Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton
Abstract
:1. Introduction
2. Materials and Methods
2.1. PEPATO Software for Evaluating Changes in the Spinal Locomotor Output during Walking in the Exoskeleton
2.1.1. Protocol, Input, Reference Data, and User Interface
- Protocol
- Input
- -
- Electromyographic (EMG) activity recorded unilaterally from lower limb muscles during walking in the exoskeleton. The current version of PEPATO processes EMG activity of 8 muscles (unilaterally or bilaterally) that represent flexor and extensor groups of both distal (shank) and proximal (thigh) lower limb segments and are most accessible for recordings during walking in most exoskeletons: soleus (Sol), gastrocnemius medialis (GaLa), tibialis anterior (TiAn), rectus femoris (ReFe), vastus lateralis (VaLa), vastus medialis (VaMe), semitendinosus (SeTe), biceps femoris (long head, BiFe). This set of muscles represent major extensor and flexors groups of muscles controlling walking and are often used in both simulation studies and when evaluating basic muscle modules [40,41,42]. Also, these muscles constitute a relatively large part of the total cross-sectional area of lower limb muscles [43]. The PEPATO SW can handle a lower (see the below experiment with 7 bilateral muscles that include flexors and extensors of the thigh and shank segments) or larger number of muscles (see below REFERENCE DATA).
- -
- Gait events for the stride identification that specify the timing of touchdown events of the recorded strides.
- Reference Data
- User Interface
2.1.2. Data Pre-Processing
2.1.3. Performance Indicators for the Assessment of Motor Modules
2.1.4. Performance Indicators for the Assessment of the Spinal Maps of Motoneural Activation
2.2. Usage of the PEPATO Software for the Assessment of Walking in the Unloading Exoskeleton
2.2.1. Participants
2.2.2. Unloading Exoskeleton
2.2.3. Data Recording and Processing
2.2.4. Statistics
3. Results
3.1. EMG Activity during Walking in the Unloading Exoskeleton
3.2. Performance of the Benchmarking Software for Evaluating Motor Modules during Walking in the Unloading Exoskeleton
3.3. Performance of the Benchmarking Software for Evaluating Spinal Maps
4. Discussion
5. Conclusions
Finding’s Remarks and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onose, G.; Cârdei, V.; Crăciunoiu, Ş.T.; Avramescu, V.; Opriş, I.; Lebedev, M.A.; Constantinescu, M.V. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach. Front. Neurosci. 2016, 10, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, J.D.; Michael, J.; Fisk, J. AAOS Atlas of Orthoses and Assistive Devices; MOSBY Elsevier: Philadelphia, PA, USA, 2008. [Google Scholar]
- Swinnen, E.; Duerinck, S.; Baeyens, J.-P.; Meeusen, R.; Kerckhofs, E. Effectiveness of Robot-Assisted Gait Training in Persons with Spinal Cord Injury: A Systematic Review. J. Rehabil. Med. 2010, 42, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheron, G.; Duvinage, M.; De Saedeleer, C.; Castermans, T.; Bengoetxea, A.; Petieau, M.; Seetharaman, K.; Hoellinger, T.; Dan, B.; Dutoit, T.; et al. From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation. Neural Plast. 2012, 2012, 375148. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; Franceschini, M.; Waldner, A.; Hesse, S. Use of the Robot Assisted Gait Therapy in Rehabilitation of Patients with Stroke and Spinal Cord Injury. Eur. J. Phys. Rehabil. Med. 2012, 48, 111–121. [Google Scholar] [PubMed]
