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Abstract: In the context of behavior recognition, the emerging bed-exit monitoring system demands
a rapid deployment in the ward to support mobility and personalization. Mobility means the system
can be installed and removed as required without construction; personalization indicates human
body tracking is limited to the bed region so that only the target is monitored. To satisfy the above-
mentioned requirements, the behavior recognition system aims to: (1) operate in a small-size device,
typically an embedded system; (2) process a series of images with narrow fields of view (NFV) to
detect bed-related behaviors. In general, wide-range images are preferred to obtain a good recognition
performance for diverse behaviors, while NFV images are used with abrupt activities and therefore
fit single-purpose applications. This paper develops an NFV-based behavior recognition system
with low complexity to realize a bed-exit monitoring application on embedded systems. To achieve
effectiveness and low complexity, a queueing-based behavior classification is proposed to keep
memories of object tracking information and a specific behavior can be identified from continuous
object movement. The experimental results show that the developed system can recognize three bed
behaviors, namely off bed, on bed and return, for NFV images with accuracy rates of 95~100%.

Keywords: behavior recognition; images; bed exit

1. Introduction

Human behavior recognition is a process consisting of object detection and tracking
and has become the core component of intelligent applications such as security surveillance,
bed-exit monitoring, and fall detection [1]. According to the techniques used to identify the
target object, object detection approaches can be divided into two categories: sensor and
image. In sensor-based techniques, the object can be detected by means of either fixed or
mobile modules. Fixed modules, such as infrared (IR) sensors [2,3], hybrid IR and pressure
sensors [4], and radio frequency identification (RFID) [5,6], detect the object in a limited
range. On the other hand, mobile modules based on accelerometers and gyroscopes can be
integrated into wearables, which are attached to the detected objects [7,8]. Image-based
techniques are typically combined with deep learning model to detect a target object after
a data training process. The common source of images can be video sequences [9,10], IR
thermal images [11], and integrated images from RGB and IR cameras [12,13]. Compared
with sensor-based techniques, image-based techniques can better preserve the spatial
information for object detection and have the potential to achieve multi-object detection.

Based on deep learning techniques, three main stages are included in an image-
based behavior recognition process, namely object detection, object tracking, and behavior
recognition. Three stages can be associated with their respective deep learning techniques.
In the object detection stage, a convolution-based model is generally used to extract features
of the target object from an image. Popular object detection models include You Only
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Look Once (YOLO) [14] and Region-based Convolution Neural Network (R-CNN) [15,16].
Furthermore, the lightweight version of YOLO (e.g., Yolov3-tiny [17] or Yolov4-tiny [18]) is
designed to realize real-time object detection in embedded systems and mobile devices. The
object tracking stage utilizes the object detection results to monitor the object temporally
and establishes a spatial track for the target object. The most well-known object tracking
models are Simple Online and Real-time Tracking (SORT) [19] and its extended version,
Deep SORT [20]. In SORT/Deep SORT, a Kalman Filter is adopted to predict and update
the object track [21], while the Hungarian algorithm solves the matching problem between
the predicted track and the current detected track in the presence of short-term object
occlusion [22]. As the Kalman Filter aims to provide an object tracking solution based
on a linearity assumption, particle filter solutions, such as Correlative Mean-Field (CMF)
filter, can be used to track objects in a nonlinear system [23,24]. In addition to the typical
CNN-based object detection and tracking models, the Plain Vision Transformer detector
(ViTDet) uses a non-hierarchical backbone network for object detection purposes [25], and
the Spike Transformer Network (STNet) performs single object tracking in an event-driven
manner [26]. In the final stage, the spatial tracks recorded for target objects can correspond
to a behavior, and a memory-based technique is required to recognize behaviors from the
long-range dependencies of sequential data (i.e., spatial tracks). Typically, Recurrent Neural
Network (RNN) [27] and Long Short-Term Memory (LSTM) [28] are useful models for
predicting important events over time. Consequently, a behavior recognition system can
be regarded as a combination of deep learning models with their respective data training,
parameters, and computation.

