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Abstract: Risky driving behavior seriously affects the driver’s ability to react, execute and judge,
which is one of the major causes of traffic accidents. The timely and accurate identification of the
driving status of drivers is particularly important, since drivers can quickly adjust their driving status
to avoid safety accidents. In order to further improve the identification accuracy, this paper proposes
a risky-driving image-recognition system based on the visual attention mechanism and deep-learning
technology to identify four types of driving status images including normal driving, driving while
smoking, driving while drinking and driving while talking. With reference to ResNet, we build four
deep-learning models with different depths and embed the proposed visual attention blocks into the
image-classification model. The experimental results indicate that the classification accuracy of the
ResNet models with lower depth can exceed the ResNet models with higher depth by embedding
the visual attention modules, while there is no significant change in model complexity, which could
improve the model recognition accuracy without reducing the recognition efficiency.
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1. Introduction

Motor vehicles have become an important means of transportation for the daily travel
and cargo transportation of residents. Their present possession and annual increase show
an explosive growth trend, which unavoidably causes an increasing number of traffic safety
problems and accidents. Therefore, facing the development background of the above era,
how to reduce the probability of traffic safety problems and improve the traffic safety factor
has become a common concern of scholars. Risky driving is one of the essential factors
leading to traffic safety problems. It causes the driver to have less control over the vehicle,
which in turn leads to the driver being unable to perform normal car maneuvers, such as
steering, gear shifting, and deceleration [1–3].

Statistical results indicate that more than 75% of traffic accidents and traffic safety
problems are closely related to irregular driving and risky driving behaviors [4]. For
example, during the driving process, calling, drinking and smoking can affect driver atten-
tion, making them unable to focus on the driving conditions ahead and the environment
around the motor vehicle, which may directly lead to the occurrence of safety accidents.
Therefore, it is important to improve the detection capacity of the driver’s driving status,
and the timely identification and correction of risky driving behaviors can avoid traffic
safety problems to the greatest extent [5]. At this stage, a large number of scholars have
carried out experimental research on the detection of risky driving and have achieved
relatively excellent performance. Among them, the early risky-driving-detection systems
were mainly based on vehicle driving information, driver physiological signals or driver
facial characteristics, and they also achieved relatively stable detection accuracy supported
by accurate sensor devices. However, the traditional risky-driving-detection system still
has some application problems, such as a slow detection efficiency, complex detection
scheme and difficult application deployment.
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With the further development of electronic imaging technology and the continuous
innovation of computer intelligence technology, image-classification technology based
on machine vision has flourished and has been applied to production tasks in various
fields. Among them, deep-learning technology, as one of the hottest intelligent research
directions in recent years, has shown extremely outstanding achievements in the field
of image recognition and classification by automatically extracting features from input
images using convolutional neural networks (CNNs). Therefore, deep-learning-based
image-recognition and classification techniques have been applied to many fields such
as medicine [6], machinery [7], and agriculture [8], and the different models have also
been tested, experimented, and applied by researchers in the fields of automotive image
recognition and driver status detection.

Based on deep-learning techniques, Alotaibi et al. proposed a distracted-behavior-
detection system based on residual modules and recurrent neural networks (RNNs), and
the experiment results proved that the method has high classification accuracy in the driver
distracted-driving image-classification task [9]. Fusing in-vehicle sensor data with vision
data, Furkan et al. proposed a system based on a CNN and migration-learning techniques
applied it to hazardous driving condition detection and achieved a 96% detection accu-
racy on the test dataset [10]. To detect driver driving behaviors, Xing et al. designed a
driver-activity-recognition system based on deep convolutional neural networks (CNNs)
to detect seven common driving behaviors, compared the classification performance of
three networks, AlexNet, GoogLeNet and ResNet50, and AlexNet was relatively better in
the detection test [11]. In addition, different scholars have experimented, tested the per-
formance of various types of deep-learning networks in risky-driving-image-classification
tasks, and applied the related techniques to practical detection scenarios [12–16].

