Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling
Abstract
:1. Introduction
2. Background
2.1. Adversarial Attack and Defense
2.2. Denoiser
2.3. Tucker Decomposition on Convolution Kernel Tensors
3. Problem Formulation
3.1. Problem Description
3.2. Problem Statement
4. eDenoizer
4.1. Solution Overview
4.2. Scaling down the Computational Scale of DUNET
4.3. Scheduling Framework for Multiple Deep Learning Models
4.3.1. Scheduling Unit
4.3.2. Scheduling Algorithm
Algorithm 1 Multi-DNN Scheduling Framework |
|
4.3.3. Scheduling Framework Analysis
4.3.4. Priority-Based DNN Operations and Maximum Parallelism
5. Experiments
5.1. Implementation
5.2. Experimental Setup
5.3. Classification Accuracy on Adversarial Examples
5.3.1. Classification Accuracy of Approximate DUNET on Adversarial Examples
5.3.2. Transferability of Approximate DUNET to a Different DNN Model
5.4. Execution Performance Evaluation
5.4.1. Running Only the Defense Target Model and DUNET
5.4.2. Running Multiple DNN Models Together
5.4.3. Applying Tucker Decomposition to the Defense Target Model
5.5. Memory Footprint Reduction
6. Related Work
6.1. Lightweight Deep Learning Model over the Structural Change
6.2. Enhancing the Computational Efficiency
6.2.1. Hardware Acceleration
6.2.2. Software Techniques for Efficient Use of Existing Computing Units
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Sengupta, S.; Lakshminarayanan, V. Explainable Deep Learning Models in Medical Image Analysis. J. Imaging 2020, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Rashid, K.M.; Louis, J. Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform. 2019, 42, 100944. [Google Scholar] [CrossRef]
- Bojarski, M.; Testa, D.D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U. End to End Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316. [Google Scholar]
- Zhu, H. MetaAID: A Flexible Framework for Developing Metaverse Applications via AI Technology and Human Editing. arXiv 2022, arXiv:2204.01614. [Google Scholar]
- Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (sp), San Jose, CA, USA, 22–26 May 2017; pp. 39–57. [Google Scholar]
- Cheng, S.; Dong, Y.; Pang, T.; Su, H.; Zhu, J. Improving Black-box Adversarial Attacks with a Transfer-based Prior. Adv. Neural Inf. Process. Syst. 2019, 32, 10932–10942. [Google Scholar]
- Liao, F.; Liang, M.; Dong, Y.; Pang, T.; Hu, X.; Zhu, J. Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1778–1787. [Google Scholar]
- NVIDIA. Jetson AGX Xavier Developer Kit|NVIDIA Developer. Available online: https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit (accessed on 10 June 2022).
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Goodfellow, I.; Shiens, C.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial Machine Learning at Scale. arXiv 2016, arXiv:1611.01236. [Google Scholar]
- Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in Machine Learning: From Phenomena to Black-Box Attacks using Adversarial Samples. arXiv 2016, arXiv:1605.07277. [Google Scholar]
- Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical Black-Box Attacks against Machine Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017; pp. 506–519. [Google Scholar]
- Deng, J.; Dong, J.; Socher, R.; Li, L.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoizing autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications. arXiv 2015, arXiv:1511.06530. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- NVIDIA. Hareness AI at the Edge with the Hetson TX2 Developer Kit|NVIDIA Developer. Available online: https://developer.nvidia.com/embedded/jetson-tx2-developer-kit (accessed on 10 June 2022).
- NVIDIA. CUDA Toolkit—Free Tools and Training|NVIDIA Developer. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on 10 June 2022).
- NVIDIA. CUDA Deep Neural Network(cuDNN)|NVIDIA Developer. Available online: https://developer.nvidia.com/cudnn (accessed on 10 June 2022).
- Harris, M. GPU Pro Tip: CUDA 7 Streams Simplify Concurrency|NVIDIA Technical Blog. Available online: https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency (accessed on 10 June 2022).
- Lim, C.; Kim, M. ODMDEF: On-Device Multi-DNN Execution Framework Utilizing Adaptive Layer-Allocation on General Purpose Cores and Accelerators. IEEE Access 2021, 9, 85403–85417. [Google Scholar] [CrossRef]
- PyTorch. Available online: https://pytorch.org (accessed on 10 June 2022).