This paper aims to design an image-based behavior recognition system for a bed-
exit monitoring application. In the World Health Organization’s (WHO) “Global Report
on Falls Prevention in Older Age”, almost 30~50% of people living in long-term care
institutions fall every year, and 40% of them suffer from recurrent falls [29]. Other reports
show that approximately one in three community-dwelling people aged over 64 falls
every year [30–32]. Bed-exit monitoring can be the first line of defense in preventing the
subsequent fall, injuries, and even death [33]. For caregivers, a well-designed bed-exit
monitoring system is expected to reduce their additional burden, especially for patients
with high fall risk [34]. In addition to the effectiveness of behavior recognition, efficiency
is essential for a bed-exit monitoring system in the smart ward environment. Specifically,
caregivers and medical institutions prefer a rapid system deployment without construction
in the ward. The requirements of such rapid deployment include (1) installing, removing,
and transferring the system as required; (2) staying connected with the smart ward system
when installed; (3) a single-purpose application designed only for bed-exit monitoring to
achieve fast personnel training and easy use in the institutions. These requirements imply
that bed-exit behavior recognition should be done using a single device with mobility
and wireless connectivity. The existing behavior recognition solutions rely on a complex
system consisting of three stages. When the bed-exit monitoring device is required to be
small and lightweight for rapid deployment, the complex system can impede real-time
behavior recognition due to its complexity and overhead. Furthermore, data training for
multiple stages can be a long process and this easily causes difficulties with follow-up
system maintenance.

In this paper, a simplified behavior recognition solution designed for a low-cost
embedded system is presented for bed-exit monitoring. As a branch of behavior recognition,
bed-exit monitoring focuses on identifying bed-related behaviors, such as laying on the bed
and leaving the bed, to prevent potential falls and the resultant injuries. To ensure efficiency,
this simplified system considers the images captured by a narrow field of view (NFV).
In NFV images, the object detection range is limited to a specific area (e.g., a bedside)
or even to a part of the user’s body in such a way that only some specific behaviors
(e.g., on bed and bed exit) are monitored. Compared with wide field of view (WFV),
in which more spatial information can be obtained, NFV images have simpler scenes to
facilitate the training and operation of the behavior recognition process. NFV images,
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however, are associated with more object detection failures and abrupt scene changes
can incur a negative effect on effectiveness. To achieve a tradeoff between effectiveness
and efficiency, the proposed system develops an NFV-based behavior recognition process
with the following stages: object detection, status classification, and behavior recognition.
In the object detection stage, a highly efficient model, namely Yolov4-tiny, is adopted
to attain real-time object detection in the embedded systems. Next, the object position
information is retrieved and different activity statuses can be classified in accordance with
the current position track. The behavior recognition stage utilizes a status classification
queueing (SCQ) system to keep the memories of input statuses among pre-defined behavior
queues. As a result, the negative effects, such as discontinued object detection and abrupt
position change, are eliminated, and behavior can be identified according to a series of
continued activities. Performance is evaluated via experiments conducted in the ward
environment and time complexity analysis. Furthermore, a system prototype is developed
in the experiments to capture NFV images with four camera angles: horizontal high/low
and vertical high/low. From the performance results, the proposed system can achieve
a real-time bed-exit behavior recognition with low complexity, and the results associated
with horizontal angles outperform those of vertical ones.

This paper is organized as follows. Section 2 describes the concept of behavior recogni-
tion using NFV images, the proposed simplified behavior recognition system in embedded
systems, and its bed-exit monitoring application. The experimental and analytical results
are reported in Section 3. Section 4 gives the conclusions and future works.

2. Materials and Methods
2.1. Images with a Narrow Field of View

Figure 1 illustrates different object tracking ranges to monitor bed-related behaviors
in the ward environment. A wide field of view tends to obtain more activity information
by covering as wide an area as possible. Consequently, WFV images can contribute to
the effectiveness of behavior recognition and are beneficial to tracking various behaviors
such as bed exit and falling. IBy contrast, a narrow field of view aims to cover an area
of interest where only the target is active and can obtain a simple scene for behavior
recognition purposes.
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Figure 2 shows the NFV system prototype used in this paper. The main components
consist of a primary device, a secondary device, and a mobile stand. The primary device is
in charge of user input (buttons and microphone), user output (display and speaker), and
communication (Wi-Fi and call bell socket). On the other hand, the secondary device is
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connected to a camera and receives images to conduct the behavior recognition process.
The recognition results are then sent to the primary device for the potential follow-up
notification to the institution. Both primary and secondary devices are attached to the
mobile stand. Accordingly, this prototype provides a post-installation feature and can
be deployed or removed as required. Furthermore, the camera device can be adjusted
as shown in Figure 2b,c to capture NFV images from various angles. Figure 3 presents
images captured from four different angles: horizontal high, horizontal low, vertical high,
and vertical low. Referring to Figure 1, the horizontal angles cover the bed region, while
only a portion of the body is covered in the images captured by vertical angles. From
Figure 3, it can be seen that NFV images with limited spatial information can impede object
identification and tracking, and user activities become unpredictable.
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2.2. Behavior Recognition for NFV Images

