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Abstract: Crop diseases are one of the important factors affecting crop yield and quality and are also
an important research target in the field of agriculture. In order to quickly and accurately identify
crop diseases, help farmers to control crop diseases in time, and reduce crop losses. Inspired by the
application of convolutional neural networks in image identification, we propose a lightweight crop
disease image identification model based on attentional feature fusion named DSGIResNet_AFF,
which introduces self-built lightweight residual blocks, inverted residuals blocks, and attentional
feature fusion modules on the basis of ResNet18. We apply the model to the identification of rice and
corn diseases, and the results show the effectiveness of the model on the real dataset. Additionally,
the model is compared with other convolutional neural networks (AlexNet, VGG16, ShuffleNetV2,
MobileNetV2, MobileNetV3-Small and MobileNetV3-Large), and the experimental results show that
the accuracy, sensitivity, F1-score, AUC of the proposed model DSGIResNet_AFF are 98.30%, 98.23%,
98.24%, 99.97%, respectively, which are better than other network models, while the complexity of the
model is significantly reduced (compared with the basic model ResNet18, the number of parameters
is reduced by 94.10%, and the floating point of operations(FLOPs) is reduced by 86.13%). The network
model DSGIResNet_AFF can be applied to mobile devices and become a useful tool for identifying
crop diseases.

Keywords: crop diseases identification; ResNet18; DSGIResNet_AFF; lightweight residual blocks;
inverted residual blocks; attentional feature fusion

1. Introduction

In China, agriculture is the primary industry, which is the basis of national economic
construction and development and provides material security for the people. In recent
years, global warming and environmental pollution have hurt the environment for crops to
survive, and crop diseases have become more common and frequent [1]. If the diseases
cannot be accurately and quickly identified and effective control methods are put in place,
the yield and quality of crops will be greatly reduced [2].

The traditional identification of crop diseases mainly relies on manual work, and it
is judged by the experience accumulated by farmers in the farming process. This method
is usually time-consuming and labor-intensive and has strong subjectivity, poor real-time
performance, and a high misclassification rate [3]. In order to overcome the problems
of manual identification of crop diseases, with the development of machine learning, re-
searchers first introduced machine learning into crop disease identification and used the
support vector machine (SVM) [4], K-nearest neighbor (KNN) [5], random forest [6], and
other methods for crop disease identification, but their feature extraction capabilities are
limited. However, crop disease images usually have complex backgrounds and differ-
ent features such as texture, shape, and color of disease spots, which greatly affect the
effectiveness of the identification. In recent years, with the development of deep learning
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technology, various convolutional neural network models have been used for crop disease
identification, which does not rely on specific features and can quickly extract different
disease features in complex environments, providing effective methods to identify crop
diseases accurately and quickly [7-10]. The crop disease identification methods based on
the convolutional neural network have the advantage of high identification accuracy, but
they also have the problem of a large number of parameters and high FLOPs, which makes
them unable to be applied in real environments. Therefore, more and more scholars are
committed to the study of small and efficient lightweight convolutional neural networks,
to reduce the number of parameters and FLOPs, and improve the operational efficiency of
the models [11-14].

In order to increase the application value of the crop disease identification models
based on a convolutional neural network in the actual farming environment, we propose
a lightweight crop disease image identification model based on attentional feature fu-
sion DSGIResNet_AFF by optimizing the original network model ResNet18. The main
contributions of this paper are as follows:

e In order to satisfy the identification of rice and corn diseases in real environments, we
collect four kinds of rice diseases and four kinds of corn diseases in real environments,
construct a crop disease image dataset, and expand the dataset through data augmen-
tation to improve the generalization ability of the model in practical applications.

e In this paper, we propose a lightweight convolutional neural network model for iden-
tifying crop diseases. The model introduces self-built lightweight residual blocks,
inverted residual blocks, and attentional feature fusion modules, which greatly im-
prove the feature extraction ability of the model. Compared with the original ResNet18
model, it not only greatly reduces the number of parameters and FLOPs of the model,
but also improves the ability of the model to identify crop diseases.

e To prove the effectiveness of the proposed model, it is compared with various other
classical network models (AlexNet [15], VGG16 [16], ShuffleNetV2 [17], MobileNet-
V2 [18], MobileNetV3-Small and MobileNetV3-Large [19]), and the experimental
results show that the overall effect of the proposed network model DSGIResNet_AFF
is optimal.

