EP-ADTA: Edge Prediction-Based Adaptive Data Transfer Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Abstract
:1. Introduction
2. Related Works
3. System Architecture
3.1. End–Edge–Cloud Architecture
3.2. System Composition
3.3. Operation Flow
4. Edge Prediction Algorithm Based on ARMA
4.1. ARMA Model
4.2. EP-ARMA Implementation
Algorithm 1 Edge Prediction Based on ARMA (EP-ARMA) |
Initialize p, d, q range, , forecast step, T Complete the monitoring task in period T, and obtain the data of While (true) If (node.type is sensor) According to the forecast step, obtain the from ‘service data’ database Obtain the ARIMA(, , ) by AIC or BIC in p, d, q range Obtain the by ARIMA(, , ), and T Obtain the , , and threshold by , , and Formula (7) Save the (, , ) and in ‘service data’ database Save the ‘threshold’ in ‘transport policy’ database Wait for the next period T End if If (node.type is sink && the new data has been received) According to the forecast step, get the from ‘service data’ database Obtain the (p, d, q), and threshold from the received data Obtain the by ARIMA (p, d, q) and Save the in ‘service data’ database End if end while |
5. Adaptive Data Transmission Algorithm Based on Reinforcement Learning
5.1. Reinforcement Learning Model
5.2. RL-ADTA Implementation
Algorithm 2 Adaptive Data Transmission Algorithm Based on Reinforcement Learning (RL-ADTA) |
Initialize the positions of the nodes While (true) If (the new data to send) While () Create the virtual routing pipe using Formula (9) Obtain the status of neighbors, channels, and the current node from the environment status base Obtain the V-value, threshold, and super-parameters from the transport policy base Update the S and A using Formulas (10)–(12) Calculate Q function using Formulas (13)–(20) Update the V-value with the max Q value using Formula (21) Determine the number of correction data sent by the max Q value Determine the relay node using the max Q value Form the packet by (p, d, q), and V-value Forward the packet to the relay node If (It is detected that the packet has been forwarded) Break Else ++ End If End While End if End While |
5.3. RL-ADTA Packet Design
6. Result and Discuss
6.1. Experimental Environment and Data
6.2. Data Prediction Performance Analysis
6.2.1. Prediction Accuracy Analysis
6.2.2. Prediction Parameter Analysis
6.2.3. Forecast Model Analysis
6.3. Transmission Efficiency Analysis
6.3.1. Transmission Accuracy Analysis
6.3.2. Transmission Delay Analysis
6.3.3. Energy Consumption Analysis
6.3.4. Packet-Sending Success Rate Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fattah, S.; Gani, A.; Ahmedy, I.; Idris, M.Y.I.; Hashem, I.A.T. A Survey on Underwater Wireless Sensor Networks: Requirements, Taxonomy, Recent Advances, and Open Research Challenges. Sensors 2020, 20, 5393. [Google Scholar] [CrossRef]
- Qiu, T.; Zhao, Z.; Zhang, T.; Chen, C.; Chen, C.L.P. Underwater Internet of Things in Smart Ocean: System Architecture and Open Issues. IEEE Trans. Ind. Inform. 2020, 16, 4297–4307. [Google Scholar] [CrossRef]
- Haque, K.F.; Kabir, K.H.; Abdelgawad, A. Advancement of Routing Protocols and Applications of Underwater Wireless Sensor Network (UWSN)—A Survey. J. Sens. Actuar. Netw. 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Han, G.; Shu, L.; Chan, S.; Wang, K. A Trust Model Based on Cloud Theory in Underwater Acoustic Sensor Networks. IEEE Trans. Ind. Inform. 2017, 13, 342–350. [Google Scholar] [CrossRef]
