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Abstract: The traditional single-shot multiBox detector (SSD) for the recognition process in sea
cucumbers has problems, such as an insufficient expression of features, heavy computation, and
difficulty in application to embedded platforms. To solve these problems, we proposed an improved
algorithm for sea cucumber detection based on the traditional SSD algorithm. MobileNetv1 is
selected as the backbone of the SSD algorithm. We increase the feature receptive field by receptive
field block (RFB) to increase feature details and location information of small targets. Combined with
the attention mechanism, features at different depths are strengthened and irrelevant features are
suppressed. The experimental results show that the improved algorithm has better performance
than the traditional SSD algorithm. The average precision of the improved algorithm is increased
by 5.1%. The improved algorithm is also more robust. Compared with YOLOv4 and the Faster
R-CNN algorithm, the performance of this algorithm on the P-R curve is better, indicating that the
performance of this algorithm is better. Thus, the improved algorithm can stably detect sea cucumbers
in real time and provide reliable feedback information.

Keywords: sea cucumber fishing; image recognition; deep learning; single-shot multibox detector

1. Introduction

Recently, sea cucumber farming has been rapidly developed as an aquatic type of
farming [1]. With the development of sea cucumber production, the breeding problems of
sea cucumbers are becoming increasingly serious. Traditional sea cucumber fishing, which
has low efficiency and high risk, is mainly dependent on manual work [2]. To promote
the development of sea cucumber breeding automation, it is necessary to research the
automatic identification of sea cucumbers in the natural underwater environment based
on machine vision [3,4]. A sea cucumber target recognition by BP neural networks was
proposed by Wang et al. They used RGB and depth images as prior knowledge to improve
recognition accuracy [5]. A depth residual network with different configurations for sea
cucumber target recognition was proposed by Guo et al. [6]. A real-time cultured sea
cucumber detector attached to an autonomous underwater vehicle (AUV), with YOLOv4-
tiny and transfer learning are proposed by Thao et al. [7]. After the study of sea cucumber
target recognition, the above scholars and other researchers have proposed a series of
methods with practical applications. However, the majority of research has not considered
the application to embedded platforms and real-time issues.

To solve the above problems, an improved SSD target detection algorithm is proposed.
First, we use the MobileNetv1 to detect and locate sea cucumbers. Secondly, the shallow
feature receptive fields are improved by RFB, and have more details and location infor-
mation of small targets. This algorithm combines the attention mechanism to strengthen
features at different depths, suppress irrelevant features, and perform feature fusion to
further improve the accuracy of sea cucumber detection.
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2. SSD Object Detection Algorithm

The core of the traditional SSD algorithm is to predict results by different convolution
layers. The traditional SSD algorithm introduces the idea of regression and proposes the
concept of the prior box [8]. The algorithm predicts targets on feature maps of different
receptive fields, and completes target location and classification at one time.

2.1. Traditional SSD Model Structure

A traditional SSD network uses VGG16 as the backbone network. The two fully
connected layers of VGG16, which lay the foundation for subsequent multi-scale feature
extraction, are converted into convolution layers. The traditional SSD network has six
feature maps at different dimensions. Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2,
and Conv11_2 are connected to the final classification layer for regression prediction [9,10].
The network structure of the traditional SSD algorithm is shown in Figure 1.

Figure 1. Network-structure diagram of traditional SSD algorithm.

First, the traditional SSD algorithm generates six prior boxes on six feature maps.
Secondly, the prior boxes are assembled from different feature maps. Finally, the final set of
prior boxes is selected by non-maximum suppression (NMS) [11,12].

2.2. The Loss Function of Traditional SSD

Model prediction performance is tested by the loss function [13,14]. The traditional
SSD algorithm loss function is divided into two parts, the classification loss function and
the position loss function,

L(x, c, l, g) =
1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
, (1)

where Lcon f is the classification loss function, Lloc is the position loss function, N is the
number of samples, α is the weighting coefficient, x is the matching information for the
current prediction box category, c is the labeled category, l represents the coordinates of the
search prediction boxes, and g represents the coordinates of marked boundary frames.