- TensorFlow. Available online: https://www.tensorflow.org (accessed on 10 June 2022).
- Xiang, Y.; Kim, H. Pipelined Data-Parallel CPU/GPU Scheduling for Multi-DNN Real-Time Inference. In Proceedings of the 2019 IEEE Real-Time Systems Symposium (RTSS), Hong Kong SAR, China, 3 December 2019; pp. 392–405. [Google Scholar]
- Karol, M.; Hluchyj, M.; Morgan, S. Input Versus Output Queueing on a Space-Division Packet Switch. IEEE Trans. Commun. 1987, 35, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- NVIDIA. CUDA Streams: Best Practices and Common Pitfalls. Available online: https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf (accessed on 10 June 2022).
- Kim, M. Guaranteeing That Multilevel Prioritized DNN Models on an Embedded GPU Have Inference Performance Proportional to Respective Priorities. IEEE Embed. Syst. Lett. 2021, 14, 83–86. [Google Scholar] [CrossRef]
- Ajitsaria, A. What Is the Python Global Interpreter Lock (GIL)? Available online: https://realpython.com/python-gil (accessed on 10 June 2022).
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Fourteenth European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 630–645. [Google Scholar]
- Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. Ensemble Adversarial Training: Attacks and Defenses. arXiv 2017, arXiv:1705.07204. [Google Scholar]
- Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollar, P. Designing Network Design Spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10428–10436. [Google Scholar]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Yan, M.; Zhao, M.; Xu, Z.; Zhang, Q.; Wang, G.; Su, Z. VarGFaceNet: An Efficient Variable Group Convolutional Neural Network for Lightweight Face Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Huynh, L.N.; Lee, Y.; Balan, R.K. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara Falls, NY, USA, 19–23 June 2017; pp. 82–95. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A. EIE: Efficient inference engine on compressed deep neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [Google Scholar] [CrossRef]
- Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713. [Google Scholar]
- Panda, P. QUANOS: Adversarial noise sensitivity driven hybrid quantization of neural networks. arXiv 2020, arXiv:2004.11233. [Google Scholar]
- NVIDIA Deep Learning Accelerator. Available online: http://nvdla.org (accessed on 10 June 2022).
- Tensor Cores|NVIDIA Developer. Available online: https://developer.nvidia.com/tensor-cores (accessed on 10 June 2022).
- Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Comput. Archit. News 2014, 42, 269–284. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. DaDianNao: A Machine-Learning Supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, UK, 13–17 December 2014; pp. 609–622. [Google Scholar]
- Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, Portland, OR, USA, 13–17 June 2015; pp. 92–104. [Google Scholar]
- Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE J.-Solid-State Circuits 2016, 52, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Wang, x.; Hou, R.; Zhao, B.; Yuan, F.; Zhang, J.; Meng, D.; Qian, X. DNNGuard: An Elastic Heterogeneous DNN Accelerator Architecture against Adversarial Attacks. In Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 19–34. [Google Scholar]
- Waterman, A.; Lee, Y.; Patterson, D.A.; Asanovi, K. The Risc-V Instruction Set Manual. Volume 1: User-Level Isa, Version 2.0; SiFive Inc.; Cs Division, EECS Department, University of California: Berkeley, CA, USA, 2017. [Google Scholar]
- Ma, S.; Liu, Y.; Tao, G.; Lee, W.C.; Zhang, X. NIC: Detecting Adversarial Samples with Neural Network Invariant Checking. In Proceedings of the 26th Network and Distributed System Security Symposium (NDSS 2019), San Diego, CA, USA, 24–27 February 2019. [Google Scholar]
- Huynh, L.N.; Balan, R.K.; Lee, Y. DeepSense: A GPU-based Deep Convolutional Neural Network Framework on Commodity Mobile Devices. In Proceedings of the 2016 Workshop on Wearable Systems and Applications, Singapore, 30 June 2016; pp. 25–30. [Google Scholar]
- Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J. Neurosurgeon: Collaborative Intelligence between the Cloud and Mobile Edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Ballester, J.L.; Aparicio, A.P.; Castell, S.F.; Garcia, J.S.; Cobos, M. Enabling Real-Time Computation of Psycho-Acoustic Parameters in Acoustic Sensors Using Convolutional Neural Networks. IEEE Sens. J. 2020, 20, 11429–11438. [Google Scholar] [CrossRef]
- Raspberry Pi. Available online: https://www.raspberrypi.com/documentation (accessed on 10 June 2022).