In this paper, a three-stage behavior recognition process is developed for NFV images:
object detection stage, status classification stage, and behavior recognition stage. The
object detection stage aims to identify the application-specific objects from a series of
images. In order to adapt to the narrow field of view, it is beneficial to detect multiple
objects in accordance with the scenarios defined in the application. In bed-exit monitoring
applications, for instance, the detected objects can be “head” and “body” of a target
user. When the object is successfully detected, its coordinate in the image is generally
labeled to indicate the position of the detected object. Based on the object detection results,
the status classification stage can further track the object in accordance with its position
changes, and an activity status is determined. Both object detection stage and status
classification stage are performed to generate their respective outputs per image. The
behavior recognition stage continuously monitors the status output to identify a user
behavior within a specified duration.

Figure 4 presents a status classification queueing (SCQ) system proposed in this study
to realize the behavior recognition stage for NFV images. The proposed SCQ system
consists of four components: input queue, classifier, output queue, and controller. The
input queue and output queue are data buffers with a queue structure. That is, the buffered
data are processed in a first-in-first-out manner. The data unit is the activity status from the
status classification stage. Each status result enters the input queue and is then assigned by
the classifier to one among N output queues according to its status. That is, the status i is in
the output queue i with a length Li. Meanwhile, the controller drops one status from the
head of its output queue to manage the number of buffered statuses in SCQ. The number of
statuses, M, can be regarded as a status window size specified by a time slot of T seconds:

M = R× T, subject to M ≤∑N
i=1 Li and M ≥ max{Li}, (1)

where R is the frame rate estimated in frames per second (fps). The queue length determines
the recognition sensitivity for the behavior associated with it. Generally, a shorter queue
length corresponds to a faster activity or a critical behavior requiring early notification.
The controller continuously monitors N output queues. When one of them is full, the
SCQ system can determine a user behavior associated with the full queue. Immediately
after the behavior is identified, the controller empties all output queues to start a new
recognition process. The next sub-section presents a bed-exit monitoring application based
on this simplified behavior recognition process, including the proposed SCQ, to identify
bed-related behaviors from NFV images.
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2.3. Bed-Exit Application

This section describes a bed-exit application based on a three-stage behavior recogni-
tion system, for NFV images captured by the prototype shown in Figure 2. In the object
detection stage, Yolov4-tiny is adopted to identify the head and trunk of a monitored user.
As the object is detected in an NFV image, a bounding box with the position information of
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X and Y coordinates can be available to the status classification stage. Figure 5 shows the ob-
ject detection results for NFV images captured from the horizontal low angle. Figure 5a–d
indicates a series of bed-related activities including laying on the bed, turning over, getting
up, and walking away from the bed. In Figure 5a–c, the detected objects are the head
labeled in the pink bounding boxes, while Figure 5d detects the human trunk labeled in
the green box.
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Denote the X and Y coordinates centered in the bounding box as x_center and y_center,
respectively. The center position of the bounding box is

P = {x_center , y_center}. (2)

Given a time slot, W, in seconds, the number of images within W for an image sequence
with R frames per second can be computed as

uF = W × R. (3)

Then the center position vector for bounding boxes of uF images is expressed as

FP = {P1, P2, ... , PuF−1, PuF}. (4)