- Shapkova, E.Y.; Pismennaya, E.V.; Emelyannikov, D.V.; Ivanenko, Y. Exoskeleton Walk Training in Paralyzed Individuals Benefits From Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Front. Neurosci. 2020, 14, 416. [Google Scholar] [CrossRef]
- Gad, P.; Gerasimenko, Y.; Zdunowski, S.; Turner, A.; Sayenko, D.; Lu, D.C.; Edgerton, V.R. Weight Bearing Over-Ground Stepping in an Exoskeleton with Non-Invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Front. Neurosci. 2017, 11, 333. [Google Scholar] [CrossRef]
- Pinto-Fernandez, D.; Torricelli, D.; Sanchez-Villamanan, M.D.C.; Aller, F.; Mombaur, K.; Conti, R.; Vitiello, N.; Moreno, J.C.; Pons, J.L. Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1573–1583. [Google Scholar] [CrossRef]
- Bayón, C.; Delgado-Oleas, G.; Avellar, L.; Bentivoglio, F.; Di Tommaso, F.; Tagliamonte, N.L.; Rocon, E.; van Asseldonk, E.H.F. Development and Evaluation of BenchBalance: A System for Benchmarking Balance Capabilities of Wearable Robots and Their Users. Sensors 2021, 22, 119. [Google Scholar] [CrossRef]
- Torricelli, D.; Veneman, J.; Gonzalez-Vargas, J.; Mombaur, K.; Remy, C.D. Editorial: Assessing Bipedal Locomotion: Towards Replicable Benchmarks for Robotic and Robot-Assisted Locomotion. Front. Neurorobot. 2019, 13, 86. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Gurfinkel, V.S.; Selionov, V.A.; Solopova, I.A.; Sylos-Labini, F.; Guertin, P.A.; Lacquaniti, F. Tonic and Rhythmic Spinal Activity Underlying Locomotion. Curr. Pharm. Des. 2017, 23, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- d’Avella, A.; Giese, M.; Ivanenko, Y.P.; Schack, T.; Flash, T. Editorial: Modularity in Motor Control: From Muscle Synergies to Cognitive Action Representation. Front. Comput. Neurosci. 2015, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacquaniti, F.; Ivanenko, Y.P.; Zago, M. Patterned Control of Human Locomotion. J. Physiol. 2012, 590, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Wenger, N.; Moraud, E.M.; Gandar, J.; Musienko, P.; Capogrosso, M.; Baud, L.; Le Goff, C.G.; Barraud, Q.; Pavlova, N.; Dominici, N.; et al. Spatiotemporal Neuromodulation Therapies Engaging Muscle Synergies Improve Motor Control after Spinal Cord Injury. Nat. Med. 2016, 22, 138–145. [Google Scholar] [CrossRef]
- Monaco, V.; Ghionzoli, A.; Micera, S. Age-Related Modifications of Muscle Synergies and Spinal Cord Activity during Locomotion. J. Neurophysiol. 2010, 104, 2092–2102. [Google Scholar] [CrossRef] [Green Version]
- Goudriaan, M.; Papageorgiou, E.; Shuman, B.R.; Steele, K.M.; Dominici, N.; Van Campenhout, A.; Ortibus, E.; Molenaers, G.; Desloovere, K. Muscle Synergy Structure and Gait Patterns in Children with Spastic Cerebral Palsy. Dev. Med. Child Neurol. 2022, 64, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; Ivanenko, Y.; Serrao, M.; Ranavolo, A.; Draicchio, F.; Rinaldi, M.; Casali, C.; Lacquaniti, F. Differential Changes in the Spinal Segmental Locomotor Output in Hereditary Spastic Paraplegia. Clin. Neurophysiol. 2018, 129, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Cappellini, G.; Solopova, I.A.; Grishin, A.A.; MacLellan, M.J.; Poppele, R.E.; Lacquaniti, F. Plasticity and Modular Control of Locomotor Patterns in Neurological Disorders with Motor Deficits. Front. Comput. Neurosci. 2013, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroman, P.W.; Wheeler-Kingshott, C.; Bacon, M.; Schwab, J.M.; Bosma, R.; Brooks, J.; Cadotte, D.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; et al. The Current State-of-the-Art of Spinal Cord Imaging: Methods. Neuroimage 2014, 84, 1070–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, N.; Ivanenko, Y.P.; Cappellini, G.; d’Avella, A.; Mondì, V.; Cicchese, M.; Fabiano, A.; Silei, T.; Di Paolo, A.; Giannini, C.; et al. Locomotor Primitives in Newborn Babies and Their Development. Science 2011, 334, 997–999. [Google Scholar] [CrossRef]