However, they focused on the risky driving behavior recognition accuracy of the
existing deep-learning model, and did not consider the collaborative optimization of
recognition accuracy and efficiency to reduce the difficulty of the deployment of the
recognition system. As you know, the complexity of a model determines the speed of its
response, and we can reduce that complexity by reducing the depth of the model. Therefore,
this paper explores the classification accuracy of deep-learning models at different depths,
and introduces the visual attention module to further enhance each classification model,
so as to explore risky-driving-image-recognition models with low model complexity and
high classification accuracy, which can provide guidance for model selection in different
application scenarios. The key contributions of this work are:

(1) Taking the driver’s risky-driving images as the research object, including four
categories of images: normal driving, driving and drinking, driving and smoking, and
driving and calling, this paper proposes four different visual attention modules and builds
ResNet image-classification models of different depths.

(2) This experiment embeds the proposed four visual attention modules into the
ResNet models to explore the classification performance.

(3) This experiment introduces the Grad-CAM algorithm for visual analysis to observe
the influence of the visual attention modules for feature extraction in risky-driving images.

The rest of this paper is organized as follows: Section 2 discusses the structure of base
convolutional neural networks, pooling strategies, visual attention modules, and the data
augmentation technique. Section 3 indicates the experimental results and discussions, and
Section 4 concludes the paper with a summary and future research directions.

2. Methodology

This section describes various techniques involved in the visual attention mechanism
and deep-learning-based risky-driving-image-classification systems, mainly containing
convolutional neural networks, ResNet architecture, different pooling operation schemes,
different types of visual attention modules, and data-augmentation techniques.
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2.1. Convolutional Neural Networks & ResNet

Convolution neural networks (CNNs) are a kind of feed-forward neural network with a
deep structure and convolution calculation, which has strong learning capability and uses a
convolution layer structure to classify input information shift invariant [17]. The basic CNNs
consist of five structures: thr input layer, convolutional layer, pooling layer, fully connected
layer and classification layer. The CNN network architecture is shown in Figure 1.
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Figure 1. Convolutional neural network architecture: (a) input layer; (b) convolutional layer; (c) pooling
layer; (d) fully connected layer; (e) classification layer.

ResNet [18] is a class of networks designed to solve the gradient explosion and the
overfitting problems during the model-training phase as the network deepens. The purpose
of the residual module (Figure 2a) is to add the features extracted from the front to back
layers of the model, and by using the shortcut connection (Figure 2b), ResNet effectively
solves the problems of network gradient explosion and overfitting during the training
process. At the same time, by introducing the batch-normalization (BN) layers, ResNet
speeds up the network training speed and convergence stability. Due to the application
advantages of the ResNet, this experiment selects a different-depth ResNet as the guiding
architecture to complete the risky-driving-image-classification tasks.
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2.2. Pooling Operation & Different Pooling Strategies

The pooling operation is one of the most important processing units in the CNN
models, which plays the role of extracting representative features for captured image
features, and therefore is also called the sub-sampling or down-sampling operation. After
the pooling operation, the dimension of the output feature is effectively reduced, which is
helpful for reducing the network training parameters and preventing overfitting. In the
CNN architecture, the common pooling strategies include max pooling, average pooling
and stochastic pooling, as shown in Figure 3.
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For different types of image-classification tasks, different pooling strategies can focus
on preserving different image features, such as texture, contour, background or other types
of features in the input feature maps, and researchers can select different pooling strategies
to optimize the CNN models for a specific task. However, it is worth knowing that the
single pooling strategy often results in the loss of useful feature extraction. For instance,
max pooling discards all non-maximum values in the pooling kernel, while average pooling
fails to retain the maximum feature values, and stochastic pooling does not focus on the
retention of features in a specific direction. Therefore, the single pooling strategy also limits
the classification performance of the CNN models, and needs to be compensated for and
solved by the optimization methods.

2.3. Visual Attention Module Design

To solve the problem of feature loss caused by using a single pooling strategy and to
improve the classification performance of deep-learning models in risky-driving-image-
classification tasks, this paper proposes to incorporate visual attention mechanisms into
risky-driving-image-classification models, and this section mainly illustrates the four visual
attention module design schemes.

2.3.1. Squeeze and Excitation Visual Attention Block (SE Block)

The squeeze and excitation visual attention block (SE block) was firstly proposed by
Hu et al. in SE Net [19], which adds the visual attention mechanism to the CNN model in
the channel direction to obtain more channel feature information, and the structure of the
SE block is shown in Figure 4a.
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The SE block mainly contains three processing processes: squeeze, excitation and scale.
The output of the previous layer is the processing object, and a 1 × 1 convolution operation
is performed first to obtain the feature map.

uc = vc ∗ X = ∑c′

S=1 vs
c ∗ xs (1)

where vc represents the number of parameters of the c-th filter, the X is the input image,
∗ represents the convolution operation process, and uc is the output feature map.