In order to observe the FP changes, Figure 6 presents a real-time trace of the image
sequence captured from the horizontal low angle. By inspecting the image sequence, we can
differentiate user behaviors into four categories: laying on the bed, exiting the bed, nobody,
and back to bed. These four behaviors are repeated twice and finally end with the “laying on
the bed” behavior. Accordingly, a total of 9 behaviors are numbered from 1 to 9 in Figure 6.
In the case of “nobody” behavior (numbered as 3 and 7 in Figure 6), the bounding box is
absent and therefore no information about X and Y coordinates is available. In the behavior
case labeled as 1 and 2 (i.e., laying on the bed and exiting the bed), however, three events
labeled as A, B, and C are observed to have the same situation as “nobody” behavior. This is
because the head and the trunk can be missed or be incomplete using a narrow field of view.
Figure 7 shows the object tracking results for another image sequence captured from the
vertical low angle. Following similar observations as in Figure 6, two object missing events
occur in Figure 7: event A in the “back to bed” behavior numbered as 4, and events E~G in
the “laying on the bed” behavior numbered as 9. Additionally, abrupt position changes are
common for NFV images. In Figure 6, the “laying on the bed” behavior, numbered as 1, has
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frequent position level fluctuations, especially for the X coordinate. In Figure 7, position
changes become even more abrupt. From Figure 7, it can be seen that (1) for the behaviors
numbered as 4, 5, and 6 (i.e., “back to bed”, “laying on the bed”, and “exiting the bed”),
three behaviors are performed in order within a short duration; (2) events B~D exhibit fast
XY curve fluctuation indicating that the detected object appears and disappears suddenly;
(3) the “laying on the bed” behavior numbered as 9, has position level fluctuations. This
implies that diverse user activities such as turning over and getting up exist when the target
user is on the bed.
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In the status classification stage, a status, Ŝ, can be defined in accordance with the
distance between two positions as follows:

Ŝ =


1, i f PiP0 − Pi−1P0 ≥ ε,
0, i f

∣∣PiP0 − Pi−1P0
∣∣ < ε,

−1, i f Pi−1P0 − PiP0 ≥ ε,
−2, No bounding box,

(5)
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where ε is the distance threshold and P0 represents an initial object position. It is noted
that the origin of an image (i.e., (0,0)) is located at the top left point/pixel. Referring to
Figure 5a, the user laying on the bed initially has a smaller value of the X coordinate and
a larger value of the Y coordinate. During the period of exiting the bed, the value of the X
coordinate is gradually increased, and the value of the Y coordinate becomes smaller. The
status of Ŝ = 1 indicates that the target user moves away from the bed since the distance
between the current position and the initial position is larger than the distance between the
previous position and the initial position by ε. On the contrary, the status of Ŝ = 1 means
that the user moves back to the bed when the distance between the current position and the
initial position decreases from image i−1 to i. When the distance between two neighboring
positions is smaller than ε, the intention for a user to move toward/back the bed stays
neutral and the status Ŝ is set to 0. Finally, the status of Ŝ = −2 indicates that the bounding
box has been missed. In Equation (5), the initial position (P0) can be either a predefined
value when the user remains stationary on the bed, or just set to the origin.

From the above-mentioned discussion, the status classified by a short-term position
change may not correspond to the user behavior in the presence of abrupt position changes.
In the behavior recognition stage, SCQ is utilized to differentiate the status associated
with current behavior from that induced by abrupt position changes. In this study, four
statuses defined in Equation (5) are injected into queues {Qj}, where j = 1~4. For Q1~Q4, the
behaviors associated with their corresponding queues are “off bed”, “on bed”, “return”,
and “nobody”, respectively. According to the queueing discipline of SCQ, a behavior is
recognized when buffered statuses in their corresponding queue are full. Let the queue
length of Qj be Lj and given the number of statuses M, the behavior recognition of SCQ can
be expressed as

Ê =


o f f bed, i f ∑i−M+1

k=i Ŝk = L1,
on bed, i f ∑i−M+1

k=i
(
1− Ŝk

)
= L2,

return, i f ∑i−M+1
k=i −Ŝk = L3,

nobody, i f ∑i−M+1
k=i −

(
Ŝk/2

)
= L4.

(6)

Based on (6), the statuses associated with a specified behavior can be accumulated to
obtain an accurate observation of recent user activities. Meanwhile, the statuses represent-
ing abrupt position changes caused by a missed bounding box or object detection failure
are omitted by means of putting them into other queues. All queues are emptied to restart
another behavior recognition process after a behavior is determined.