- Sylos-Labini, F.; La Scaleia, V.; d’Avella, A.; Pisotta, I.; Tamburella, F.; Scivoletto, G.; Molinari, M.; Wang, S.; Wang, L.; van Asseldonk, E.; et al. EMG Patterns during Assisted Walking in the Exoskeleton. Front. Hum. Neurosci. 2014, 8, 423. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Grasso, R.; Macellari, V.; Lacquaniti, F. Control of Foot Trajectory in Human Locomotion: Role of Ground Contact Forces in Simulated Reduced Gravity. J. Neurophysiol. 2002, 87, 3070–3089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, J.C.; Barroso, F.; Farina, D.; Gizzi, L.; Santos, C.; Molinari, M.; Pons, J.L. Effects of Robotic Guidance on the Coordination of Locomotion. J. Neuroeng. Rehabil. 2013, 10, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Distributed Neural Networks for Controlling Human Locomotion: Lessons from Normal and SCI Subjects. Brain Res. Bull. 2009, 78, 13–21. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Cappellini, G.; Poppele, R.E.; Lacquaniti, F. Spatiotemporal Organization of Alpha-Motoneuron Activity in the Human Spinal Cord during Different Gaits and Gait Transitions. Eur. J. Neurosci. 2008, 27, 3351–3368. [Google Scholar] [CrossRef]
- Sylos-Labini, F.; Ivanenko, Y.P.; Cappellini, G.; Gravano, S.; Lacquaniti, F. Smooth Changes in the EMG Patterns during Gait Transitions under Body Weight Unloading. J. Neurophysiol. 2011, 106, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- Lacquaniti, F.; Ivanenko, Y.P.; Sylos-Labini, F.; La Scaleia, V.; La Scaleia, B.; Willems, P.A.; Zago, M. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications. Front. Physiol. 2017, 8, 893. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.M.; Jackson, R.W.; Shuman, B.R.; Collins, S.H. Muscle Recruitment and Coordination with an Ankle Exoskeleton. J. Biomech. 2017, 59, 50–58. [Google Scholar] [CrossRef]
- Rinaldi, L.; Yeung, L.-F.; Lam, P.C.-H.; Pang, M.Y.C.; Tong, R.K.-Y.; Cheung, V.C.K. Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2203–2213. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Cheung, V.C.K.; Turolla, A.; Agostini, M.; Silvoni, S.; Bennis, C.; Kasi, P.; Paganoni, S.; Bonato, P.; Bizzi, E. Muscle Synergy Patterns as Physiological Markers of Motor Cortical Damage. Proc. Natl. Acad. Sci. USA 2012, 109, 14652–14656. [Google Scholar] [CrossRef] [Green Version]
- Martino, G.; Ivanenko, Y.P.; Serrao, M.; Ranavolo, A.; d’Avella, A.; Draicchio, F.; Conte, C.; Casali, C.; Lacquaniti, F. Locomotor Patterns in Cerebellar Ataxia. J. Neurophysiol. 2014, 112, 2810–2821. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, K.L.; Roemmich, R.T.; Cam, B.; Fregly, B.J.; Hass, C.J. Persons with Parkinson’s Disease Exhibit Decreased Neuromuscular Complexity during Gait. Clin. Neurophysiol. 2013, 124, 1390–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellini, G.; Ivanenko, Y.P.; Martino, G.; MacLellan, M.J.; Sacco, A.; Morelli, D.; Lacquaniti, F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front. Physiol. 