The network model DSGIResNet_AFF can be applied to the actual farming envi-
ronment to help farmers identify crop diseases quickly and accurately, provide effec-
tive technical means to make disease control strategies scientifically and improve crop
yield and quality, and play a positive role in promoting smart agriculture, with practical
application value.

2. Related Work

With the development of deep learning technology quickly, convolutional neural
networks have been used in crop disease identification widely due to their powerful feature
extraction capabilities. Brahimi, M. et al. [20] used the pre-trained models of AlexNet
and GoogleNet to identify tomato leaf diseases, and the accuracy reaches 99.18%. Chen,
J. et al. [21] proposed an improved VGG model (INC-VGGN) based on the VGG model by
introducing the inception module, adding pooling layers, and modifying the activation
function, and its accuracy of rice disease prediction in the complex background is 92%.
Nithish Kannan, E. et al. [22] used data augmentation to expand the tomato disease dataset
and introduced transfer learning into the training process, and used the fine-tuned ResNet50
model to identify the diseases on the leaves in the dataset, and the accuracy reaches 97%.
Zhao, S. et al. [23] proposed the SE-ResNet50 model, which was based on the ResNet50
network model with the addition of the SE module, and the accuracy of the model for
identifying tomato leaf diseases reaches 96.81%. ZHU, S. et al. [24] introduced a multi-scale
convolution module and SE attention module on the basis of the residual network, and the
average accuracy reaches 99.4% when identifying fruit tree leaves diseases.

Although the above methods have achieved high identification accuracy, the im-
proved identification models have a complex structure, high complexity, and high training
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overhead, and cannot be applied in the actual environments. In recent years, in order to
balance the accuracy and complexity of the convolutional neural network models, small
and efficient lightweight convolutional neural networks have gradually emerged and be-
come an active research field. Rahman, C.R. et al. [25] proposed a two-stage small CNN
architecture and compared it with state-of-the-art memory-efficient CNNs. Additionally,
the accuracy of the proposed architecture achieves 93.3% while significantly reducing the
model size. Chen, J. et al. [26] proposed a new network model Mobile-DANet based on
DenseNet, which retained the structure of transition layers and used depthwise separable
convolutions in dense blocks instead of traditional convolutions layer and embedded the
attention module. The experimental results show that the model has an average accu-
racy of 95.86% in identifying corn crop disease images under complex backgrounds. Bao,
W. et al. [27] constructed a convolution neural network model SimpleNet using convolu-
tion and the inverted residual blocks, introduced the CBAM module into the inverted
residual blocks, and proposed a feature fusion module to reduce the loss of the detailed
disease features. The experimental results show that the proposed model achieves an iden-
tification accuracy of 94.1% on the wheat ear disease dataset with only 2.13 M parameters.
JIA, H. et al. [28] introduced depthwise separable convolution and global average pooling
in the VGG network. The improved network has higher disease recognition accuracy on
the PantVillage dataset while reducing the model complexity. Zeng, W. et al. [29] pro-
posed a lightweight dense scale network model (LDSNet) that can be used to identify corn
diseases in complex backgrounds, and the core module of the model was the improved
dense dilated convolution (IDDC), and a new loss function was proposed to optimize the
network model, the accuracy of the model reaches 95.4%, and the number of parameters
only accounts for 45.4% of ShuffleNetV2. Although the above studies have achieved good
results, there is still room for improvement in the models.

3. Materials and Methods

In this section, we introduce the dataset and describe the design and development of
the model used for crop disease identification.

3.1. Dataset and Preprocessing

The experimental dataset is mainly from a provincial agricultural research institute,
and some corn disease images come from the public PlantVillage dataset to form a usable
dataset. The dataset has a total of 6200 images, including two crops of rice and corn,
with 8 disease categories. The disease categories are Rice Brown Spot (10000), Rice Leaf
Sheath Rot (10001), Rice False Smut (10002), Rice Blast (10003), Corn Gray Leaf Spot (10004),
Corn Curvularia Leaf Spot (10005), Corn Common Rust (10006) and Corn Northern Leaf
Blight (10007).

