiga, F.; Peters, J.; Hermans, T. Grip stabilization of novel objects using slip prediction. IEEE Trans. Haptics 2018, 11, 531–542. [Google Scholar] [CrossRef]
- León, B.; Morales, A.; Sancho-Bru, J. From Robot to Human Grasping Simulation. In Cognitive Systems Monographs; Springer: Berlin, Germany, 2014; pp. 151–156. [Google Scholar]
- Fan, P.; Yan, B.; Wang, M.; Lei, X.; Liu, Z.; Yang, F. Three-finger grasp planning and experimental analysis of picking patterns for robotic apple harvesting. Comput. Electron. Agric. 2021, 188, 106353. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent developments for flexible pressure sensors: A review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Turchetti, C. EEG-Based Alzheimer’s Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network. Sensors 2022, 22, 3696. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.; Abbass, Y.; Ibrahim, A.; Moser, G.; Valle, M. Touch modality classification using recurrent neural networks. IEEE Sens. J. 2021, 21, 9983–9993. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B.; Tang, W.; Li, J.; Zhao, D. Grasping damage analysis of apple by end-effector in harvesting robot. J. Food Process. Eng. 2017, 40, e12589. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B.; Chen, G.; Zhao, D. Apple viscoelastic complex model for bruise damage analysis in constant velocity grasping by gripper. Comput. Electron. Agric. 2019, 162, 907–920. [Google Scholar] [CrossRef]
- Cho, C.; Choi, W.; Kim, T. Leveraging uncertainties in Softmax decision-making models for low-power IoT devices. Sensors 2020, 20, 4603. [Google Scholar] [CrossRef]
- Brownlee, J. Ordinal and One-Hot Encodings for Categorical Data. Machine Learning Mastery Website. 2020. Available online: https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/ (accessed on 16 June 2022).
- Decoteau, D. Photocontrol of Leaf Abscission. 1982. Available online: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=4576&context=theses (accessed on 16 June 2022).
- Craker, L.; Abeles, F. Abscission: Quantitative measurement with a recording abscissor. Plant Physiol. 1969, 44, 1139–1143. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Zhang, Q.; Karkee, M.; Jiang, H.; Zhou, J. Understanding the dynamics of hand picking patterns of fresh market apples. In Proceedings of the 2014 American Society of Agricultural and Biological Engineers, Montreal, QC, Canada, 13–16 July 2014; pp. 2057–2063. [Google Scholar]
- Brownlee, J. Train-test split for evaluating machine learning algorithms. Mach. Learn. Mastery 2020, 23. Available online: https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/ (accessed on 16 June 2022).
- Melinte, D.; Vladareanu, L. Facial expressions recognition for human–robot interaction using deep convolutional neural networks with rectified adam optimizer. Sensors 2020, 20, 2393. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 8778–8788. [Google Scholar]
- Johnson, R.; Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural Inf. Process. Syst. 2013, 26, 315–323. [Google Scholar]
Precision | Recall | F1-Score | |
---|---|---|---|
No slip | 0.92 | 0.89 | 0.91 |
Slip on finger 1 | 0.94 | 0.94 | 0.94 |
Slip on finger 2 | 0.94 | 0.95 | 0.94 |
Slip on finger 3 | 0.95 | 0.96 | 0.96 |
Slip on finger 4 | 0.94 | 0.97 | 0.96 |
Accuracy | - | - | 0.93 |
Macro avg | 0.94 | 0.94 | 0.94 |
Weighted avg | 0.93 | 0.93 | 0.93 |
Best Accuracy | Average Accuracy ± Stdev | Model Parameters | FLOPs | |
---|---|---|---|---|
LSTM1-8 | 89% | 86% ± 0.04 | 26,373 | 1.41k |
LSTM1-12 | 88% | 84% ± 0.05 | 26,373 | 1.41k |
LSTM1-16 | 85% | 80% ± 0.09 | 26,373 | 1.41k |
LSTM2-8 | 93% | 91% ± 0.03 | 34,373 | 4.83k |
LSTM2-12 | 96% | 93% ± 0.03 | 34,373 | 4.83k |
LSTM2-16 | 95% | 90% ± 0.05 | 34,373 | 4.83k |
LSTM3-8 | 93% | 91% ± 0.03 | 65,733 | 17.82k |
LSTM3-12 | 96% | 94% ± 0.02 | 65,733 | 17.82k |
LSTM3-16 | 97% | 95% ± 0.02 | 65,733 | 17.82k |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Xiao, J.; Kang, H.; Wang, X.; Au, W.; Chen, C. Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference. Sensors 2022, 22, 5483. https://doi.org/10.3390/s22155483
Zhou H, Xiao J, Kang H, Wang X, Au W, Chen C. Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference. Sensors. 2022; 22(15):5483. https://doi.org/10.3390/s22155483
Chicago/Turabian StyleZhou, Hongyu, Jinhui Xiao, Hanwen Kang, Xing Wang, Wesley Au, and Chao Chen. 2022. "Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference" Sensors 22, no. 15: 5483. https://doi.org/10.3390/s22155483
APA StyleZhou, H., Xiao, J., Kang, H., Wang, X., Au, W., & Chen, C. (2022). Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference. Sensors, 22(15), 5483. https://doi.org/10.3390/s22155483