2016, 7, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, L.H.; Chiel, H.J.; Trumbower, R.D.; Allen, J.L.; McKay, J.L.; Hackney, M.E.; Kesar, T.M. Neuromechanical Principles Underlying Movement Modularity and Their Implications for Rehabilitation. Neuron 2015, 86, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Spinal Cord Maps of Spatiotemporal Alpha-Motoneuron Activation in Humans Walking at Different Speeds. J. Neurophysiol. 2006, 95, 602–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, R.; Ivanenko, Y.P.; Zago, M.; Molinari, M.; Scivoletto, G.; Castellano, V.; Macellari, V.; Lacquaniti, F. Distributed Plasticity of Locomotor Pattern Generators in Spinal Cord Injured Patients. Brain 2004, 127, 1019–1034. [Google Scholar] [CrossRef]
- Coscia, M.; Monaco, V.; Martelloni, C.; Rossi, B.; Chisari, C.; Micera, S. Muscle Synergies and Spinal Maps Are Sensitive to the Asymmetry Induced by a Unilateral Stroke. J. Neuroeng. Rehabil. 2015, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Dominici, N.; Cappellini, G.; Paolo, A.D.; Giannini, C.; Poppele, R.E.; Lacquaniti, F. Changes in the Spinal Segmental Motor Output for Stepping during Development from Infant to Adult. J. Neurosci. 2013, 33, 3025–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neptune, R.R.; Clark, D.J.; Kautz, S.A. Modular Control of Human Walking: A Simulation Study. J. Biomech. 2009, 42, 1282–1287. [Google Scholar] [CrossRef] [Green Version]
- McGowan, C.P.; Neptune, R.R.; Clark, D.J.; Kautz, S.A. Modular Control of Human Walking: Adaptations to Altered Mechanical Demands. J. Biomech. 2010, 43, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.M.; Rozumalski, A.; Schwartz, M.H. Muscle Synergies and Complexity of Neuromuscular Control during Gait in Cerebral Palsy. Dev. Med. Child Neurol. 2015, 57, 1176–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, S.R.; Eng, C.M.; Smallwood, L.H.; Lieber, R.L. Are Current Measurements of Lower Extremity Muscle Architecture Accurate? Clin. Orthop. Relat. Res. 2009, 467, 1074–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewolf, A.H.; Sylos-Labini, F.; Cappellini, G.; Zhvansky, D.; Willems, P.A.; Ivanenko, Y.; Lacquaniti, F. Neuromuscular Age-Related Adjustment of Gait When Moving Upwards and Downwards. Front. Hum. Neurosci. 2021, 15, 749366. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; Ivanenko, Y.P.; d’Avella, A.; Serrao, M.; Ranavolo, A.; Draicchio, F.; Cappellini, G.; Casali, C.; Lacquaniti, F. Neuromuscular Adjustments of Gait Associated with Unstable Conditions. J. Neurophysiol. 2015, 114, 2867–2882. [Google Scholar] [CrossRef] [Green Version]
- d’Avella, A.; Portone, A.; Fernandez, L.; Lacquaniti, F. Control of Fast-Reaching Movements by Muscle Synergy Combinations. J. Neurosci. 2006, 26, 7791–7810. [Google Scholar] [CrossRef] [Green Version]
- Torres-Oviedo, G.; Macpherson, J.M.; Ting, L.H. Muscle Synergy Organization Is Robust across a Variety of Postural Perturbations. J. Neurophysiol. 2006, 96, 1530–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batschelet, E. Circular Statistics in Biology; Academic Press: Cambridge, MA, USA, 1981; ISBN 978-0-12-081050-5. [Google Scholar]
- Grillner, S. Neurobiological Bases of Rhythmic Motor Acts in Vertebrates. Science 1985, 228, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Control Programs and Walking. Neuroscientist 2006, 12, 339–348. [Google Scholar] [CrossRef]
- La Scaleia, V.; Ivanenko, Y.P.; Zelik, K.E.; Lacquaniti, F. Spinal Motor Outputs during Step-to-Step Transitions of Diverse Human Gaits. Front. Hum. Neurosci. 2014, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Yakovenko, S.; Mushahwar, V.; VanderHorst, V.; Holstege, G.; Prochazka, A. Spatiotemporal Activation of Lumbosacral Motoneurons in the Locomotor Step Cycle. J. Neurophysiol. 2002, 87, 1542–1553. [Google Scholar] [CrossRef]