Afterwards, the SE block will use the convolutional output to perform squeeze, excita-
tion and scale operations in sequence, where the squeeze process is implemented as a global
average pooling operation, that is, each feature channel of the feature map is compressed
and characterizes the global distribution of responses over the feature channels; the excita-
tion process is implemented by using a fully connected layer. The result after excitation is
subjected to another fully connected operation to achieve feature dimensionality recovery,
and the sigmoid activation function is used to obtain a weight value between 0 and 1.
This process allows the CNN model to effectively learn the nonlinear interactions and
nonreciprocal relationships between channels, and ensures the attention enhancement of
multiple channels. Finally, the output values of the excitation processing are subjected to
a reweight process that is used to weight the normalized weights to the features of each
channel, also known as scale, which is weighted to the previous features channel by channel
through the dot product. Through the SE block operation, the CNN model is effectively
enhanced for feature extraction in the channel direction, and the SE block can be flexibly
embedded in the residual branch of the ResNet model, as shown in Figure 4b.

2.3.2. Channel Visual Attention Block & Spatial Visual Attention Block (CA Block
& SA Block)

Referring to the design idea of the SE visual attention block, Woo et al. proposed
two new visual attention blocks, the channel attention module (CA block) and the spatial
attention module (SA block), for spatial direction and channel direction, respectively [20],
which further improve the feature-extraction ability and classification performance of the
CNN image-classification model. The structure details of the CA block and SA block are
shown in Figure 5.
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In the CNN image-classification models, the CA block and SA block focus on perform-
ing visual attention tasks in different ways, where the CA block focuses on computing
the intrinsic relationships between individual channels, while the SA block focuses on the
intrinsic relationships of feature maps at the spatial level.

On the one hand, in the CA block, it performs the max pooling, average pooling and
stochastic pooling operations on the input feature map F to simultaneously obtain the
texture, contour and background information of the input image and enhance the model ro-
bustness. Finally, the computation result will be sent to an MLP shared network, which will
sum the corresponding elements of the three different feature maps and output the channel
attention feature map, so the CNN model not only obtains the reduced dimensionality of
the output feature images in the convolutional layer, but also retains more comprehensive
image features. On the other hand, in the SA block, the max pooling, average pooling
and stochastic pooling are performed on the input feature maps in turn, and the results
are obtained for feature concatenation. Then, the fused feature maps are subjected to a
standard convolution operation to recover the feature dimension and output the spatial
visual attention feature map, so the SA block can efficiently help the CNN model solve the
problem of “which regions are important and which regions are minor” in the input image.
In addition, both the CA block and the SA block can be flexibly deployed in the ResNet,
and their embedding schemes are similar to those of the SE block.

2.3.3. Mixed Visual Attention Block (MA Block)

In the process of exploring the use of visual attention mechanisms in CNN models,
Woo et al. found that there is still space for the upward improvement of CNN image-
classification models, so they proposed a mixed visual attention block that combines the
use of two types of visual attention blocks to improve the feature-extraction and image-
classification performance of deep-learning models, as shown in Figure 6. Meanwhile,
through experiments, Woo et al. pointed out that setting the CA block in front and the SA
block in the back has a more significant performance on the model enhancement, and the
increase in computational complexity contributed by this MA block to the CNN model is
relatively small. In addition, the embedding method of the MA block in the ResNet model
is consistent with the deployment of the SE block, CA block and SA block, which indicates
the high application flexibility of the MA block.
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2.4. Data-Augmentation Technology

With the deepening of the deep-learning model and the increase in the model complex-
ity, training a new, deep and large CNN image-classification model needs to be supported
by a large amount of labeled image data, and an insufficient amount of image data will
directly lead to overfitting and accuracy bottlenecks during the training phase. Besides,
as a relatively new research area, there are relatively few public datasets and insufficient
image data for the risky-driving-image-classification task. In addition, the acquisition of
risky-driving images requires a professional camera at a fixed position on the driver’s
side of the motor vehicle, which has relatively strict requirements for imaging equipment
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and shooting environments, which also increases the difficulty of acquiring risky-driving
images and preparing data sets.