In order to avoid overfitting of the model and improve the generalization ability of the
model, the data augmentation techniques are performed on some disease images to expand
the sample data, and the data augmentation operations of the original dataset are including
flipping, random rotation, random adjustment of brightness and contrast, random adding
salt and pepper noise (SP noise), random erasing. The expanded dataset has 7940 images,
and the dataset distribution is shown in Table 1. Figure 1 shows the original samples
and data augmented images. During the experiment, the images are uniformly scaled to
224 x 224 pixels, and the dataset is divided into a training set and a test set at the ratio
of 4:1.
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Table 1. Dataset distribution.

Classes (Disease) Numbers of Number of
Original Dataset Expend Dataset

Rice Brown Spot (10000) 1100 1100
Rice Leaf Sheath Rot (10001) 160 1100
Rice False Smut (10002) 940 940
Rice Blast (10003) 900 900
Corn Gray Leaf Spot (10004) 500 1000
Corn Curvularia Leaf Spots (10005) 700 1000
Corn Rust (10006) 1000 1000
Corn Northern Leaf Blight (10007) 900 900
Total 6200 7940

10006 10007

Original images

Image data
augmentation

Flipping Random Random Random Random Random Flipping Random
rotation brightness contrast SP noise erasing rotation

Figure 1. Data augmentation of different crop disease images.

3.2. ResNet18

In order to solve a series of problems such as the problem of vanishing/exploding
gradients caused by the increase in network depth, He, K. et al. [30] proposed the residual
network in 2015, which successfully solved these problems. The core structure of the
residual network is the residual block, as Figure 2, which connects the input feature X with
the F(X) obtained from the stacked weight layers across the layers to obtain the output
H(X)=F(X)+X.

O

Weight layer
FOX) | rav | x
Weight layer Identify
F(X)+X o
ReLU

CHEo

Figure 2. Residual block.
3.3. Lightweight Residual Blocks
3.3.1. Depthwise Separable Convolution

The depthwise separable convolution [31] is the module that decomposes the standard
convolution into depthwise convolution and 1 x 1 convolution called pointwise convolu-
tion. The standard convolution can extract and combine features at one time to obtain new
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outputs. However, the depthwise separable convolution divides this into two steps. One
step is to convolve a single channel, respectively, using the same number of filters as input
channels, and the other step uses 1 x 1 convolution to combine the output of features from
the first step to obtain new outputs.

The convolution process of standard convolution is shown in Figure 3. Standard
convolution takes feature maps of size Dr x Dr x M as input, and then extracts feature
information using filters to obtain D x Dr x N feature maps as output. M and N are
the number of input channels and output channels, respectively, and the size of the filter
is Dg x Dg x M. The number of parameters and FLOPs of standard convolution are
calculated as follows:

Paramsgc = Dg-Dg-M-N = Dg>MN 1)
FLOPsgc = Dg-Dg-M-N-Dp-Dp = D> MND§? ()
M
M
/ /

N

%/DF
D

Figure 3. Standard convolution. The feature information of the input feature map is extracted using

F

Dy x Dy x M filters, and the output feature map D x Dr x N is obtained, where M and N are the
number of channels of the input and output feature maps, respectively.

The convolution process of depthwise separable convolution is shown in Figure 4.
The size of the input feature maps is Dr x Dp x M, and the output feature maps with the
size Dr X Dr x N are obtained through depthwise convolution and pointwise convolution.
The number of parameters and FLOPs of depthwise separable convolution are calculated
as follows:

Paramspsc = Dg-Dg-M +1-1-M-N = Dg?M + MN (3)
FLOPspgc = Di-Dy-M-Dg-Df + 1-1-M-N-Dg-Dp = Dg>?MDg? + MND§? (4)

\

/
/D / M. /N/

(a) (b)