3. Results
3.1. Experiment

In this study, a series of experiments were conducted in the ward environment. The
system prototype presented in Figure 2 was deployed at the head of the bed, and four
different camera angles were adopted to capture images with a frame rate of 15 frames per
second and a resolution of 640 × 360. The input images were then adjusted to 416 × 416
for object detection by Yolov4-tiny. Two participants, each of whom wore clothes in five
different colors, were involved in the experiments to establish a data set of 10 video
sequences for every camera angle. Consequently, a total of 40 sequences were available
for data training and performance evaluation purposes. The data set had 1213, 1319, 1124,
and 861 images for horizontal high, horizontal low, vertical high and vertical low angle,
respectively. The image ratio used for data training and evaluation is 8:2. In our system
prototype, an Nvidia Jetson Xavier NX with 384 CUDA core and 8G memory operates as
the secondary device to realize the three-stage behavior recognition process presented in
Section 2.2. In order to evaluate the timely recognition of NFV images, lengths of all queues
and the number of buffered statuses (M) are fixed to 15 (images/statuses) in the SCQ. That
means the minimum response time to recognize a behavior will be one second.

For NFV images, multi-object detection facilitates the subsequent object tracking and
behavior recognition stages. As mentioned in Section 2.3, the main detected objects in this
study are the head and human trunk. Typically, the detection results can be divided into
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four classes: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN). Based on these detection classes, the detection accuracy (A) can be computed

A =
TP + TN

TP + TN + FP + FN
. (7)

Table 1 presents the basic object detection results for different camera angles. In
additional to the four NFV angles, the “diagonal high” angle is further considered as
a WFV case for performance comparison purposes. Figure 8 shows the snapshots from
a “diagonal high” video sequence. The data set of diagonal high angle has 2460 images and
the ratio of data training to evaluation is 8 to 2. For horizontal angles, both the high and low
angles can attain an accuracy rate of 85% and even higher. In the case of horizontal high
angle, the successful detection rate for the human trunk is higher than that of the horizontal
low angle because the higher angle can better capture the trunk as the user walks around
the bed. For vertical angles, the accuracy rate of successfully detecting the head can be
higher than 95%. The vertical low angle, however, fails to detect the human trunk as the
user gets up from the bed. Compared with NFV images captured from horizontal and
vertical angles, the diagonal high angle covers an area as wide as possible to obtain better
object detection performance. Specifically, accuracy rates of 99% and 96% are attained for
head detection and human trunk detection, respectively.

Table 1. Head and trunk detection results for different camera angles.

Camera Angle Object TP FP A

Horizontal High
Head 159 46 86%

Trunk 103 5 93%

Horizontal Low
Head 149 48 85%

Trunk 112 25 85%

Vertical High
Head 218 15 96%

Trunk 67 20 85%

Vertical Low
Head 154 1 95%

Trunk x x x

Diagonal High
Head 1817 2 99%

Trunk 763 39 96%

Table 2 shows the more detailed results of the object detection stage. For each class
among TP, FP, and FN, the detection results of “head” and “trunk” are counted together
to observe the object detection performance of five different camera angles. The detection
precision (P), Recall (R), and F1-score (F1) are given in order by:

P =
TP

TP + FP
. (8)

R =
TP

TP + FN
. (9)

F1 =
2× P× R

P + R
. (10)

From Table 2, the vertical angles have higher values than horizontal angles in terms
of P, R, and F1-score. This is based on a fact shown in Table 1, that the vertical angles
can better detect the head as the user lays on the bed. Except for the vertical low angle,
two horizontal angles (i.e., high and low) and a vertical high angle achieve nearly the same
mean average precision (mAP) value. The vertical low angle has a lower mAP value of
49% due to the poor detection of the human trunk. Although the three angles with high
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mAP values are able to support object detection for NFV images, the diagonal high angle
achieves the highest values among all performance metrics {P, R, F1, mAP}.

Table 2. Object detection statistical results for different camera angles.