One solution to the above problem is the data-augmentation (DA) technology, which
is now widely used by researchers to obtain training data that can be used for deep-
learning models. Specifically, the classic DA methods includes rotating, flipping, scaling,
increasing contrast, adding Gaussian noise, and many other forms. Among them, rotation
processing rotates the original training image by a certain angle; flipping inverts the original
image horizontally or vertically; scaling enlarges or shrinks the original image by a certain
proportion; increasing contrast changes the saturation (S) and value (V) of the original
image in the HSV color space; adding Gaussian noise randomly perturbs each pixel RGB
in the original image. Therefore, by using the above classic DA methods, researchers can
quickly and efficiently expand the training image dataset for their CNNs models, which in
turn alleviates the problems of overfitting and unbalanced data volume between groups
during the training phase.

3. Results and Discussion
3.1. Experiment Data Processing & Dataset Preparation

For the task of monitoring the driver’s driving status, this experiment selected the
normal driving status and three risky-driving-status images as the experiment object,
among which, the three risky-driving-status images include smoking, drinking and calling.
During driving status, drivers’ behaviors of smoking, drinking and calling will seriously
distract drivers’ attention and reduce their response speed to emergencies, so when the
above scenarios occur, the probability of drivers causing potential safety hazards or traffic
accidents will also increase significantly. Therefore, the above risky-driving situations
should be avoided as much as possible in the actual driving process.

The experimental data were collected by a professional image data acquisition com-
pany, the camera was deployed in the left side of the motor vehicle above the A-pillar,
which can clearly capture the driver’s driving status images, and selected two images in
each category as an example. The camera deployment position and the acquired images
are shown in Figure 7.
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Figure 7. Camera deployment location and four categories of driving status.

At the beginning stage of the dataset preparation, this experiment adopted an 8:1:1 ra-
tio to divide the training set, test set and validation set, respectively. In addition, in order
to avoid the problems of insufficient training data and an uneven data volume between
different categories of images, this experiment used the DA technology to expand the
training set. The data volume of each category after the DA process is shown in Table 1, in
which the training sets of normal, smoking, drinking and calling are 2403, 2420, 2416 and
2407, respectively, totaling 9646, the test set is 298, 293, 291 and 299, totaling 1181, and the
validation set is 280, totaling 1120.
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Table 1. Data volume of risky-driving-image dataset.

Normal Smoking Drinking Calling Total

Training set 2403 2420 2416 2407 9646
Valid set 298 293 291 299 1181
Test set 280 280 280 280 1120

3.2. Model-Building Details and Experiment Setting

In order to explore the performance of different-depth CNNs and the proposed vi-
sual attention blocks for risky-driving image classification, four deep-learning image-
classification models with different depths were built with reference to the ResNet, which
are ResNet18 with 18 layers, ResNet34 with 34 layers, ResNet50 with 50 layers, and
ResNet101 with 101 layers. After that, the four visual attention blocks (SE block,
CA block, SA block, and MA block) were embedded in the different-depth The model-
building details and the embedding details of the visual attention blocks are shown in
Table 2. By comparing the above CNN models, this experiment will systematically explore
the performance of deep-learning-based image-classification technology in the field of
safety driving detection.

Table 2. Model structure setting and the insertion position of attention blocks.

Layers Output Size Res Net18 Res Net34 Res Net 50 Res Net101

Conv 01 112 × 112
7× 7, 64, stride 2

Attention block

Conv 02 56 × 56

3× 3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

Attention block

Conv 03 28 × 28

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

Attention block

Conv 04 14 × 14

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256

1× 1, 1024

× 6

 1× 1, 256
3× 3, 256

1× 1, 1024

× 23

Attention block

Conv 05 7 × 7

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

Attention block

Fully connected 1 × 1 Average pool, softmax

In the model-building, platform-deployment and testing phases of this experiment,
the details of its experimental environment and application platform are shown in Table 3.
Among them, this experiment selected the SGD model optimizer, a learning rate of 1 × 10−4,
a momentum of 0.95, a discard rate of 0.5, a loss function of category cross-entropy loss,
and in the deployment of the attention module, its decay rate was 16 and the pooling
kernel size was 7 × 7. Meanwhile, in order to improve the model-training efficiency, this
experiment used ReduceLROnPlateau and EarlyStopping algorithms, where the monitor of
ReduceLROnPlateau was validation loss, the decay learning rate (factor) was 0.5, and the
patience was 4. In EarlyStopping, its monitor was validation loss, the Min_delta was 0, and
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the patience was 10. In addition, the models were built based on the Keras toolbox in the
Python 3.7 environment, the training epoch was 400 with a batch size of 32, and all models
were trained in Nvidia RTX 2080Ti and CUDA10.1, cudnn7.3.1 environment.