Figure 4. Depthwise separable convolution. (a) Depthwise convolution. Convolve the single-channel
by using Dy x Dy x 1 filters with the same number of input channels to obtain the single-channel
feature map D x D x M. (b) Pointwise convolution. Take the single channel feature map obtained
by the depthwise convolution as input and use 1 x 1 x M filters to combine them to obtain the output
feature map Dr x D x N.
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In summary, the ratio of the number of parameters and FLOPs of the depthwise
separable convolution to the standard convolution can be expressed as:
Paramspsc Dx’M + MN 1 1

Paramssc ~ Dxg?MN N+D7k2 ®)

FLOPspsc _ Dg*MDp? + MNDg? 1 N 1
FLOPsgc Dx2MNDg2 N D2

(6)

From Equations (5) and (6), we can see that if the size of convolution kernel is 3 x 3,
the number of parameters and FLOPs of the depthwise separable convolution are about
1/9 of the standard convolution. With a slight loss of accuracy, the complexity of the model
is reduced, and making the model more efficient.

3.3.2. Group Convolution

The group convolution [32] is to group the input multi-channel feature maps, then
use the grouped filters to convolve the corresponding groups, and finally combine the
convolution results as the output feature maps. The process of group convolution is shown
in Figure 5, where g represents the number of groups. Compared with the standard
convolution (Section 3.3.1), the size of filters becomes Dg x Dk x M/g. The number of
parameters and FLOPs are calculated as follows:

Paramsgc = Dx-Dx-M/g-N/g-g = 1/g Paramsgc (7)
FLOPSGC = DK~DK~M/g-N/g-Dp-D1:-g = 1/g FLOPSSC (8)

Figure 5. Group convolution. The g independent groups of N/ g filters operate on part of the channels
M/ g of the corresponding input feature map, changing the size of the filter from Dy x Dy x M to
Dy x Dy x M/ g (g stands for the number of groups). This change does not affect the size of the input
and output feature maps, but greatly reduces the complexity of the model.

The group convolution reduces the number of parameters and FLOPs to 1/g of the
standard convolution, which not only reduces the complexity of the model, but also
improves the identification accuracy of the model. Through group convolution, feature
information with different focus points can be obtained, which can express the features
of the input images more completely. At the same time, in the group convolution, the
filters with high correlation are grouped into a block diagonal structure, which avoids the
occurrence of overfitting, similar to regularization, so that the optimizer can learn a more
accurate and efficient network.

3.3.3. The Structure of Lightweight Residual Block

The lightweight residual (DSGRes) block shown in Figure 6 is composed of depthwise
separable convolution and group convolution. The introduction of this module drastically
reduces the number of parameters and FLOPs of the model. Additionally, the group
convolution compensates for the accuracy loss caused by depthwise separable convolution.
In crop disease images, the area, color, shape and other characteristics of disease spots are
different. Through this module, the feature information of different points of interest can be
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obtained, and various disease spot feature information can be extracted, thereby improving
the disease identification ability of the model.

3 x 3DSC

3x3GC

5
\1‘)‘7
C 'Y\

Figure 6. Lightweight residual (DSGRes) block. The DSC stands for the depthwise separable
convolution, and the GC stands for the group convolution.

3.4. Inverted Residual Blocks

In convolutional neural networks, adjusting the structure of network structure to
obtain a balance between model accuracy and performance has been an important research
area in the past few years. Sandler, M. et al. [18] proposed the inverted residual structure,
which not only reduces the complexity of the network, but also improves the accuracy
of the model. This module expands the input low-dimensional channel features, then
uses depthwise convolution to convolve the expanded features, and finally projects the
high-dimensional features back into the low-dimensional space.

The structure of the inverted residual blocks is shown in Figure 7, which differs from
the traditional residual blocks in the following ways:

1.  Theinverted residual block uses 3 x 3 depthwise convolution instead of the traditional
3 x 3 convolution to reduce the parameters of the model.

2. In the first two convolutional layers of the inverted residual block, ReLU6 is used
to replace the ReLU activation function in the traditional convolution. ReLU6 has
stronger robustness under low precision computation, and its expression is as follows:

ReLU6 = min(max(0, x),6) 9)

3. In the linear bottleneck structure of the inverted residual block, 1 x 1 pointwise con-
volution is used to map high-dimensional feature information into low-dimensional
space. When outputting low-dimensional features, if the ReLU activation function
is used, it is easy to cause information loss. Therefore, a linear activation function is
selected to replace the ReLU to avoid the loss of feature information.

a Y
C J

1 X 1 Conv, ReLU6

|

3 x 3DWC, ReLU6

}

1 X 1 Conv, Linear

4 l’\

]
(+)

<

-
.