The position loss function is shown as follows. Where xk
ij = {1, 0} represents whether

the i search prediction box matches the J real box on category k, lm
i is the prediction box; ĝm

j
is the ground-truth box, N is the number of matched samples, Pos is the positive sample,
Box is a set of prediction box attribute parameters, and smoothL1 is the error function of L1:

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈Box

xk
ijsmoothL1

(
lm
i − ĝm

j

)
. (2)

The classification loss function is shown as follows. Where ĉi
p is the probability which

is the target of the i prediction box is p, ĉi
0 is the probability that the target is not detected in

the i prediction frame, xp
ij represents whether the i search prediction box matches the j real

box on category P, Neg is the negative sample, and Pos is the positive sample:

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log

(
ĉ0

i

)
(3)
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ĉp
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(
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i

)
/ ∑

p
exp

(
cp

i

)
. (4)

2.3. Traditional SSD Performance Analysis

The traditional SSD algorithm uses multi-scale feature maps for detection, and gener-
ates six prior boxes which have different aspect ratios [15].

As shown in Figure 2, feature maps of the lower level are larger, but the receptive
field of each unit is relatively small. Feature maps of the lower level are suitable for
detecting small targets. Feature maps of the higher level are smaller, but the receptive field
of each unit is relatively large. Feature maps of the larger level are suitable for detecting
large targets.Therefore, the detection of small targets relies on lower-level feature maps.
The number of lower-level-feature convolution layers is small, resulting in insufficient
feature extraction and poor semantic distinction.

ground truth
anchor

Feature map of lower 
level output

Feature map output from 
the middle level

Feature maps of higher 
level outputs

Figure 2. Output results from different levels of SSD.

As shown in Figure 3, the sea cucumber is a small target. When using the traditional
SSD algorithm to identify sea cucumbers, the detection ability is insufficient, the robustness
is poor, and it is impossible to accurately locate the underwater sea cucumber. In addition,
the traditional SSD algorithm has a large computing capacity, and cannot be applied
to embedded platforms. To overcome these problems, the traditional SSD algorithm
is optimized.

Figure 3. Underwater robots taking photographs of sea cucumbers.

3. Sea Cucumber Detection Algorithm Based on Improved MobileNetv1 SSD
3.1. MobileNetv1 Structure

MobileNetv1, which uses depthwise separable convolution, is a lightweight CNN
structure [16]. The depthwise separable convolution is mainly divided into two parts,
depthwise convolution and pointwise convolution [17,18].



Sensors 2022, 22, 5717 4 of 11

As shown in Figures 4–6,where DF represents the height and width of the input matrix,
DK represents the size of the convolution kernel, M is the number of input feature matrix
channels, and N is the number of output feature matrix channels:

DK × DK × DF × DF ×M + M× N × DF × DF
DK × DK ×M× N × DF × DF

=
1
N

+
1

D2
K

. (5)

The depthwise separable convolution in MobileNetv1 networks uses a convolution
kernel of 3 × 3. The computation of standard convolution parameters is about nine times
that of depthwise separable convolution parameters. The introduction of the MobileNetv1
network reduces the number of calculation parameters and realizes a lightweight structure.

3 channel input Filter * 4 Maps * 4

DF

M

DK

N

Figure 4. Standard convolution.

3 channel input Filter * 3 Maps * 33 channel input Filter * 3 Maps * 3

Figure 5. Depthwise convolution.

Maps * 3 Filter * 4 Maps * 4

Figure 6. Pointwise convolution.

3.2. Introduction of SSD Network with Dilated Convolutional Structure

The RFB module, which is similar to the inception network, is a multi-branch con-
volution block [19]. The RFB module consists of a multi-branch convolution layer and a
dilated convolution layer. The dilated convolution adds holes to increase the receptive field.
The dilated convolution has a hyper-parameter Kd [20,21]:

Kd = l × (K− 1) + 1, (6)

where Kd is the size of the dilated convolution kernel, L is a dilation factor, and K is the
size of the original convolution kernel.
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As shown in Figure 7, when the dilation factor is 2, the dilated convolution has larger
receptive fields than the original convolution.

Figure 7. Comparison of traditional and expansive convolution.

The RFB module processing flow is shown in Figure 8. The RFB module consists of
three branch modules [22]. The bottom layer in each branch is processed by convolutional
nuclei of 1 × 1, 3 × 3, and 5 × 5. Finally, three different receptive fields are obtained [23,24].

Figure 8. RFB module processing flowchart.

In this paper, the RFB module is introduced to process the Conv4_3 layer and the
FC7 layer. As a result, shallow semantic information is richer. Deep feature maps need
feature processing, so introducing an attention mechanism to strengthen the feature maps
at different depths.