Table 3. Model-training hyperparameter setting.

Type Setting

Basic setup

Optimizer SGD
Learning rate 1 × 10−4

Momentum 0.95
Dropout 0.5

Loss function categorical_crossentropy

Attention block setting Decay rate 16
Pooling kernel 7 × 7

Training setting Batch size 16
Epoch 400

ReduceLROnPlateau
Monitor Validation loss
Factor 0.5

Patience 5

EarlyStopping
Monitor Validation loss

Min_delta 0
Patience 10

Training environment
GPU Nvidia RTX 2080Ti

Platform Python 3.7
Toolbox Keras

3.3. Experiment Result Comparison and Analysis
3.3.1. Model Comparison and Evaluation

To fully evaluate and compare the performance of the deep-learning models em-
bedded with attention blocks in risky-driving-image-classification tasks, and to explore
the application performance between different visual attention blocks, this experiment
collected the training accuracy, training loss, validation accuracy, and validation loss of
20 different ResNet models, as shown in Table 4. Among them, training accuracy and
training loss were used to evaluate the model-training status, and validation accuracy and
validation loss were used to evaluate the model classification performance. Meanwhile, the
number of calculation parameters of each model was calculated to evaluate the training
difficulty of the models and to observe the increase in training parameters and the training
difficulty due to embedding visual attention blocks.

This experiment compares the base ResNet models with different depths without the
visual attention mechanism. The results indicate that the classification accuracy is positively
correlated with the depth of the model, and the model complexity, that is, the number
of calculation parameters, is negatively correlated with the depth of the model. Among
them, ResNet101 achieved 92.73% classification accuracy with 45.13 M parameters in the
risky-driving-image dataset; while the recognition accuracy was improved, the model was
also more complex.

After that, we compared the ResNet models of each depth embedded with visual
attention blocks, and the results indicate that the visual attention modules can enhance
the recognition accuracy of the ResNet model to varying degrees, but they do not sig-
nificantly increase the number of model parameters. Among them, the ResNet models
embedded with the MA block improved the validation accuracy to the greatest extent, and
the improvement degrees of ResNet18_Mixed, ResNet34_Mixed, ResNet50_Mixed and
ResNet101_Mixed were 4.93%, 4.39%, 3.63% and 4.45%, respectively.
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Table 4. Recognition accuracy and efficiency evaluation of ResNet models with different depths by
embedding visual attention blocks (especially the mixed visual attention block, greatly improving
the recognition accuracy while not affecting the recognition efficiency).

Train Accuracy Train Loss Valid Accuracy Valid Loss Parameters

Res Net 18 91.42% 1.3640 88.25% 1.6353 11.75 M
Res Net 18_SE 95.62% 0.5830 92.26% 1.1715 11.82 M
Res Net 18_CA 94.48% 0.6733 92.12% 1.1863 11.82 M
Res Net 18_SA 94.83% 0.6098 92.04% 1.1924 11.82 M

Res Net 18_Mixed 95.75% 0.5873 93.18% 1.1056 11.82 M
Res Net 34 93.34% 1.0892 90.78% 1.3528 21.85 M

Res Net 34_SE 95.74% 0.5914 93.21% 1.0968 22.31 M
Res Net 34_CA 93.85% 1.0008 93.94% 1.0819 22.31 M
Res Net 34_SA 95.41% 0.5948 93.16% 1.1056 22.31 M

Res Net 34_Mixed 97.90% 0.4551 95.17% 0.6242 22.32 M
Res Net 50 94.36% 0.6278 92.89% 1.1363 25.68 M

Res Net 50_SE 96.02% 0.5642 94.95% 0.5954 28.21 M
Res Net 50_CA 95.95% 0.5772 94.43% 0.6163 28.21 M
Res Net 50_SA 95.45% 0.5824 94.15% 0.6451 28.21 M

Res Net 50_Mixed 98.29% 0.3484 96.52% 0.5263 28.22 M
Res Net 101 95.89% 0.5364 93.73% 1.1396 45.13 M