Camera Angle P R F1 TP FP FN mAP

Horizontal High 84% 85% 85% 262 51 45 90%

Horizontal Low 84% 85% 82% 261 73 45 88%

Vertical High 89% 92% 90% 285 37 24 90%

Vertical Low 99% 90% 95% 154 1 17 49%

Diagonal High 98% 98% 98% 2580 41 51 98%
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As discussed above, NFV images can impede successful object detection and are
expected to become an obstacle to behavior recognition accordingly. Obviously, the object
detection failure would spread to the status classification stage where the object is further
tracked and classified into different activity statuses. Consequently, the status track becomes
more abrupt or discontinuous. The proposed SCQ aims to keep the memories of statuses
based on a multi-queue architecture and predicts the user behavior labeled by a full queue.
In the bed-exit monitoring application, we focus on three main user behaviors: on bed,
off bed, and return to the bed. For each video sequence in our data set, the target user
first lays on the bed, then walks away from the bed, and finally returns to the bed. This
scenario is repeated once. Figure 9 shows the behavior recognition results for the video
sequence presented in Figure 6. In order to ensure a good presentation quality, only the
X-axis trace is plotted, and the three bed-related behaviors are expressed using behavior
indexes. “on bed”, “off bed”, and “return” behaviors are numbered in order as 0, 1, and −1.
The “nobody” behavior is indexed as 2. In the behavior case numbered as 1 (i.e., laying
on the bed), SCQ gives a behavior index of 0 in the presence of object detection failure
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events A and B. In the end of behavior case numbered as 2 (i.e., exiting the bed), SCQ
can successfully recognize “off bed” behavior with index = 1, while identifying “return”
behavior (index =−1) in the beginning period of the behavior case numbered as 4 (i.e., back
to bed). Similar results can be observed in behavior cases 6 and 8. In order to evaluate the
corresponding performance for three bed behaviors, each video sequence is further divided
into four “on-bed” clips, two “off-bed” clips, and two “return” clips. In the experiment, the
amount of “on-bed” clips used to evaluate performance is 10 × 4 = 40. On the other hand,
both the total amount of “off-bed” clips and “return” clips are the same as 10 × 2 = 20. The
final behavior recognition results are presented in Table 3. From Table 3, the proposed SCQ
can identify “on-bed” and “off-bed” behaviors with a successful recognition rate of 100%
for all horizontal and vertical angles. In identifying “return” behavior, SCQ can achieve
a successful recognition rate of 100% for horizontal angles, while obtaining a successful
recognition rate of 95% for vertical angles. The images captured by vertical angles have
a narrower field of view and fail to detect the object (head or trunk) for SCQ during
a “return” behavior. Based on a similar deployment scenario, where the monitor device is
installed at the head of the bed, the sensor-based work presented in [34] adapts an infrared
array to differentiate the “off bed” behavior from body activities on the bed. According
to the results reported in [34], an accuracy rate of about 99% is attained in recognizing
“off bed” behavior. In addition to the fact that the proposed SCQ achieves an accuracy
rate of 100% for “off bed” behavior, SCQ can recognize more bed-related behaviors, such
as “on bed” and “return”, thanks to the better spatial information obtained by images.
To conclude, SCQ is effective in identifying bed-related behaviors from NFV images and
the horizontal angles are the preferred configuration in deploying an NFV-based bed-exit
monitoring system.
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Table 3. Behavior recognition statistical results for different NFV camera angles.

Camera Angle On Bed Off Bed Return

Horizontal High 100% (40/40) 100% (20/20) 100% (20/20)

Horizontal Low 100% (40/40) 100% (20/20) 100% (20/20)

Vertical High 100% (40/40) 100% (20/20) 95% (19/20)

Vertical Low 100% (40/40) 100% (20/20) 95% (19/20)
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3.2. Complexity Analysis

In this section, the time complexity of the proposed behavior recognition system is
calculated and compared with that of the general one. For general behavior recognition
systems, the object detection stage adopts a CNN-based method to find the features of the
target object. The complexity of CNN is mainly caused by the convolution operation, the
number of kernels, and the memory access [35]. The number of convolution operations per
input grows quadratically with an increased kernel size. Accordingly, the complexity of d
convolution layers can be estimated as