- Jin, Z.; Zhao, Q.; Su, Y. RCAR: A Reinforcement-Learning-Based Routing Protocol for Congestion-Avoided Underwater Acoustic Sensor Networks. IEEE Sens. J. 2019, 19, 10881–10891. [Google Scholar] [CrossRef]
- Basagni, S.; Petrioli, C.; Petroccia, R.; Spaccini, D. CARP: A Channel-Aware Routing Protocol for Underwater Acoustic Wireless Networks. Ad Hoc Netw. 2015, 34, 92–104. [Google Scholar] [CrossRef]
- Lu, Y.; He, R.; Chen, X.; Lin, B.; Yu, C. Energy-Efficient Depth-Based Opportunistic Routing with Q-Learning for Underwater Wireless Sensor Networks. Sensors 2020, 20, 1025. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Dasgupta, M. Energy Efficient Layered Cluster Head Rotation Based Routing Protocol for Underwater Wireless Sensor Networks. Wirel. Pers. Commun. 2022, 1–18. [Google Scholar] [CrossRef]
- Chenthil, T.R.; Jayarin, P.J. An Energy-Aware Multilayer Clustering-Based Butterfly Optimization Routing for Underwater Wireless Sensor Networks. Wirel. Pers. Commun. 2022, 122, 3105–3125. [Google Scholar] [CrossRef]
- Liu, J.; Yu, M.; Wang, X.; Liu, Y.; Wei, X.; Cui, J. RECRP: An Underwater Reliable Energy-Efficient Cross-Layer Routing Protocol. Sensors 2018, 18, 4148. [Google Scholar] [CrossRef] [Green Version]
- Faheem, M.; Tuna, G.; Gungor, V.C. QERP: Quality-of-Service (QoS) Aware Evolutionary Routing Protocol for Underwater Wireless Sensor Networks. IEEE Syst. J. 2018, 12, 2066–2073. [Google Scholar] [CrossRef]
- Bai, Q.; Jin, C. A K-Means and Ant Colony Optimization-Based Routing in Underwater Sensor Networks. Mob. Inf. Syst. 2022, 2022, 4465339. [Google Scholar] [CrossRef]
- Barthwal, N.; Verma, S.K. An Optimized Routing Algorithm for Enhancing Scalability of Wireless Sensor Network. Wirel. Pers. Commun. 2021, 117, 2359–2382. [Google Scholar] [CrossRef]
- Rao, P.C.S.; Lalwani, P.; Banka, H.; Rao, G.S.N. Competitive Swarm Optimization Based Unequal Clustering and Routing Algorithms (CSO-UCRA) for Wireless Sensor Networks. Multimed. Tools Appl. 2021, 80, 26093–26119. [Google Scholar] [CrossRef]
- Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Chen, L.; Wang, X. Reinforcement Learning-Based Opportunistic Routing Protocol for Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Technol. 2021, 70, 2756–2770. [Google Scholar] [CrossRef]
- Yang, J. An Ellipse-Guided Routing Algorithm in Wireless Sensor Networks. Digit. Commun. Netw. 2021. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, L.; Sangaiah, A.K.; Xu, G.; Liu, A. Energy-Efficient and Trustworthy Data Collection Protocol Based on Mobile Fog Computing in Internet of Things. IEEE Trans. Ind. Inform. 2020, 16, 3531–3539. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Li, L.-H. Data Gathering Problem with the Data Importance Consideration in Underwater Wireless Sensor Networks. J. Netw. Comput. Appl. 2017, 78, 300–312. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, D.; He, S.; Zhang, Y.; Li, T. A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms: Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet. ACM Comput. Surv. 2020, 52, 125. [Google Scholar] [CrossRef] [Green Version]
- Grover, J.; Garimella, R.M. Reliable and Fault-Tolerant IoT-Edge Architecture. In Proceedings of the 2018 IEEE Sensors, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, T.; Ke, H.; Zheng, X.; Wang, K.; Sangaiah, A.K.; Liu, A. Big Data Cleaning Based on Mobile Edge Computing in Industrial Sensor-Cloud. IEEE Trans. Ind. Inform. 2020, 16, 1321–1329. [Google Scholar] [CrossRef]