- Zhou, H.; Bateni, S.; Liu, C. S3DNN: Supervised Streaming and Scheduling for GPU-Accelerated Real-Time DNN Workloads. In Proceedings of the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, 11–13 April 2018; pp. 190–201. [Google Scholar]
- Kim, Y.; Kim, J.; Chae, D.; Kim, D.; Kim, J. μLayer: Low Latency On-Device Inference Using Cooperative Single-Layer Acceleration and Processor-Friendly Quantization. In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germary, 25–28 March 2019; pp. 1–15. [Google Scholar]
Inception-V3 | ResNet-152 | VGG-16 | DUNET | |
---|---|---|---|---|
Jetson AGX Xavier | 86.3 ms | 157.7 ms | 50.4 ms | 160.7 ms |
Jetson TX2 | 103.9 ms | 198.6 ms | 76.8 ms | 246.4 ms |
Classification | Description | |
---|---|---|
HW | CPU | 8-core ARM v8.2 Carmel 64-bit CPU, 8 MB L2, 4 MB L3 cache |
GPU | 512-core Volta GPU with Tensor cores | |
Memory | 32 GB 256-Bit LPDDR4x, 137 GB/s | |
Storage | 32 GB eMMC 5.1 | |
SW | Kernel Ver. | Linux 4.9.140 |
SW Package | JetPack 4.2 | |
CUDA Ver. | CUDA v10.0.166 | |
Denoiser | DUNET in HGD [8] |
Attack Method | Attacked Model | |
---|---|---|
Training Set and Validation Set | FGSM | IncV3 |
FGSM | IncResV2 | |
FGSM | Res | |
FGSM | IncV3/IncResV2/Res | |
IFGSM2 | IncV3/IncResV2/Res | |
IFGSM4 | IncV3/IncResV2/Res | |
IFGSM8 | IncV3/IncResV2/Res |
Attack Method | Attacked Model | |
---|---|---|
White-box-test-set | FGSM | IncV3 |
IFGSM4 | IncV3/IncResV2/Res | |
Black-box-test-set | FGSM | Inception-V4 |
IFGSM4 | Inception-V4 |
Result in [8] | Org. DUNET | Approx. DUNET | |
---|---|---|---|
Clean-image-test-set | 76.2% | 76.53% | 76.38% |
White-box-test-set | 75.2% | 72.37% | 70.59% |
Black-box-test-set | 75.1% | 74.86% | 74.45% |
Result in [8] | Orginal DUNET | Approximate DUNET | |
---|---|---|---|
Clean-image-test-set | 77.4% | 73.7% | 73.5% |
White-box-test-set | 75.8% | 71.35% | 70.86% |
Black-box-test-set | 76.1% | 72.07% | 71.58% |
Inception-V3 | ResNet-152 | VGG-16 | RegNet | DUNET | |
---|---|---|---|---|---|
Original | 105 MB | 231 MB | 528 MB | 555 MB | 43 MB |
Approximate | 59 MB | 144 MB | 481 MB | 404 MB | 35 MB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Joo, S. Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling. Sensors 2022, 22, 5896. https://doi.org/10.3390/s22155896
Kim M, Joo S. Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling. Sensors. 2022; 22(15):5896. https://doi.org/10.3390/s22155896
Chicago/Turabian StyleKim, Myungsun, and Sanghyun Joo. 2022. "Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling" Sensors 22, no. 15: 5896. https://doi.org/10.3390/s22155896
APA StyleKim, M., & Joo, S. (2022). Time-Constrained Adversarial Defense in IoT Edge Devices through Kernel Tensor Decomposition and Multi-DNN Scheduling. Sensors, 22(15), 5896. https://doi.org/10.3390/s22155896