3.3. Introduction of Attention Mechanisms

In this paper, spatial attention and channel attention mechanisms are introduced to
strengthen the features at different depths [25]. Finally, the multi-layer feature maps are
fused to achieve better detection results.

First, the spatial attention mechanism is introduced into the features at different depths.
Secondly, when a multi-channel feature map is an input, spatial attention will learn and
train relationships of different spatial domains in the feature map. After giving higher
weights to more representative local features, a two-dimensional spatial weight map W is
generated. Finally, the two-dimensional weight map W is multiplied by the corresponding
position space to obtain a representative feature map. The training mechanism of spatial
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attention is as follows. First, through global maximum pooling and global average pooling,
feature representative values are obtained at each spatial position. Then, these feature
representative values are fused by convolution operation to obtain the spatial attention
map. Finally, spatial attention weights of 0–1 are generated by the sigmoid activation
function [26–28]. The calculation formula is as follows:

Ws(F) = sigmoid{ f 3×3{[MaxPool(F); AvgPool(F)]}}, (7)

where Ws(F) is the feature map after spatial attention mechanism processing, F is the input
multi-channel feature map, f 3×3 is the convolution operation of 3 × 3, AvgPool is the global
average pooling, and MaxPool is the global maximum pooling.

First, the channel attention method filters out irrelevant channel features in a multi-
channel feature map. Secondly, through the relationship between each channel in the
feature map to learn the weight array. Finally, the weight array is multiplied by the
corresponding channel [29,30]. The following formula is used to calculate the channel
attention mechanism:

W ′s(F) = sigmoid{MLP[AvgPool(F)] + MLP[MaxPool(F)]}, (8)

where W ′s(F) is the result characteristic diagram, MLP is the multilayer perceptron, AvgPool
is the global average pooling, and MaxPool is the global maximum pooling.

3.4. MobileNetv1 SSD Network with Attention Mechanisms

The improved SSD algorithm can detect sea cucumbers by the MobileNetv1 SSD
network. The size of the shallow feature receptive fields is increased by RFB [31]. First,
the attention mechanism creates a model of the relationship between relevant feature
channels and feature spaces. Secondly, the obtained weights between each feature channel
and feature space, are multiplied by the original feature information. Finally, the obtained
channel features map and spatial feature map not only contain the most representative
features but also suppress irrelevant features. In short, the improved SSD algorithm not
only improves the recognition accuracy of small target objects but also reduces the missed
detection rate and false detection rate.

In this paper, the features of the Conv4_3 and FC7 layers are selected to utilize RFB.
Finally, P1(19 × 19), P2(10 × 10), P3(5 × 5), P4(3 × 3), P5(2 × 2), and P6(1 × 1) feature maps
are obtained [32]. The improved SSD network structure is shown in Figure 9.

Figure 9. Improved SSD network structure.

4. Experimental Results and Analysis

To verify the feasibility of the proposed algorithm, the following computing environ-
ment was used: Intel(R)Core(TM)i7-9750H CPU, NVIDIA GeForce RTX 2060 graphical
processing unit, Ubuntu 20.04 operating system, and Keras 2.1.5 deep-learning framework.

4.1. Experimental Data

The experimental data were extracted from a video of shallow sea cucumber farming.
The video is recorded by a remotely operated vehicle. By framing the video, 1710 original
sea cucumber images were collected by using data augmentation to increase the original
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dataset. The number of images in the dataset is 4005. The filtered images were manually
annotated by LabelImg software. In the dataset, 70% comprise the training set, and 30%
comprise the test set. LabelImg software uses rectangular boxes to mark sea cucumber
targets. The label information is stored in XML format. The information includes image
name, category name, image size, and position information.

4.2. Evaluation Index Setting

The intersection over union, which is the overlap rate between the candidate bound
and the ground truth bound, is a concept in object detection. Owing to the complexity
of the marine environment, this paper uses mean average precision (mAP) with an IOU
threshold of 0.5 and detection frame rate as evaluation indicators. The mean average
precision, which is calculated by the P-R curve, is an evaluation metric in object detection
models. The P-R curve consists of a precision curve and a recall curve. The P-R curve
reflects global performance [33]. The following equations are used to calculate precision,
recall, and mAP:

Precision = TP/(TP + FP) (9)

Recall = TP/(TP + FN) (10)

mAP =
k

∑
i=1

APi/k, (11)

where FP is a false positive example, FN is a false negative example, TP is the real example,
TN is a true negative example, APi is the average precision of a category; and k is the
number of categories. Figure 10 is a loss curve.