- Gong, W.; Qi, L.; Xu, Y. Privacy-Aware Multidimensional Mobile Service Quality Prediction and Recommendation in Distributed Fog Environment. Wirel. Commun. Mob. Comput. 2018, 3075849. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Zhu, Y.; Wang, T.; Xu, G.; Liu, A.; Liu, X. Data Collection in Underwater Sensor Networks Based on Mobile Edge Computing. IEEE Access 2019, 7, 65357–65367. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, D.; Cai, S.; Jia, W.; Liu, A. Bidirectional Prediction-Based Underwater Data Collection Protocol for End-Edge-Cloud Orchestrated System. IEEE Trans. Ind. Inform. 2020, 16, 4791–4799. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Cyrino Oliveira, F.L. Forecasting Mid-Long Term Electric Energy Consumption through Bagging ARIMA and Exponential Smoothing Methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Tayeh, G.B.; Makhoul, A.; Laiymani, D.; Demerjian, J. A Distributed Real-Time Data Prediction and Adaptive Sensing Approach for Wireless Sensor Networks. Pervasive Mob. Comput. 2018, 49, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hu, X.; Zhang, R.; Yang, L. Routing Protocol Design for Underwater Optical Wireless Sensor Networks: A Multiagent Reinforcement Learning Approach. IEEE Internet Things J. 2020, 7, 9805–9818. [Google Scholar] [CrossRef]
- Kim, S. A Better-Performing Q-Learning Game-Theoretic Distributed Routing for Underwater Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718754728. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Feng, Z.; Gao, Y. Multi-Agent Reinforcement Learning for Resource Allocation in IoT Networks with Edge Computing. China Commun. 2020, 17, 220–236. [Google Scholar] [CrossRef]
- Xiao, L.; Jiang, D.; Chen, Y.; Su, W.; Tang, Y. Reinforcement-Learning-Based Relay Mobility and Power Allocation for Underwater Sensor Networks Against Jamming. IEEE J. Ocean. Eng. 2020, 45, 1148–1156. [Google Scholar] [CrossRef]
- Munir, M.S.; Abedin, S.F.; Hong, C.S. Artificial Intelligence-Based Service Aggregation for Mobile-Agent in Edge Computing. In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 18–20 September 2019; p. 6. [Google Scholar] [CrossRef]
- Xie, P.; Cui, J.-H.; Lao, L. VBF: Vector-Based Forwarding Protocol for Underwater Sensor Networks. In Networking 2006: Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems; Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E., Eds.; Springer: Berlin, Germany, 2006; Volume 3976, pp. 1216–1221. ISBN 3-540-34192-7. [Google Scholar]
- Ismail, A.S.; Wang, X.; Hawbani, A.; Alsamhi, S.; Aziz, S.A. Routing Protocols Classification for Underwater Wireless Sensor Networks Based on Localization and Mobility. Wirel. Netw. 2022, 28, 797–826. [Google Scholar] [CrossRef]
- Boukerche, A.; Sun, P. Design of Algorithms and Protocols for Underwater Acoustic Wireless Sensor Networks. ACM Comput. Surv. 2021, 53, 134. [Google Scholar] [CrossRef]
- El-Banna, A.A.A.; Wu, K. Machine Learning Modeling for IoUT Networks: Internet of Underwater Things; Springer Nature: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-68567-5. [Google Scholar]
- Ding, Q.; Zhu, R.; Liu, H.; Ma, M. An Overview of Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sensor Networks. Electronics 2021, 10, 1539. [Google Scholar] [CrossRef]