Res Net 101_SE 97.81% 0.4428 95.94% 0.5779 49.91 M
Res Net 101_CA 96.71.% 0.5284 95.25% 0.5994 49.91 M
Res Net 101_SA 96.96% 0.5189 95.14% 0.6148 49.91 M

Res Net 101_Mixed 99.28% 0.0932 98.18% 0.3595 49.91 M

It is worth noting that the classification accuracy of the ResNet models with lower
depths can exceed the ResNet models with higher depths by embedding the visual attention
modules. For instance, the validation accuracy of ResNet50_Mixed was 96.52%, while
that of ResNet101 was 93.73%, and the number of parameter in ResNet101 was 60% more
than ResNet50_Mixed. Therefore, we can greatly improve the recognition accuracy of the
ResNet model by embedding a visual attention module, but the recognition efficiency will
not be affected, which is of great significance to the practical application and popularization
of this technology.

3.3.2. Confusion Matrices Analysis

To further demonstrate the classification performance of the proposed ResNet model
embedded with attention blocks in the risky-driving-image dataset, the confusion-matrices-
evaluation tool was introduced in this experiment [21,22]. Taking the ResNet101 and the
ResNet101 variant model with different visual attention blocks as examples, the confusion
matrices of the above models in the risky-driving-image test set are shown in Figure 8.

On the whole, the ResNet101 models with attention blocks had a lower misclassifica-
tion rate compared with the base ResNet101 model, in which the number of misclassifi-
cations for ResNet101_SE, ResNet101_SA, ResNet101_CA, and ResNet101_Mixed we’re
104, 105, 100, and 84, respectively, while the number of misclassification images of the base
ResNet101 model reached 111, which indicates that embedding the visual attention module
to the ResNet model can effectively improve the classification performance of the CNN
model for risky-driving images.

When analyzing the misjudgment rate of different categories, the results indicate that
the misclassification of normal-driving images was relatively high in the four categories,
while the misclassification of smoking, drinking, and calling we’re more similar in the
three categories. In analyzing the reasons for the above results, we believe that the normal-
driving images do not have obvious characteristics, and their driving actions have partial
similarity to the remaining three risky-driving images, which to some extent causes the
model misclassification.
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the classification performance.

3.3.3. Grad-CAM Visualization Analysis

In order to observe the changes in the magnitude and distribution of the classification
weights caused by embedding visual attention blocks more intuitively, taking the different-
depth ResNet101 models and variant ResNet101 models as examples, one image of each
category in the risky-driving-image dataset was selected for Grad-CAM visualization [23],
and the visualization results are shown in Figure 9.
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On the one hand, in the overall trend, the visualization results show that after em-
bedding attention blocks to the ResNet101 model, the model extracts more image feature
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information in the input image, as the regions that account for the weights are relatively
increased, which indicates the improved feature extraction ability of the ResNet model.
On the other hand, when analyzing Grad-CAM map of the ResNet101 with different at-
tention blocks, the experimental results show that the distribution and size of the weights
occupied by some of the focal regions in the three risky-driving category images increase
to some extent. For example, the weight of the water bottle and drinking-action region
in the driving-while-drinking image, the weight of the cigarette stick and smoking-action
region in the driving-while-smoking image, and the weight of the cell phone and talking-
action region in the driving-while-talking image, which represents the main direction of
the features extracted by the visual attention blocks.

4. Conclusions

In order to further improve the performance of the deep-learning image-classification
model in the risky-driving-detection task, this paper proposes a solution of embedding
visual attention blocks into the deep-learning framework to improve the feature-extraction
ability and classification performance. Through the model comparison and evaluation,
it is worth noting that the classification accuracy of ResNet models with lower depths can
exceed the ResNet models with higher depths by embedding the visual attention modules,
while there is no significant change in model complexity. Therefore, we can greatly improve
the recognition accuracy of the ResNet model by embedding the visual attention module,
but the recognition efficiency will not be affected, which is of great significance to the
practical application and popularization of this technology. Moreover, the results of the
confusion matrices analysis and Grad-CAM visualization analysis confirm the superiority
of the proposed model.

In future studies, we will further expand the amount of dangerous-driving-scene
recognition and image data, optimize the configuration of the visual attention module, and
carry out practical applications and optimization on the basis of improving the accuracy
and efficiency of recognition.
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