- Dewolf, A.H.; Ivanenko, Y.P.; Zelik, K.E.; Lacquaniti, F.; Willems, P.A. Differential Activation of Lumbar and Sacral Motor Pools during Walking at Different Speeds and Slopes. J. Neurophysiol. 2019, 122, 872–887. [Google Scholar] [CrossRef] [PubMed]
- Sharrard, W.J.W. The Segmental Innervation of the Lower Limb Muscles in Man. Ann. R. Coll. Surg. Engl. 1964, 35, 106–122. [Google Scholar] [PubMed]
- Tomlinson, B.E.; Irving, D. The Numbers of Limb Motor Neurons in the Human Lumbosacral Cord throughout Life. J. Neurol. Sci. 1977, 34, 213–219. [Google Scholar] [CrossRef]
- Rudolph, K.S.; Axe, M.J.; Snyder-Mackler, L. Dynamic Stability after ACL Injury: Who Can Hop? Knee Surg. Sports Traumatol. Arthrosc. 2000, 8, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.P.; Sylos Labini, F.; Cappellini, G.; Macellari, V.; McIntyre, J.; Lacquaniti, F. Gait Transitions in Simulated Reduced Gravity. J. Appl. Physiol. 2011, 110, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Sylos-Labini, F.; Ivanenko, Y.P.; Cappellini, G.; Portone, A.; Maclellan, M.J.; Lacquaniti, F. Changes of Gait Kinematics in Different Simulators of Reduced Gravity. J. Mot. Behav. 2013, 45, 495–505. [Google Scholar] [CrossRef]
- Bogdanov, V.A.; Gurfinkel, V.S.; Panfilov, V.E. Human Motion under Lunar Gravity Conditions(Human Performance in Various Locomotive Tasks under Simulated Lunar Reduced Gravity Conditions, Classifying Test Stands and Equipment). Kosm. Biol. Med. 1971, 5, 3–13. [Google Scholar]
- Watson, G.S.; Williams, E.J. On the Construction of Significance Tests on the Circle and the Sphere. Biometrika 1956, 43, 344–352. [Google Scholar] [CrossRef]
- Santuz, A. musclesyneRgies: Factorization of electromyographic data in R with sensible defaults. J. Open Source Softw. 2022, 7, 4439. [Google Scholar] [CrossRef]
- Scivoletto, G.; Ivanenko, Y.; Morganti, B.; Grasso, R.; Zago, M.; Lacquaniti, F.; Ditunno, J.; Molinari, M. Plasticity of Spinal Centers in Spinal Cord Injury Patients: New Concepts for Gait Evaluation and Training. Neurorehabil. Neural Repair. 2007, 21, 358–365. [Google Scholar] [CrossRef]
- Cappellini, G.; Ivanenko, Y.P.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Migration of Motor Pool Activity in the Spinal Cord Reflects Body Mechanics in Human Locomotion. J. Neurophysiol. 2010, 104, 3064–3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhvansky, D.S.; Sylos-Labini, F.; Dewolf, A.; Cappellini, G.; d’Avella, A.; Lacquaniti, F.; Ivanenko, Y. Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton. Sensors 2022, 22, 5708. https://doi.org/10.3390/s22155708
Zhvansky DS, Sylos-Labini F, Dewolf A, Cappellini G, d’Avella A, Lacquaniti F, Ivanenko Y. Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton. Sensors. 2022; 22(15):5708. https://doi.org/10.3390/s22155708
Chicago/Turabian StyleZhvansky, Dmitry S., Francesca Sylos-Labini, Arthur Dewolf, Germana Cappellini, Andrea d’Avella, Francesco Lacquaniti, and Yury Ivanenko. 2022. "Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton" Sensors 22, no. 15: 5708. https://doi.org/10.3390/s22155708
APA StyleZhvansky, D. S., Sylos-Labini, F., Dewolf, A., Cappellini, G., d’Avella, A., Lacquaniti, F., & Ivanenko, Y. (2022). Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton. Sensors, 22(15), 5708. https://doi.org/10.3390/s22155708