- Khan, W.; Wang, H.; Anwar, M.S.; Ayaz, M.; Ahmad, S.; Ullah, I. A Multi-Layer Cluster Based Energy Efficient Routing Scheme for UWSNs. IEEE Access 2019, 7, 77398–77410. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Y.; Fang, X.; Wan, L.; Tao, Y.; Xu, X. PB-ACR: Node Payload Balanced Ant Colony Optimal Cooperative Routing for Multi-Hop Underwater Acoustic Sensor Networks. IEEE Access 2021, 9, 57165–57178. [Google Scholar] [CrossRef]
- Singhal, S.; Tanwar, S.; Aishwarya; Sinha, A. Ant Colony Optimization Based Routing for Underwater Sensor Network. In Proceedings of the 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India, 4–5 December 2020; pp. 33–38. [Google Scholar] [CrossRef]
- Zhou, Z.; Xing, R.; Duan, Y.; Zhu, Y.; Xiang, J. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks. Sensors 2015, 15, 31620–31643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Fang, W.; Niu, J.; Shu, L.; Mukherjee, M. Energy-Efficient Event Determination in Underwater WSNs Leveraging Practical Data Prediction. IEEE Trans. Ind. Inform. 2017, 13, 1238–1248. [Google Scholar] [CrossRef]
- Ilyas, N.; Akbar, M.; Ullah, R.; Khalid, M.; Arif, A.; Hafeez, A.; Qasim, U.; Khan, Z.A.; Javaid, N. SEDG: Scalable and Efficient Data Gathering Routing Protocol for Underwater WSNs. In Proceedings of the 6th International Conference on Ambient Systems, Networks and Technologies (Ant-2015), the 5th International Conference on Sustainable Energy Information Technology (Seit-2015); Shakshuki, E., Ed.; Elsevier Science Bv: Amsterdam, The Netherlands, 2015; Volume 52, pp. 584–591. [Google Scholar]
- Ilyas, N.; Alghamdi, T.A.; Farooq, M.N.; Mehboob, B.; Sadiq, A.H.; Qasim, U.; Khan, Z.A.; Javaid, N. AEDG: AUV-Aided Efficient Data Gathering Routing Protocol for Underwater Wireless Sensor Networks. In Proceedings of the 6th International Conference on Ambient Systems, Networks and Technologies (ANT-2015), the 5th International Conference on Sustainable Energy Information Technology (Seit-2015); Shakshuki, E., Ed.; Elsevier Science Bv: Amsterdam, The Netherlands, 2015; Volume 52, pp. 568–575. [Google Scholar]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. State-of-the-Art in Protocol Research for Underwater Acoustic Sensor Networks. In Proceedings of the WUWNet 2006—The First ACM International Workshop on Underwater Networks, Los Angeles, CA, USA, 25 September 2006; Volume 2006, pp. 7–16. [Google Scholar]
- Pottie, G.J.; Kaiser, W.J. Wireless Integrated Network Sensors. Commun. ACM 2000, 43, 51–58. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Kuo, H.-C.; Chen, J.-W.; Lin, C.-L.; Chen, P.-H.; Lin, Y.-L. RNNAccel: A Fusion Recurrent Neural Network Accelerator for Edge Intelligence. arXiv preprint 2020, arXiv:2010.13311. [Google Scholar]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, Z.; Gao, J.; Xu, C. Forecast Methods for Time Series Data: A Survey. IEEE Access 2021, 9, 91896–91912. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Sanaye-Pasand, M. A New Predictive Approach to Wide-Area Out-of-Step Protection. IEEE Trans. Ind. Inform. 2019, 15, 1890–1898. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, C.; Ding, F.; Hayat, T. Maximum Likelihood Recursive Least Squares Estimation for Multivariate Equation-Error ARMA Systems. J. Frankl. Inst.-Eng. Appl. Math. 2018, 355, 7609–7625. [Google Scholar] [CrossRef]