< fe—

>

Figure 7. Inverted residuals block.
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The detailed operation parameters of each layer of the inverted residual block are
shown in Table 2, where i and w represent the height and width of the input feature map,
C and C’ represent the input and output channels, respectively, S represents the step size,
and f represents the expansion factor, which is used to expand the number of channels.

Table 2. The per-layer convolution parameters of inverted residual blocks.

Input Operation Output
hxwxC 1 x 1 Conv, ReLU6 hxwxtC
hxwxtC 3 x 3DW Conv s =s, ReLU6 hxwxtC
%x%xtc 1 x 1 Conv, Linear %x%xC’

3.5. Attentional Feature Fusion

Feature fusion is the combination of features from different network layers or different
branches, and is a ubiquitous part of modern network architectures, usually achieved
by addition or concatenation operations. Feature fusion in most attention modules is
achieved by combining features in different convolution kernels, groupings, or network
layers, only the feature maps are fused fixedly without considering cross-layer feature
fusion, and the fusion weights in the model are produced by the global channel attention,
which will weaken the fine feature information of the target area, and thus cannot improve
the identification effect of network model [33,34].

The attentional feature fusion (AFF) [35] effectively solves the above problem. As
shown in Figure 8, the AFF module adds a branch to extract local features based on global
channel attention and completes the fusion of local features and global features in the
attention module. The module uses pointwise convolution to obtain multi-scale feature
contexts, which can not only retain and highlight fine details in low-level features, but also
save the number of parameters as much as possible, keep lightweight, and can be used to
replace existing feature fusion modules in network models such as InceptionNet, ResNet,
FPN and other network models. Attentional feature fusion provides a general and effective
method to improve the performance of the network model. The global channel context
G(X) € RHXWxC and the local channel context L(X) € RF*W*C are calculated as follows:

G(X) = B(PWConv,(3(B(PWConvi (GAP(X)))))) (10)
L(X) = B(PWConuvy(5(B(PWConv1(X))))) (11)

where GAP stands for GlobalAvgPooling, ¢ is ReLU activation function. PWConv; and
PWConvy represent PW convolution, and the filters sizesare H x W x C/rand H x W x C,
respectively, (when extracting global channel context information, H = W = 1).

For given two feature maps X,Y € RT*W*C attentional feature fusion can be ex-
pressed as:

Z=MX®Y)X+(1-MXDY))®Y (12)
=0(G(XaY)dLX®Y)@X+(1-0(GXBY)BLXBY)))®Y
where Z € ROH*W jg the output after weighted feature fusion, o is Sigmoid activation
function, @ represents the broadcasting addition and ® represents the element-wise mul-
tiplication, M(X @ Y) € (0,1) is the fused channel weights generated by AFF, which are
used to weight the input feature maps.

We use the AFF module to replace the feature fusion module in the original residual
block. The structure is shown in Figure 9. In the AFF module, X is the output of the identity
mapping in the residual block, and Y is the output of the learned residual part in the
residual block. The introduction of the AFF module makes the model focus on the global
features and local features of the input images, extracts richer and finer feature information,
suppresses other irrelevant noise in the input image, locates the target area quickly and
accurately, and improves the disease identification ability of the model.
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HxWxC ! HXWXxC

!

GlobalAvgPooling
| 1x1xc

Pointwise Conv
BN l 1x1x$ HxWxgl BN

Pointwise Conv

RelLU RelLU
! !
Pointwise Conv Pointwise Conv
1x1xC | ] | Hxwxc
BN *® - BN
lH XW xC ‘
® -« Sigmoid F------------------ > ®
| m.

Figure 8. Attentional feature fusion module. First, perform initial feature fusion on the input features
Xand Y, and input the results into the left and right branches to extract global context information and
local context information, respectively; then, fuse the information extracted from the two branches
and input them into the Sigmoid activation function to obtain fusion channel weights; finally, use the
fusion channel weights to weight the original input features to obtain the weighted feature maps of X
and Y, respectively, and then add the results along the channel to obtain the final feature information.