O
((

∑d
i=1 Ci−1 × S2

i × Fi ×M2
i

)
× l × e

)
, (11)

where Ci−1 is the number of input channels of layer i, Si is the spatial size of the filter, Fi is
the number of filters of layer i, Mi is the spatial size of the output feature map for layer i, l is
the input length, and e is the number of epochs. In the object tracking stage, some general
systems, such as SORT or Deep SORT, use the advanced technique, to facilitate behavior
recognition. In Deep SORT, the Kalman Filter and Hungarian Algorithm are two primary
components used to obtain the spatial track from the object detection results. According to
the work reported in [36], the complexity of the Kalman Filter in an iteration is given by

O
(

9× H2.367 + 10× H2 + 5× H
)

, (12)

where H is the state size in the Kalman Filter. For the Hungarian Algorithm, its complexity
was proved to be strongly polynomial, O(n4) [37], while Edmonds and Karp presented
a faster version of the algorithm to achieve a running time of O(n3) [38].

In the behavior recognition stage, LSTM is considered a popular method of identifying
user behavior based on sequential spatial data. The traditional LSTM contains memory
blocks in the recurrent hidden layer, and each block is controlled by memory cells, gates,
and peephole connections. Among LSTM gates, an input gate controls the flow of input
into the memory cell, an output gate controls the present flow of output (i.e., weight) into
the LSTM network, and a forget gate can reset the cell state. The peephole connection
records the timing of output by linking gates in the same block. The idea behind LSTM is to
allow temporal information to persist or be forgotten in its internal state. Generally, LSTM
can be trained using the Back Propagation Through Time (BPTT) technique. For each time
step, LSTM requires O(1) per weight to obtain its computational results [28,39]. Denote w
as the number of weights and the total complexity of LSTM becomes:

O(w× l× e). (13)

In the proposed three-stage behavior recognition process, the object detection stage
employs CNN-based Yolov4-tiny and obtains the same time complexity as (10). As shown
in Equation (5), the status classification stage calculates the distance between two posi-
tions twice, and its complexity can be O(1) based on the fact that the input size of the
distance formula is fixed to two in each time step. Note that the advanced object tracking
technique in general behavior recognition systems also involves distance computation,
and the corresponding complexity can be ignored when compared to the large amount
of computation contributed by the Kalman Filter and Hungarian Algorithm. Finally, the
proposed SCQ performs an enqueue/dequeue operation or empties the queue in each time
step, and its complexity is O(1) accordingly. From the statistics from the experiment results,
the three-stage behavior recognition process conducted for bed-exit monitoring can operate
in NX at an average frame rate of 34.65 frames per second. An average value of 35.88 fps
is attained when only the object detection stage operates. Consequently, the performance
gap caused by the complexity of the status classification stage and the behavior recognition
stage is 1.23 fps on average.
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4. Discussion

This paper aims to establish an image-based behavior recognition system in a real-
world ward to identify bed-related behaviors when dealing with practical issues such as fast
deployment and system maintenance. This means that for a typical behavior recognition
process, its data training and computational cost need to be limited so as to realize the
bed-exit system on an embedded system. In order to achieve efficiency, images are captured
with a narrow field of view to obtain a simple scene for behavior recognition. Furthermore,
a simplified three-stage behavior recognition process is presented to ensure recognition
effectiveness: (1) in stage 1, multi-object detection based on Yolov4-tiny is conducted
to enhance the detection performance when using a narrow field of view; (2) in stage
2, the changes in object position are classified into different statuses to achieve simple
object tracking; and (3) a queue-based behavior recognition approach, namely SCQ, is
proposed in stage 3 to deal with the problems associated with a narrow field of view, such
as discontinuous and abrupt position changes, by means of keeping the memories of object
tracking statuses.

The experiment results show that the object detection of wide-area images outperforms
that of images with a narrow field of view, and the proposed SCQ can efficiently recognize
bed-related behaviors from NFV images. For images captured from horizontal angles, the
successful recognition rate of 100% can be attained in terms of “on bed”, “off bed”, and
“return” behavior. On the other hand, the successful recognition rate associated with the
vertical angles is 100% for “on bed” and “off bed” behavior, and 95% for “return” behavior.
In addition, te complexity analysis indicates that stages 2 and 3 in the proposed behavior
recognition process are conducted with very low complexity, and therefore, the resultant
bed-exit monitoring system can achieve real-time processing at nearly 35 fps on average
using an Nvidia NX testbed.
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