- Ganjewar, P.D.; Barani, S.; Wagh, S.J. HFBLMS: Hierarchical Fractional Bidirectional Least-Mean-Square Prediction Method for Data Reduction in Wireless Sensor Network. Int. J. Model. Simul. Sci. Comput. 2018, 9, 1850020. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mahalakshmi, G.; Sridevi, S.; Rajaram, S. A Survey on Forecasting of Time Series Data. In Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Su, Y.; Gao, W.; Guan, D.; Su, W. Dynamic Assessment and Forecast of Urban Water Ecological Footprint Based on Exponential Smoothing Analysis. J. Clean Prod. 2018, 195, 354–364. [Google Scholar] [CrossRef]
- Lim, B.; Zohren, S. Time-Series Forecasting with Deep Learning: A Survey. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martinez-Alvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef]
Algorithm | Network | Route Establishment Method | Application Content | Communication Efficiency |
---|---|---|---|---|
VBF [33], CARP [6] | 3D Network | Location vector and neighbor information | No distinction | Low |
RLOR [16], RCAR [5] | 3D Network | Delay, energy consumption and reliability; establish routing based on reinforcement learning algorithm | Traffic | Middle |
MCR-UWSN [14], KACO [12] | 3D Network | Energy, depth; layer or cluster; establish routing based on heuristic algorithm | No distinction | Middle |
PB-ACR [39], ACOR [40] | 3D Network | Energy consumption; establish routing based on ant colony algorithm | Prioritization, data relevance | Middle |
SDA [41], DBP [42] | 3D Network | neighbor information | Content fusion and prediction | Middle |
TBDP [25] | AUV auxiliary network | Carry transmission data based on AUV | Content prediction | Middle |
EP-ADTA | 3D Network | Delay and energy consumption, and establish routing based on reinforcement learning | Content prediction and fusion | High |
Name | Value |
---|---|
Underwater network | 5000 m × 5000 m × 2500 m |
Transfer speed of sound | 1500 m/s |
Frequency of sound | 10 kHz |
Communication range of the node | 1000 m |
Sensor range of the node | 1000 m |
Initial width of the virtual pipe | 500 m |
Number of nodes | 100, 200, 300 |
Initial energy of the node | 1000 J |
Transmission power of the node | 10 W |
Receiving power of the node | 3 W |
Calculation energy power of the node | 48 mW |
Idle power of the node | 30 mW |
Source of underwater temperature data | NOAA-KEO (−400 m) |
Monitoring data transmission interval | 6 h |
Origin data packet size | 50 Bytes |
Generation rate of the packet | 0.1 packet/s |
Transmission rate of the application | 1 kbps |
Simulation time Lowest temperature accuracy | 2000 s 0.01, 0.1, 0.2 °C |
−1, 0.5, 0.5, 0.1, 0.1, 0.7, 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ben, K.; Lin, H.; Zuo, M.; Zhang, F. EP-ADTA: Edge Prediction-Based Adaptive Data Transfer Algorithm for Underwater Wireless Sensor Networks (UWSNs). Sensors 2022, 22, 5490. https://doi.org/10.3390/s22155490
Wang B, Ben K, Lin H, Zuo M, Zhang F. EP-ADTA: Edge Prediction-Based Adaptive Data Transfer Algorithm for Underwater Wireless Sensor Networks (UWSNs). Sensors. 2022; 22(15):5490. https://doi.org/10.3390/s22155490
Chicago/Turabian StyleWang, Bin, Kerong Ben, Haitao Lin, Mingjiu Zuo, and Fengchen Zhang. 2022. "EP-ADTA: Edge Prediction-Based Adaptive Data Transfer Algorithm for Underwater Wireless Sensor Networks (UWSNs)" Sensors 22, no. 15: 5490. https://doi.org/10.3390/s22155490
APA StyleWang, B., Ben, K., Lin, H., Zuo, M., & Zhang, F. (2022). EP-ADTA: Edge Prediction-Based Adaptive Data Transfer Algorithm for Underwater Wireless Sensor Networks (UWSNs). Sensors, 22(15), 5490. https://doi.org/10.3390/s22155490