>

!

!
A

Figure 9. AFF residual block. The feature fusion module in the original residual block is replaced
with the attentional feature fusion (AFF) module to improve the model’s ability to localize the target.

3.6. Overall Model Structure

The DSGIResNet_AFF network model designed in this paper is based on the ResNet18
model and introduces DSGRes blocks, inverted residual blocks, and AFF modules. The
final model structure is shown in Figure 10. The residual block1 and residual block2 of the
original ResNet18 model are replaced with inverted residual blocks, residual block3 and
residual block4 are replaced with DSGRes blocks, and the AFF module is used to replace
the feature fusion module of all residual blocks.
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softmax
3x3 Inverted Inverted DSGRes DSGRes
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block1(32)  block2(64) l l Average pool

-
DSGRes block1l, 2
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Input DSC1x1 GC3x3 AFF Output

Figure 10. DSGIResNet_AFF network model structure. The core of the model is the two inverted
residual blocks (Section 3.4) and the two lightweight residual (DSGes) blocks (Section 3.3). DWC
stands for the depthwise convolution and DSC stands for the depthwise separable convolution
(Section 3.3.1), GC stands for the group convolution (Section 3.3.2), and AFF stands for the attentional
feature fusion (Section 3.5).

4. Results and Discussion
4.1. Ablation Experiment

In this paper, we use ResNet18 as the basic network model, use various methods to
improve it and use the improved network model DSGIResNet_AFF to identify various
crop disease images. In order to prove the advantages of the improved model, several sets
of comparative experiments were conducted, and the results are shown in Table 3.

Table 3. Comparison of experimental results of different improved methods. Accuracy, sensitivity,
Fl-score, AUC, Params and FLOPs are the evaluation criteria of the network model, and channels
represent the number of channels taken by each residual block of the model.

Models Accuracy (%) Sensitivity (%) F1-Score (%) AUC (%)  Params (M) Flops (G) Channels
ResNet18 97.67 97.66 97.64 99.94 11.148 1.694 [64,128,256,256]
ResNet18_1/2 97.54 97.48 97.50 99.93 2.930 0.541 [32,64,128,256]
DSGResNet 97.54 97.51 97.50 99.93 0.542 0.280 [32,64,128,256]
DSGIResNet 97.98 97.90 97.92 99.95 0.485 0.222 [32,64,128,256]
DSGIResNet_AFF 98.30 98.23 98.24 99.97 0.658 0.235 [32,64,128,256]

It can be observed from Table 3 that the ResNet18_1/2 model can achieve the purpose
of reducing the number of parameters and FLOPs by reducing the number of channels of
the basic network model ResNet18. However, with the reduction in the number of channels,
the feature extraction ability of the model becomes worse, and the useful crop disease
information that can be extracted will be reduced, so its accuracy, sensitivity, F1-score, and
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ResNetl8

ResNetl8_1/2

DSGResNet

DSGIResNet

DSGIResNet AFF

10000

AUC are reduced compared to the ResNet18. DSGResNet uses the lightweight residual
blocks (DSGRes blocks) to replace the residual blocks of ResNet18, which further reduces
the number of parameters and FLOPs of the model while maintaining the same accuracy,
sensitivity, F1-score and AUC as ResNet18_1/2. DSGIResNet introduces the inverted
residual blocks on the basis of the DSGResNet, and the accuracy, sensitivity, Fl-score
and AUC of the model are improved while the number of parameters and the FLOPs
are reduced, which solves the problem of worse feature extraction ability of the model
caused by the reduction in the number of channels of the network model. Finally, the
DSGIResNet_AFF model constructed in this paper, although its number of parameters and
FLOPs have a slight increase compared with the DSGIResNet model, compared with the
basic network model ResNet18, its accuracy, sensitivity, F1-score and AUC have increased
by 0.63%, 0.57%, 0.6%, and 0.03%, respectively, and its number of parameters is reduced by
94.10%, and the FLOPs is reduced by 86.13%.