Figure 10. The loss curve.

4.3. Improved SSD Model Validation

To verify the effectiveness of the improved SSD model, this paper conducts a compar-
ative experiment on the recognition effect of the traditional SSD model. The improved SSD
model uses the same training set and sets the same parameters as the traditional SSD model.
The training is divided into the freezing stage and the thawing stage. In the freezing stage,
the learning rate is 5× 104, the model backbone is frozen, and the network is fine-tuned.
In the thawing stage, the learning rate was 1× 104, the model backbone is thawed, and the
feature extraction network is adjusted.
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As shown in Table 1, compared with the traditional algorithm, the average accuracy
of the algorithm proposed in this paper is improved by 5.1%, the detection frame rate is im-
proved by 18.514 frame/s. The detection accuracy of sea cucumber is improved effectively.

Table 1. Improved and traditional SSD algorithm comparison test results.

Detection method mAP50 Frames per Second No. of Iterations

Traditional SSD algorithms 0.914 5.916 100
Improved algorithm 0.965 24.430 100

Figure 11 is the comparison chart of the P-R curve before and after the model improve-
ment. The model performance is reflected by the P-R curve.

Figure 11. Comparison of P-R curves before and after model improvement.

As shown in Figure 11, the improved SSD model has the larger area between the P-R
curve and coordinate axis. The equilibrium point of the improved SSD model is closer
to coordinate (1,1), indicating that the system performance of the improved SSD model
is better.

Figure 12 shows the comparison images of sea cucumbers detected by the SSD model
before and after improvement. As shown in Figure 12a, the result of the traditional SSD
algorithm has a repeat box. As shown in Figure 12b, the result of the traditional SSD
algorithm has a false detection. As shown in Figure 12c, the result of the traditional SSD
algorithm reveals a missed detection. The comparison results in Figure 12d show that the
confidence of the improved SSD algorithm has increased by 12%. According to the results
in Figure 12, the proposed algorithm reduces the missed detection rate. Compared with
the traditional algorithm, the confidence of the proposed algorithm is higher. In addition,
the portion of the target missed by the traditional SSD algorithm can be detected by the
proposed algorithm.

Figure 12. Comparison of sea cucumber identification before and after model improvement.
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4.4. Comparison of Different Models

In order to further prove the effectiveness of the algorithm in this paper, the FasterR-
CNN algorithm and the YOLOv4 algorithm are selected for comparison test. The Faster
RCNN algorithm and the YOLOv4 are typical one-stage and two-stage target detection
algorithms. The following graph is the P-R curve comparison graph of four algorithms.
Under the same sea cucumber dataset, the performance of the proposed algorithm on the
P-R curve is better than YOLOv4 and Faster R-CNN, indicating that the performance of
the proposed algorithm is better (see Figure 13). In terms of detection speed, in the process
of algorithm testing, the proposed algorithm is slower than YOLOv4 algorithm and faster
than FasterR-CNN algorithm. Compared with the typical YOLOv4 and FasterR-CNN in
the first and second stages, the proposed algorithm has better target detection ability and
higher applicability for sea cucumber target recognition.

Figure 13. Four models comparison of P-R curves.

5. Conclusions

Aimed at the low accuracy and a large amount of computation required by traditional
SSD algorithms in detecting sea cucumbers, an improved algorithm for sea cucumber
detection is proposed. First, a MobileNetv1 SSD network is used to detect and locate sea
cucumbers. Through a receptive field block, the shallow feature receptive field is improved
to increase the detail and location information. The improved algorithm is combined
with an attention mechanism to strengthen features of different depths. The experimental
results show that, compared with the traditional SSD algorithm, the proposed algorithm
has good robustness and recognition rate. Compared with the YOLOv4 and Faster R-CNN
algorithms, the performance of this algorithm on the P-R curve is better, indicating that the
performance of this algorithm is better. Underwater sea cucumbers have the characteristic
of changing body color to match their environment, and future research will aim at solving
the problems caused by this characteristic, focusing on finding an innovative pre-treatment
method to achieve efficient identification of sea cucumbers.
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