The use of the DSGRes blocks and the inverted residual blocks enables the model to
focus on more abundant disease features, reducing the number of parameters and FLOPs
while enhancing the feature extraction capability of the model. The introduction of the AFF
module enables the model to extract various fine disease spot features, locate the target area
accurately and quickly, and suppress the noise in the images that would cause interference
to the network model, which can improve the ability of the model to identify crop diseases.
As shown in Figure 11, the area concerned by the model after adding the AFF module
overlaps with the disease spot region, and accurately locates the target area of the images,
while the basic network model ResNet18 has a relatively weak ability to locate the disease
spot region, and sometimes will incorrectly locate the center of the target area.

10005

06 10007

Figure 11. The heatmap shows the areas of interest of the model under different improvement
methods. The incorrectly predicted images are indicated by the symbol X. The class name of the
incorrect prediction and the correctly predicted softmax scores (P) are shown at the bottom of the
heat map.
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4.2. Comparison Experiment of Different Identification Models

To objectively evaluate the capabilities of the proposed network model in this paper,
its experimental results are compared with the network models of AlexNet, Shufflenet V2,
VGG16, MobileNetV2, MobileNetV3-Small and MobileNetV3-Large. The experimental
results of the different models are shown in Table 4.

Table 4. Experimental comparison of different network models on crop disease datasets.

Models Accuracy (%) Sensitivity (%) F1-Score (%) AUC (%) Params (M) Flops (G)
AlexNet 94.65 94.51 94.55 99.63 58.270 0.667
Shufflenet V2 95.09 94.97 95.02 99.75 3.341 0.281
VGG16 96.60 96.59 96.53 99.92 131.948 14.420
MobileNetV3-Small 97.42 97.33 97.38 99.90 2.425 0.055
MobileNetV2 97.61 97.53 97.55 99.93 3.343 0.293
ResNet18 97.67 97.66 97.64 99.94 11.148 1.694
MobileNetV3-Large 97.73 97.70 97.71 99.93 5.229 0.210
DSGIResNet_AFF 98.30 98.23 98.24 99.97 0.658 0.235

It can be observed from Table 4 that although the FLOPs of the crop disease identi-
fication model DSGIResNet_AFF proposed in this paper are slightly higher than that of
MobileNetV3-Small and MobileNetV3-Large, their number of parameters are the smallest,
and its accuracy, sensitivity, F1-score, and AUC performance are optimal. From the compre-
hensive overall evaluation criteria, it can be obtained that the crop diseases identification
model DSGIResNet_AFF proposed in this paper has a much lower number of parameters
and FLOPs than other identification models and has higher accuracy, sensitivity, F1-score,
and AUC. In this paper, by improving the traditional ResNet18 model, the number of
parameters and FLOPs of the model is reduced, and the feature extraction ability of the
model for different disease spots is enhanced, so that the model can focus on disease
spots of different scales and shapes and avoid the appearance of overfitting in the training
process, thus improving the overall performance of the model.

5. Conclusions

To further improve the efficiency and accuracy of crop disease identification, this paper
proposes a lightweight crop disease image identification model based on attentional feature
fusion DSGIRseNet_AFF. Based on the ResNet18 model, the model uses the DSGRes blocks
and the inverted residual blocks to replace the residual blocks in the backbone network,
which improves the feature extraction ability of the model while reducing the number of
parameters and FLOPs of the model and then uses the AFF module to replace the feature
fusion module in the basic model, which enables the model to focus on richer and finer
crop disease features, quickly locate the target area, and improve the identification ability
of the model. In the identification of rice and corn disease images, the convolutional neural
network model DSGIResNet_AFF proposed in this paper is better than other well-known
image identification models, with an accuracy of 98.3%, a sensitivity of 98.23%, F1-score
of 98.24%, and the AUC of 99.97%. At the same time, the number of parameters and
FLOPs are greatly reduced compared to the basic network model ResNet18, which greatly
saves computational resources and is more suitable for deployment on mobile devices to
diagnose crop diseases. In the real agricultural environment, it can help farmers to identify
the types of crop diseases quickly and accurately, so as to formulate corresponding control
measures and reduce the loss of crops, which has practical application value.
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